503 TECHNICAL MANUAL
VOLUME 2: PROGRAMMING INFORMATION
PART 1: PROGRAMMING SYSTEMS
SECTION 5: ALGOL MK. 3

The contents of this section are liable to alteration without notice

Copyright English Electric Computers Limited
March, 1968

PREFACE

CONTENTS LIST

Chapter 1: SYSTEM SPECIFICATION

1.
2.

INTRODUCTION.. .. - 2 2 s+ ==

PROCESS USED - COMPILATION AND RUNNING ..

General e wm TR R

ALGOL3 in an installation with Magnetic
Tape and core-backing store

2.2.1 Conversion of source code to owncode..
2.2.2 Conversion of owncode to machine code.
2.2.3 Running the translated program
ALGOL3 in an installation with Magnetic
Tape only
2.3.1 Conversion of source code to owncode. .
2.3.2 Conversion of owncode to machine code.
2.3.3 Running the translated program

ALGOLS3 in an installation with Magnetic
Tape and a limited amount of core-backing
store s aa ma

ALGOL3 in an installation with core-backing
store only ‘e

PROCESS USED - INPUT OF SOURCE CODE
(Library, edit and listing facilities)

Chapter 2: ELLIOTT 503 ALGOL REPRESENTATION

l.

o W N

ELLIOTT 503 ALGOL .. .4 4 ss o0 o0 oo oo
Basic symbolso s . .

: i | The characters hilt (76) and %

Punching instructions
Notes to the programmer
The Program .. . s+ oo oo oo

The use of Elliott ALGOL program sheets

2.1.5,

12
12
13
14

14

16
16

19
19
20
20
22
22
23

i

(Issue 2)

ii
(Issue 2)

1.6 Correction of ALGOL programs. .
RESTRICTIONS AND PROGRAMMING NOTES

2.1 The declaration of labels ..
Z2.1.1 Unsigned integers as labels
2.1.2 Switches .

2.2 Type of Arithmetic Expressions..

2:3 go to statements

2.4 for statements

2.5 OWIL ATTAYS 2« +2 s 22 =2 =3 =235 3

2.6 Specification of parameters ..

27 Recursive procedures..

2.8 Switch parameters ok e W

2«9 Procedures as parameters of procedures ..

2.10 Type procedures

2.11 Sequence of declarations

2.12 Length of identifiers

2.13 Reserved identifiers .. .:4

2.14 The operator =

.15 Range and accuracy of numbers ..

2.16 The standard function abs(E).. ..

2.17 The standard trigonometrical procedures ..

2.18 Sequence of operations

2.19 Boolean expressions

2.20 Correspondence between formal and actual

PAYAmMeter8 .. o6 o v se s es e e e

2.20.1 Array parameters+ s0s as e
2.20.2 Parameters called by name

2.21 Array dimensions ..

2.22 Arraysina segment so o0 ss es o

2.23 Multiple placings of labels

2.24 Bestrictions in the use of recursive procedures

33
34
34
34
34
34
34

2.25

Alterations required to programs written for
the ALGOLI compiler..
2.25.1 Significant space characters
2.25.2 Procedures 'dump' and 'precompile’
2.25.3 Arrays in an array segment..
2.25.4 Procedure 'elliott’

Chapter 3: INPUT AND OUTPUT FACILITIES

1.

i
(5 I O U]

[T oS TR o T S
oo W N

INTRODUCTION ..
Print and read statements
Structure of read and print lists
Input data tape
Presumed settings
Qutput of text ..
SETTING PROCEDURES
Device setting procedures
2.1.1 Device used
2.1.2 Method of use
Prefix setting procedures
Format setting procedures ..
Scaled and aligned formats ..

Additional format setting procedures ..

&:5.1 Grouping of digits ..

2.5.2 Leading zeros .

2.5.3 Specialities. .

2.5.4 Presume

2.5.5 Character handling procedures ..
2.5.6 Errors

2.5.7 Parameters out of range ..

Input and Qutput of strings

™
o~
—

Instring (A,m)
Z2.6.2 Outstring (A, m)

2.1.5.

Page

36
36

L 3&

. 36
36

37
37
37
38
39
40
42
44
45
46
46
47
48
49
49
50
50
51
52
53
53

54
55

iii
(Issue 2)

2.1.5

Chapter 4:

iv
(Issue 2)

2.7

2.8
2.9

2.10

String parametersand storage of strings,

in 503 ALGOL..

Procedures in read and print lists

Read device buffer ..

Lineprinter procedures
2.10.1 top of form
2. 10,2 find (M)
2.10.3 lines (M)
2.10.4 overprint ..

ADDITIONS TO THE LANGUAGE

T

2

INTROCDUCTION

ADDITIONAL STANDARD FUNCTIONS ..

CHECKING FUNCTIONS
ARRAY HANDLING PROCEDURES ..
Addressing facilities
STOREMAX PRCCEDURE
CONTROL PROCEDURES
wait
restart
stop
MACHINE CODE
code statements ..
o | General
Syntax ..
Description

Advanced facilities

=] =] =1 =] =]
—
L5 I S LR

and their input routines

T.1:6 Error messages ..
elliott procedures
7.2.1 Modification required to programs

containing elliott procedures

Differences between code statements

56
58
58
58
59
59
59
59

60
60
60
61
62
65
65
66
66
66
66
67
67
68
68
Te

76
78
78

78

8.

10.

11.

12.

13.

14.

10.1

11.1

11.2

12.1
12.2
12.3
12.4

13.1
13.2
13.3
13.4

USE OF SAC COMMON PROGRAMS WITHIN AN
ALGOL PROGRAM.. e W

entercp (m,n, o)
PROGRAM SEGMENTATION
Method of use

I | Definition of significant comment for
segmentation ..

Segment areas and segment area numbers. .
How to segment efficiently
%31 Space
9.3.2 Time
Segment sizes ..
Error message interpretation
Backing-store ..
ARRAY STORAGE
Arrays as parameters of procedures
IIBRARY FACILITY ..
Writing texts to magnetic tape
11.1.1 Texts already on the library tape
Reading texts from magnetic tape
EDIT FACILITY
Edit and compile
Edit, list and compile..
Edit, input library text and compile

Edit, list, input library text and compile ..

LISTING FACILITY .. «¢ oo 40 o0 20 as a0 oo

List and compile

Edit, list and compile

Edit, list, input library text and compile ..

List, input library text and compile
SUMMARY OF STANDARD PROCEDURES

2.1.5

Page

78
79
81
81

82
82
82
82
82
83
84
85
85
86
86
86
88
88
89
89
89
90
90
90
90
91
91
91
92

v
(Issue 2)

2.1.5

Chapter 5:

1.
2.

Chapter 6:

A1

vi
(Issue 2)

Page
ERROR INDICATIONS
INTRODUGCTION. i os a5 s ws 4 sa aw w4 aw aa 95
ERRORS DURING THE TRANSLATION OF A
PROGRAM Rl T I T R r— 95
. | Copiedtext 2o 20 2o oo oo o4 w0 o 96
2.1.1 Note on default option 97
2ia Notes on error No.20 and error No.49 97
2.2.1 Error No.20 (undeclared identifier) is
treated specially 97
2.2.2 Error No.49 i et s au aa 97
243 SpUrious errors cx ae oas o es owe e 97
2.4 Eryor TABle wu ww we st cew ew ws ms oew ges 98
2.4.1 Code statement errors 102
2.5 Errors not detected 103
ERRORS DURING CONVERSION OF OWNCODE
TOMACHINE CODE ... «o us @ e ss o e a0 103
ERRORS DURING RUNNING OF PROGRAMS 104
4.1 Non-continuable errors «: <4 4 oo 104
4.2 Continuable eXToTE . oo oo oa o 4a a5 w4 106
4.3 Suppression of certain error messages 108
4.3.1 ROFI0: aw s me wie wwm SR e @R are Tels 109
4.3.2 OELS xe cmw ew mie, wie ww ews e, mw em s 109
4.3.3 Continuation after floating-point overflow 110
NOTES ON SPACE OVERFLOW CONDITIONS 110
o | Compiletime ¢ a0t o0 os oo oo 110
5.2 Conversion of owncode to machine code 111
5.3 ROtEie. .o ww crm wm) s s wow wies wie wim e 112

OPERATING INSTRUCTIONS

OPERATING INSTRUCTIONS WITH THE CORE-
BACKING STORE EXECUTIVE PROGRAM(ALGOLB) 115

1.1 Creating the system <o +0 s os 115

1.1.1 Introduction i ea ee ew ew ew e e 115

Chapter

T:

1.1.2 Operating instructions..

1.2 Compiling and running an ALGOL program

OPERATING INSTRUCTIONS WITH THE MAGNETIC

TAPE EXECUTIVE PROGRAM (ALGOLM)

2.1 Creating the system
2.1.1 Introduction G e W R @a
2.1.2 Operating Instructions
24 Compiling and running an ALGOL program
CODE FOR COMPILING ENTRY TO THE
EXECUTIVE ¢ 4 o0 a4 o

GENERAL OPERATING NOTES
DUMPING AN ALGOL PROGRAM ON MAGNETIC
TAPE
DESCRIPTIONS OF PROGRAMS USED IN ALGOL3
SYSTEMS PROGRAMS

1.1 A a

1.2 %} R

1.3 A3D ..
EXECUTIVE PROGRAMS

2.1 ALGOLB

2.2 REEOERE ws com s v om i v St v
AUXILIARY PROGRAMS

3.1 INTRODUCTION

3.2 BER vr. wor sn ok e Fot 56 65 5% Wt e o

3.3 ALPL

3.4 CHARIN - v 35 ww e w6 i w9

3.5 CHAROU .. . v v ve vu u.

3.6 GMT (FOR ALGOL3)

3.7 INTER

3.8 LIBR1

3.9 LIBR2

119
119
119
120
123

124
124

126

127
127
131
134
140
140
153
163
163
163
165
169
170
.. 176
181
184
.. 188

vii
(Issue 2)

3.10 OAST.. ..

3.11 OCBS:. ¢ o ¢5 s 28 53 22 s
3.12 ERINT

3-13 GBIT LN LR -8 -8 L - . L L] - e L

Appendix 1: ALGOL3 FOR INSTALLATIONS WITHOUT A
LINEPRINTER

1. INTRODUCTION

ALGOLM or ALGOLB (No lineprinter)
CHAROUT (No lineprinter)

INTER (No lineprinter)

[* S VT 5

Printed in England by
Engineering Unit, English Electric Computers Ltd.

viii
(Issue 2)

2,1.5

PREFACE

The ALGOL MK.III (Issue 2) compiler system, designed for

use with a non-basic 503 equipped with some form of backing store, provides

the following extensions to the original 503 ALGOLI compiler.

I T I

o =~ o~ W

10.

Program Segmentation.

Array storage in both main store and core backing store.
Library facility.

Code statements, i.e. a combination of machine code
and certain features of symbolic assembly code.
Improved compile-time error output.

Improved run-time error diagnostics.

Additional standard procedures.

Flexible source-code input and the facility to edit and/or
list source-code at compile-time.

Adaptable and improved run-time input/output facilities,
built-in lineprinter procedures and the output of boolean
values.

Known ALGOL] errors corrected.

The following standard procedures have been removed:-

dump

precompile.

However, a running ALGOL program may be dumped

on magnetic tape using DUMP2 (see Chapter 6).

(Is :::e 2)

2. 1.5

LIBRARY TEXT
|
(br‘honil faci th'j)

4

PROERAM
INPUT

(Source :ﬁJﬂ)

COMPILER
(R3C)

-
-
-

OWHNCODE, OUTPUT

-

—

LISTING
OUTPUT

-y ()
ik

EXECUTIVE

(1s a:e 2)

OWNCODE

INPUT PROGRAM

(A3L)

>

|OWNCADE ¢ INPUT

SECMENTS, OUTPUT

BACKING

DYNAMIC
ROUTINES
(A3D)

e

SEGHENTS, INPUT

STORE

OUTPUT
OF
-RESULTS

THE ALGOL3 SYSTEM

)

N

2.1.5.1

Chapter 1: SYSTEM SPECIFICATION

1. INTRODUCTION

The ALGOL3 compiler has been designed as an easily
modifiable system which gives the maximum space in main store during the
compilation and running of an Algol program. The parts of the system not
required are held on core backing store or magnetic tape. For this reason

the system is only suitable for non-basic configurations.

ALGOL3 consists basically of three systems programs, the
compiler (A3C), the owncode input program (A3L) and the dynamic
routines (A3D), and an executive program (ALGOLB for CBS configurations
and ALGOLM for magnetic tape configurations). At any one particular stage
of the compilation and running, only the systems programs required,
the executive and any necessary auxiliary SAC common program are in main
store. The other systems and auxiliary programs are held on core backing

store or magnetic tape.

The other important feature of ALGOL3 is the way in which
the executive program controls the system and co-ordinates the use of SAC
common programs for various functions. This means that by modifying
the executive or any of the SAC common programs, it is not difficult for the
user to adapt the system for his own particular requirements and

configurations.

The SAC common programs required in the system are used

as follows: -

1
(Issue 2)

2.1.5.1

Editing of source-code)

characters. (EDITS8))

Lineprinter output for ;

error messages and)

listing (ALPL))

Input of library texts) Required by A3C

from magnetic tape. (LIBR1))

Interface between ?}

auxiliary programs)

providing source code. (INTER))

Input and Output of own (OCBS or)) Required)

code and segments. OAST/GMT)) by A3L)
Lineprinter output for :; Required
results. (ALP)) by A3D
Input of characters (CHARIN))

Output of characters (CHAROU) ;

2. PROCESS USED - COMPILATION AND RUNNING

2.1 General

As mentioned in the introduction, the ALGOL compiler
has been split into 4 major programs:- an executive, A3C,A3L and A3D.
A3C converts the ALGOL source code to an intermediate code called owncode,
A3L converts the owncode into machine code, and A3D is required by the
running translated program to provide the standard procedures and dynamic
routines. To increase the ease with which a user may modify the compiler
to suit his particular installation and requirements, SAC common programs

are used for the input and output of data to and from A3C, A3L and A3D.

A3C uses common programs

(i) to input source code,
(ii) output error messages,

(iii) output owncode.

2
(Issue 2)

2ok Bd

A3L uses common programs to:-

(i) input owncode,
(ii) output segments of a segmented program,

(iii) output error messages.
A3D uses common programs to:-

(i) input data required by the running translated program,
(ii) output results produced by the running translated program,
(iii) output error messages,

(iv) input segments of a segmented program.

The executive is a SAC program which controls the actions
of the compiler. It is the function of the executive to tell A3C, A3L and A3D
which common programs are to be used and also to bring A3C, A3L and A3D

plus their auxiliary programs into store at the appropriate times.

The process as it affects A3C, A3L and A3D can best be

illustrated by the diagram below.

COMPILATION

ertors ervelrs
] micL'mE
Source :uJE > H3 C Gb}htﬂée > own o ﬁ, H 3 L code »

Y

EXECUTINE

(Issue 2)

24105

RUN - TIME
Errors
Ja‘i’L > H?L.D I""'lSuits >
o5 5
Qe ’h-“es u"'?*
Pt %
P
e
TRANSLATED | S
PRoSRAH EYFarTheE
Z2.2 ALGOLS3 in an Installation with Magnetic Tape and

Core-bac k.ing Store

Let us assume that a magnetic tape batch holding the
compiler has already been produced. When this batch is loaded into main
and core-backing store, the executive (called ALGOLB) and any programs
that the user wants in main store during all phases of compilation and running
will be in main store. A3C, A3L, A3D and their common programs will be

in the bottom of core-backing store. Thus, the main store looks like:-

FiG.1
Hisky

Low
PROERAMS SAC
REQUIREDY |EXECVTINE Ro6RAS | KAPH
BY USER WeRKSPACGE
4

(Issue 2)

2.1.5.1

and core-backing store looks like:-

FIG.2
Lot e AL6OL3 SYITENS PROCRAMS—» Hich
4 VSERS §§ , g" "35' ALt USERS
CBS A3Cs g2
REAVED 7l A3C|E ;| A3D| A3L RESERY

! ! 1

b c

NeTE (C.Pr = CoamMmon rl"_,l'im.l"

The four C. B. S. pointers are core-backing store

pointers. They are:-

BSFF in location 0 This holds the address of the current First Free

location on core-backing store.

BSLF in location 1 This holds the address of the current Last Free

location on core-backing store.

BSMIN in location 2 This holds the lowest address on core-backing
store to which the user is prepared to allow the
systems programs and running translated program

to extend.

BSMAX in location 3 This holds the highest address on core-backing
store which the user is prepared to allow the

ALGOL system to use.

By setting suitable values in BSMIN and BSMAX the
user is able to reserve areas at the top and bottom of core-backing store for
his own use. These values will be set when the batch is created. BSFF

and BSLF are continuously updated throughout the compilation and running

of the ALGOL program.

5
(Issue 2)

When the system is loaded (see FIG.2).

BSF'F points to b
BSLF points to ¢
BSMIN points to a
BSMAX points to ¢

The ALGOL3 systems programs are stored as direct
copies of the programs as they existed in main store when the batch was
created. Preceding A3C's auxiliary programs on CBS is a small
information section holding the values that will be set in the RAP pointers
(7920,7925,7926, etc.) when A3C and its auxiliary programs are brought into
main store. Another information section precedes the common programs
used by A3L and A3D. This will be needed when A3L and A3D with their

common programs are brought into main store.

y A A | Conversion of Source Code to owncode (lst Pass)

When the executive (ALGOLB) is entered to start
compilation, it will load main store with A3C and the common programs it

requires, so that the main store looks like: -

FIG.3
Low H"‘ﬂl"
S R3C / Sac
roctarss |FETVEl conmont | ABC PRo6RAT17 |RAPHT
PROSRAMS WORKSPACE

The executive will pass to A3C the names and entry
points of the common programs it is to use. A3C is given the source code

by one common program and converts it to an intermediate code called owncode.

6
(Issue 2)

o9 . B |

This is given to a second common program which will place the owncode on

core-backing store (for details see Chapter 7.3.11).

complete, the executive will display the title of the program being translated,

When this process is

replace A3C and its common programs, with A3L, A3D and their common

programs ready for the second pass.

2.

2.2 Conversion of owncode to machine code (2nd Pass)

At this stage the main store looks like:-

FI1G.4
Low l-ll'aL
VSERS Coririen) Cerinien She .
PRe ERATLS EXEQNWE | MoerRaTL, ﬂab A3L| PRoéRvT PROGRAN | RAPHT
FiR ASL FR ASL WeRKSPACE]
Aud AZD oNLY
and core-backing store looks like:-
FIG.5
Lew “:;L
| vsers USeRs
s SR mt:?:afsmus O caE ReSERYED
=1 AREA AREA
2 * A
a b c
7

(Issue 2)

2.1.5.1

The core-backing store pointers hold:-

BSFF =b
BSLF = c
BSMIN = a
BSMAX = ¢

A3L is the program which converts the owncode into
machine code. The executive will pass to A3L the names and entry points of
the common programs it is to use. A3L will be supplied with ownc ode by the
common program OCBS and will place the machine code it produces in main
store. If there are own arrays which have to be kept on core-backing store
(see Chapter 4.10), A3L will suitably reduce the contents of BSLF to allow

room for these arrays.

Whilst A3C was translating the source code referring
to core-store own arrays, it assumed that the own arrays would be placed on
core-store beginning at the address which it found in the core-store pointer
BSLF and working towards the low addressed end of free store. However,
A3C did not claim the backing-store space itself. The value it found in BSLF
was placed in the owncode so that A3L may now check that the value has not

been changed.

If the program being translated is segmented (see
Chapter 4.9), then when A3L has produced a completed segment it will enter
a common program (OCBS) to have the segment copied onto core-backing
store. It will receive back a parameter of 19 bits which will be stored with
the parameters describing the segment. These 19 bits will later be given to
the program which has to bring the segment into main store when it is required
by A3D. In the case of an installation at which the segments are stored on
core-backing store the 19 bits would give the address of the start of the
segment on core store. OCBS will place the segments at the top of
backing -store.

8
(Issue 2)

2.1.5.1

When all the owncode has been converted to machine
code the executive will delete A3L from the main store. At the same time it
will delete any programs which were placed in store after A3L when the batch
was created. For this reason common programs which are required only by
A3L should be input after A3L. The executive will then display the available
free space in main store and a "Dwait>'. This marks the end of the second

pass, and completes compilation.

The user may now input programs to the main store

without destroying the compiled program if he wishes.

The main store now looks like:-

FIG. 6
Lews HUL

USERS ASL and users | Tree stwe™| SAC [cnpus)] SAC
ocioes| EXECTVE| 2D | ASD |ocinns| mnabie G 2 ol o %ﬁ;

conment @ | RnE g | | et

© @ fﬁo&?n&' PROCRATT | -space | & -SPACE

< TRANSLATED -
fRoOGRATT

There are three main sections to the translated

program.

(i) The constants used in the ALGOL program.
(ii) The body of the compiled code.

(iii) The workspace of the translated program.

The last includes 16 segment areas in which segments
will be placed, own arrays which are to be kept in main store and locations

assigned to the variables declared in the ALGOL program.

9
(Issue 2)

2.1.5.1

The core-backing store now looks like:-

FIG.7

P High
b | vers | AsoL3 | Hee e c8S USERS
CBS |peserved| SYrTens | AVALABLE To | SEGHENTS | OWN RETERVED
AWRR| AREA | PROSRANS | RuNNME RReEFRAA ARRAYT AREA

'y 4 & A

A b c d

The core-backing store pointers hold:-

BSFF = b
BSLF = ¢
BSMIN = a
BSMAX = d

2.2.3 Running the Translated Program

When key 19 of the word generator is changed, the
executive will enter A3D to run the translated program. The executive will

pass to A3D the names and entry points of the common programs it is to use.

The free store that is available in the main store and
core-backing store is used to hold two dynamic stacks on which non-own arrays
are placed. The user may specify an array to be kept on core-backing store
or main store (see Chapter 4.10). The core-backing store dynamic stack
consists solely of arrays, but information in addition to the main store arrays
will sometimes be stored in the main store dynamic stack. The space
required by arrays is only claimed when the block in which the array is declared
is entered, and is given back when the block is left. Both stacks work from
the high addressed end to the low addressed end of the free store. A3D will

itself adjust the contents of 7926 so that it holds the address of the last {ree

10
(Issue 2)

2.1.5.1

location in main store, and will adjust BSLF to protect the core-backing store
arrays. Should a core-backing store array require more space than is
available between BSLF and BSFF, A3D will overwrite the system programs
if this will give sufficient room for the array. As soon as part of the
systems programs on backing-store have been overwritten, A3D will set the
contents of BSMIN in BSFF. Should there still not be enough room for the
program to run, a non-continuable error message will be displayed. A3D

will not use the reserved area at the low-addressed end of backing-store.

A3D will enter a common program (CHARIN) when it
requires data (see Chapter 7.3.4). It enters the common program with the
number of the input device to be used in the accumulator. It will expect one
character to be in the accumulator when return is made. A3D will allow the

input device number to lie between 1 and 10 (see Chapter 3.2.1).

A3D outputs results, one character at a time, to a
common program (CHAROUT). It will enter the common program with both
the number of the output device t¢ be used and the character in the
accumulator (see Chapter 7. 3.5) A3D will allow the output device number

to lie between 1 and 524,287 (i.e. 2'% -1) inclusive.

When A3D requires a segment of a segmented program
to be placed in the main store, it will enter a common program (OCBS) with
various parameters specifying the particular segment required. (The
parameters include the 19 bits supplied to A3L by the program which wrote

the segments to backing store).

Should A3D detect an error in the running program,
it will either pass an error number to a cornmon program (CHAROU) which
will display the error message, in full, or it will pass the message, one
character at a time, to the common program when it is not possible to use

an error number, e.g. when an array name has to be displayed.

11
(Issue 2)

2.1.5.1

When the program has run to its conclusion, A3D
will return control to the executive so that the run may be repeated or a new
program compiled. It is never necessary to reload the systems programs
into core-backing store from magnetic tape to repeat the run of a translated
program. It will not be necessary to reload the systems programs when a
new ALGOL program is to be compiled unless the systems programs on core-
backing store have been destroyed, by a running ALGOL program, in which
case an error message will be displayed by the executive as soon as an

attempt is made to compile the new program.

2.3 ALGOLS3 in an installation with Magnetic Tape only

This is essentially as described above. The
differences lie basically in the executive and in the common programs that

A3C,A3L and A3D use for handling owncode and segments.

The ALGOL compiler system on magnetic tape
consists of a main store batch, a block containing A3C with its common
programs, and a block containing A3D and A3L with their common programs.
These last 2 blocks are each preceded by a nine word block holding
information necessary to load the system progran$into main store

(e.g. the values that must be set in locations 7920,7925 and 7926).

The main store batch needs to hold the executive
(ALGOLM) and its common programs GMT and OAST. This batch must be
loaded into the main store initially, so that the main store now looks like

FIG.1 except that GMT and OAST lie below the executive.

2.3.1 Conversion of source code to owncode (lst Pass)

When the executive is entered to start compilation it
will bring down from magnetic tape the first information block for stage 1 and
then the block holding A3C and its common programs. The main store now

looks like FIG.3 except that GMT and OAST lie below the executive.

12
(Issue 2)

2:1:5.1

Compilation will then proceed as described in
Section 2.2.1 of this chapter with the difference that the owncode will be
written in blocks to magnetic tape by the common program OAST (see
Chapter 7.3.10). When this process is complete, the executive will display
the title of the program being translated, replace A3C and its common
programs with A3L, A3D and their common programs from magnetic tape

ready for the second pass.

2.3.2 Conversion of owncode to machine code (2nd Pass)

At this stage the main store is as shown in FIG.4

except that OAST and GMT lie below the executive.

The second pass will proceed as described in
Section 2.2.2 of this chapter with the differences that the common program
which supplies A3L with the owncode is OAST and this program also writes
the segments of a segmented program to magnetic tape. The 19 bit
parameter which OAST will pass to A3L when a segment has been written to

magnetic tape will be a block number.

When all the owncode has been converted to machine
code, A3L will return control to the executive which will delete A3L and all
programs placed in store after A3L when the ALGOL3 system batch was
created. The executive will then display the extent of the free store available
in main store and a '""Dwait >'". This marks the end of the second pass and
completes compilation. The user may now input programs to the main store

without destroying the compiled program if he wishes.

The main store now is as shown in FIG. 6, except

that OAST and GMT lie below the executive.

13
(Issue 2)

2.1.5.1

2.3.3 Running the Translated Program

This is as described in Section 2.2.3 of thie chapter,
except that there will of course, be no arrays held on backing-store and the
common program which A3D enters to have a segment of a segmented

program retrieved from magnetic tape is OAST.

When the program has run to its conclusion, A3D
will return control to the executive , so that the run may be repeated or a new
program compiled. It will never be necessary to reload the main store with
the batch holding the executive to compile a new program unless the user's

program has corrupted the executive or any of the programs below it.

2.4 ALGOLS3 in installation with Magnetic Tape and a

limited amount of core-backing store

Installations of this kind may wish to keep the systems
programs, owncode and segments on magnetic tape and use the core-backing

store for arrays.

The executive ALGOLM is designed to allow this
The values of BSMIN and BSMAX (see Section 2.2 of this chapter) must be
specified when the system is created (see Chapter 6.2. 1). These values
will later be set in the backing store pointers when a program is to be

compiled, so that backing store looks like:-

FI1G.8
Low I-HJL
bec | users USRS
AW TERS Remiﬁh REIH?ETD
‘ !
a b
14

(Issue 2)

2.1.5.1

The core-backing store pointers hold:-

BSFF = a
BSLF =b
BSMIN = a
BSMAX =b

If core-backing store own arrays have been declared in
the program, then during the second pass, A3L will adjust the value of BSLF

to allow room for the arrays.

The backing store now looks like:-

FIG.9
Low Hisly
e USERS SpACE| viers
CBS | Reserved ook |ReseriEd
PO INTERS] RREA ARRAYS| AREA

A

t 1
a b [-

The core-backing store pointers now hold:-

BSFF = a
BSLF =b
BSMIN = a
BSMAX = ¢

Whilst the compiled program is running, A3D will
adjust the contents, of the backing store pointers (see Section 2.2.3 of this
chapter) when claiming and returning the space required by the non-own

core-backing store arrays.

When a new program is to be compiled the executive

will restore the backing-store pointers to the values shown in FIG. 8.

15
(Issue 2)

2.1.5.1

2.5 ALGOLS3 in Installations with core-backing-store only

Once the system programs have been set up on core-
backing store and the executive is in main store, the description of the
compilation and running of an ALGOL program is as described in Section 2.2
of this chapter. When a program is to be compiled and run, the executive
must occupy exactly the same position in main store as it held at the time

the systems programs were set up on core-backing store.

To reduce the time taken to input the systems programs
when the ALGOL system is being created it is suggested that the program CBIT
be used to connect all the programs required for the lst pass of compilation
together and all the programs required at run time and during the 2nd pass

of compilation together. (See Chapter 7.3.13 for description of CBIT)

3. PROCESS USED - INPUT OF SOURCE CODE (library, edit and

listing facilities)

There is a default option in A3C so that should it not be given
the name of a common program, which will provide it with the source code,
it will read characters directly from reader 1. However, because the source
code is normally passed to A3C by a common program it is possible to have
various other facilities whilst the program is being compiled. In the programs

issued these consist of:-

(i) Editing the source program.

(ii) Listing the source program on the lineprinter.

(iii) A library facility, which enables ALGOL source code
text held on magnetic tape to be compiled as part of

the ALGOL program.

The two programs which will normally supply A3C with
characters are INTER and LIBRI. INTER can either get characters directly

16
(Issue 1)

2.1.5.1

from reader 1 or from EDIT 8, and can, if required, pass the character to
ALPL which will print the character on the lineprinter. Schematically the

following alternatives exist:-

Default option INTER
reader 1 reader 1
INTER
A3C
Editins_fac:ili.ty
reader 1 reader 2
EDITS
INTER
A3C

Listing fac ilitz

reader 1

Y

INTER \
ALPL > lineprinter

\

A3C

17
(Issue 2)

2-1'5'1
LIBR1 can get characters from reader 1, from INTER or

from magnetic tape.

By suitably combining the programs, any combination of

these facilities can be obtained, e.g. library, listing and editing.

reader 1 reader 2 Magnetic Tape

s T

| EDITS

18
(Issue 2)

2.1.5.2

Chapter 2: ELLIOTT 503 ALGOL REPRESENTATION

1. ELLIOTT 503 ALGOL

The reference language of ALGOL requires a set of 89
printable characters; 78 of these characters are directly available in the
8 -channel Elliott telecode and a further 4 can be reproduced by punching a
combination of two characters. This leaves only 7 characters which are

not available.

The following section gives the necessary changes which must
be made in an ALGOL program before it can be presented for punching in

Elliott 8 -channel telecode.

1.1 Basic Symbols

503 representation ALGOL equivalent
and N

or v

not g

g i

7 ’

div T

o X

To give compatibility with 803 ALGOL, the following

alternative representations are acceptable, but not necessary, in 503 ALGOL.

representation ALGOL equivalent

leu <

BT
lesseq
greq

notn_a_q_
equiv =

v NV

19
(Issue 2)

2.1.5.2

The synonyms boolean for Boolean and goto for go to are

also acceptable in 503 ALGOL, but ** for{ and @ for,, (subscript ten) are

not acceptable. Note the symbol> is not allowed (see 2.14 of this chapter).

1.1.1 The Characters halt (76) and %

The character H (halt) and % are reserved in
Elliott ALGOL for special purposes connected with tape editing. They
should not appear in an ALGOL statement or on a data tape, or in a comment,
inless the corresponding special effect is required. In a string, % is treated
in the same way as any other character, but @ should not be used (see

paragraphs 1.6 and chapter 3, paragraph 1.3).

1.2 Punching instructions

(1) An ALGOL program tape should be punched on an 8-channel
Flexowriter. The punched tape should then be printed up

and this print up checked against the original program script.

(2) ALGOL program should be written either on a pre-printed
form (the Elliott ALGOL Program Sheet - see end of 2.1.3)
or on lined paper with some vertical lines added. The
heavy vertical lines represent tabulation and indicate where
each line of print should commence. The tab. stops should
be inserted every six character positions from the left-hand
margin, which, in turn, should be set approximately 3" in
from the left-hand margin of the paper. This permits eight

stops to be inserted when using a standard paper roll.

(3) Punch exactly what is necessary to produce a print-out like
the written program, i.e. all blank lines, spaces, etc.
Consecutive underlined words should be separated by a space.

In general, the exact number of spaces, new line characters

20
(Issue 2)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

r SRR s AE

and tabulate characters is not critical, but punching the
correct number improves the general appearance of the
print-up. However, between the characters £ and 7, the

text must be punched exactly as written.

Care must be taken to avoid confusion between the figure 'l'
and the letter '{' and also between the figure '0' and the
letter 'O'. These must be punched correctly and punch
operators should familiarise themselves with the difference

in print of these characters.

There should be a run out of blank tape at the beginning and
end of every tape punched. Blanks can also be run out at

any time.

A wrong character may be cancelled by overpunching with

'Erase'. This may occur anywhere.

Every semicolon should be followed by three or more blanks
to simplify future editing of the tape. (The omission of

these blanks is not an error.)

A halt code @ should be punched at the end of every
program tape, or at the end of every physical piece of
program tape if the program is punched in parts, and also

at the end of every data tape.

If it im impossible to punch one line of manuscript on one
line of paper, a new line may be commenced between any
two consecutive words, numbers or symbols. A single

word must not be split.

To produce an underlined word, punch the underline

character before each letter of the word. Do not punch

21
(Issue 2)

2.1.5.2

(11)

1.3

(1)

(2)

(3)

114

the underline character after the last letter of the word.
To produce one of the following symbols, punch the pair

of characters shown opposite it:

Symbol Characters Punched
Vertical bar =
Underline =

Underline <

LA /AN T S

Underline >

Since 'underline' and 'vertical bar' do not move the

carriage, this produces the correct print-up.

If goto is punched as two words then the space must alsc

be underlined.

Notes to the programmer

ALGOL programs may be written on a pre-printed form
(503 ALGOL PROGRAM sheet) or on lined paper (on which

a series of vertical tabulation lines have been drawn).

Consecutive words (identifiers) or consecutive basic words
must be separated by at least one space and manuscripts

must be written with such words clearly separated.

The programmer must clearly differentiate between the
figure '1' and the letter '{' and also between the figure '0'
and the letter 'o'. The use of the continental 1 and 7 and

a script 'E' is strongly recommended.

The program

Every ALGOL program written for the 503 must be

preceded by a title and followed by a semicolon.

22
(Issue 2)

2.1.5.2,

A title consists of any string of characters not including a
semicolon or a halt code, and is terminated by a semicolon. This title is

displayed when the program is run.

The title should be used to give enough information to
identify the program and the programmer uniquely. It may include name and
department of the programmer, cost code of the work being done, and the date
on which the program is presented. Each installation is encouraged to
establish its own standard practice for the writing of titles. Since the title is
not part of the program, a comment may not come immediately after the

semicolon which ends the title.

1.5 The use of Elliott ALGOL program sheets

Elliott ALGOL program sheets have been designed to enable
the programmer to indicate to the punch operator the exact layout of his
program. For this purpose, one and only one character should be written in
each cell; a cell which does not contain a character is treated as a space if it
occurs in the middle of a line; after the last occupied cell of a line a change to

a new line is punched.

The cells are grouped in units of six by means of a firmer
line. This is an aid to punch operators in counting the number of spaces
required on a deeply indented line. Itis recommended that indentation should
be a multiple of six; this allows room for the tabulation of statements just to

the right of a begin.

For identification purposes, the name of the program should
be written at the head of each sheet; if the sheet contains a recognisable sub-
section of the program, a subtitle may be used. These names at the head of the
sheets are not reproduced on the punched document. Therefore the first sheet
of the program must contain a copy of the title written as part of the text of the

program as well as the head of the sheet.

23
(Issue 2)

2.1.5.2

1.6 Correction of ALGOL programs

Any errors in an ALGOL program, whether of a syntactic
nature or in the actual formulation of the problem, must be corrected in the
source language. There is no means of making corrections to the compiled

program in the store of the computer.

To insert a statement or group of statements into a
program after a given statement, S say, punch @ (76) on the tape
immediately after the semicolon that terminates S. On reading this the
computer comes to a systems wait. Then translate the additional statements
(the last one having @ punched after the terminating semicolon), and finally

continue translating the original program. (See also EDIT FACILITY,

Chapter 4.12).
To cause the compiler to skip a statement of the program,

punch % immediately after the semicolon that terminates the preceding
statement. On reading % the computer ignores all subsequent input until the

next semicolon.

The halt code facility also permits a program to be punched

in sections on separate tapes, each section having ® at the end.

According to the punching instructions, three or more
blanks should be left after every semicolon of the program. If this has been
done, it is an easy matter to insert @ or % by a hand punch wherever

necessary.

2. RESTRICTIONS AND PROGRAMMING NOTES

This section describes a number of restrictions imposed on
the full generality of ALGOL, and mentions restrictions which are part of

ALGOL and whose effects are frequently overlooked.

24
(Issue 2)

2.1.5.2

2.1 The declaration of labels

Any labels used to label a statement in the compound tail
of a block must be declared at the head of that block. The method of

declaring a label is to include it in the switch list of a switch declaration:
switch ss:= labell,label2,........ :

The switch identifier is obligatory, even if it is not used
in a statement of the program. Any identifier different from the other
identifiers of the program may be used for a switch; but the use of a
sequence of the letter 's' is recommended as standard practice, except

where this would cause a clash with other identifiers.

Care must be exercised in declaring labels in the block to

which they are local. It is inadmissible to declare labels of an inner block in an

embracing block. The following is a scheme of correct label declarations:

begin...
switch s:= Pl. 22. 93:

end compound statement

end hlock{’Z;

end; 25
(Iseue 2)

2.1.5.2

A label may not prefix a statement in a procedure body
unless it is declared in the same procedure body. This may involve turning
the statement which forms the procedure body into a block, by attaching a

switch declaration, and, if necessary, a begin and end.

2.1.1 Unsigned integers as labels

Unsigned integers may not be used as labels.
Where they occur in a program, they should be turned into identifiers. The
recommended practice is to precede each number by a sequence of one or

more '-ﬂ'a. For example, '23:' might become ‘923:' or '5823:'.
2.1.2 Switches

The elements of a switch list may only be labels.
These labels must be prefixed to statements of the block in the head of
which the switch declaration occurs. The occurrence of a label in a switch
list serves as a declaration of that label and therefore no label can occur

more than once in the switch declarations of any one block.

If, in a published program, these conditions are not
satisfied, the switch declaration must be replaced by a portion of program
which achieves the desired effect. It should seldom be necessary to do this

and no general rules are given.

If a go to statement uses a switch designator, and
the subscript of the switch is non-positive, or greater than the number of
labels in the switch list, the computer displays SWITCH ERROR and no further
statements of the program are obeyed. If this is expected to occur, the

go to statement should be turned into a suitable conditional statement. For

example,
go to ss [i]

where the switch list of ss has three elements, would become:

26
(Issue 2)

2.1.5.2
if i >0 and i <4 then go to ss [i] :

this has the same effect as that specified in the Revised ALGOL report.

2.2 Type of Arithmetic Expressions

If the type of an arithmetic expression depends upon the
evaluation of an expression or upon the type or value of an actual parameter
then it is taken to be real, e.g. the result of exponentiation is always real
even when both arguments are integral. Provided that the result is within

the range -536 870 912 to +536 870 911, no accuracy is lost as a result of this.

If the result of exponentiation appears on either of div
(the integer division sign), the translator will not accept the program and
will display Error no. 31 to indicate an inadmissible operation. To correct

this, the standard function 'entier' should be used.

e.g. n+ 2 T m
should be written as

n div entier(2 1 m)

2.3 go to statements

go to statements occurring inside a procedure body may
not have as their destination a statement which is outside the procedure body.
thereby causing an exit of the procedure; however, a go to statement may
lead to a label which is an actual parameter of the procedure. Label

parameters may not be called by value.

There are two methods of adapting a program to evade

this restriction:

(i) adapt the procedure declaration and procedure calls to

specify the label as a parameter

27
(Issue 2)

2.1.5.2

(ii) an 'error exit' may be turned into an 'error procedure'’
which performs the necessary printing, and then enters

the standard procedure 'stop', which stops the program.

2.4 for statements

The implementation of the for list element is not exactly
as described in section 4.6.4.2. of the Revised ALGOL Report, in that the
address of the controlled variable is computed only once at the start of the

statement, and is not re-computed each time round the loop.

2.5 own arrays

The subscript bounds of an own array must be written as
integers. There are two courses of action which can be taken for the few

programs which violate this rule:

(i) the widest feasible bounds should be chosen and the

integer values inserted in the declaration

(ii) the array should be made into a non-own array of a block
surrounding the block in which the original own array

declaration was made.

The size of the integer bound, x must satisfy

-8589934591 & x £8589934590.

2.6 Specification of parameters

All formal parameters of a procedure must be specified

in the head of the procedure.

28
(Issue 2)

2.1.5.2

2.7 Recursive procedures

A recursive procedure may not have any real, integer or
Boolean parameters called by name. However, a procedure may be entered
recursively during the evaluation of any of its parameters, whether called by

name or called by value.

2.8 switch parameters

A formal parameter of a procedure may not be specified
as a switch; consequently, a switch identifier may not appear as the actual

parameter of a procedure, though a switch element may do so.

The easiest method of evading this restriction is to use

an output name parameter to specify the subscript of the switch.

2.9 Procedures as parameters of procedures

A formal parameter of a procedure may not be specified
as a procedure. Consequently no procedure identifier, alone without
parameters, may appear as an actual parameter, unless it is a parameterless

procedure which stands as an expression.

This restriction may be evaded by use of name parameters.

2.10 Type procedures

A call of a type procedure can only occur in an expression:

it cannot stand alone as a procedure statement.

2.11 Sequence of declarations

Any number of declarations may occur in any order in a
block head, but other declarations may not occur after a procedure
declaration. All procedure declarations of a block must be grouped together
at the end of the nlock head.

29
(Issue 2)

2.1.5.2

A procedure body may contain activations of any other
procedure declared previously in the same block head. Any set of procedure
declarations may be put into sequence in such a way that this rule is satisfied,

except in the case of mutual recursion.

2.12 Length of identifiers

Identifiers are distinguished by their first six characters;
any subsequent characters are ignored. If an identifier coincides over its
first six characters with any other concurrently used identifier, its name
must be changed. No general recommendation can be made on a method of
systematic alteration; it is advisable to restore uniqueness by making a
reasonable abbreviation of the word. For example, the identifiers
'condensation' and 'condenser' appearing in the same program might be

abbreviated to 'condsn' and 'condsr'.

2.13 Reserved identifiers

The identifiers 'checkr', 'checki', 'checkb', 'checkB’,
'checks', 'location' and 'elliott' are reserved for special purposes and may

not be used in any other way (see Chapter 4).

2.14 The Operator >

The Boolean operator > (denoting implication) is not allowed

in Elliott ALGOL. The Boolean expression

ADB

may always be replaced by the equivalent expression

B or not A

2.15 Range and accuracy of numbers

In all cases where an operation is defined as having a result

of type integer, this result must be in the range

30
(Issue 2)

2.:1:5.2

-274877906 944 to +274877 906 943

L2080 45 298]

If an integer exceeds these limits, the program stops and the message
INTOFLO is displayed. In an arithmetic expression a constant is treated

as a positive number with an associated sign. Thus, in the example,

begin integer x;

x := -274877906944 ;

ENTIER ERROR is displayed because 274877906944 is stored as a

real number, negated and converted to an integer.

In all cases where an operation is defined as having a

result of type real, this result must be in the range

-5.79 x 107 to +5.79 x 10™ approx.
j.e: -85 o 29OE _ A4

If a real number exceeds this limit during the running of a program the
computer stops and ERRINT 1 is displayed. During translation, a real
constant that is too large is replaced by the largest possible real constant

(=5.79 x 1078).

Where any operation (including reading and printing) is
defined as having a result of type real, this result may be inaccurate by up
to two parts in 10° . It is not recommended to expect an accuracy greater
than eight significant decimal digits in testing convergence of a numerical

process.

If a number with exponent greater than 12 is read, a
slightly greater inaccuracy may be expected. In particular, if two such
numbers a and b are read, and a is greater than b by an amount which is too
small to be represented, then the machine representation may be such that

b is greater than a.

3l
(Issue 2)

2.1.5.2

2.16 The standard function abs(E)

In accordance with the ALGOL 60 Report, this function
operates on an argument of type real. IfI and J are variables of type
integer the statement I:= abs(J) involves a double type conversion, and if J
lies outside the range -536870912 to +536 870911 rounding occurs. This

effect may be avoided by substituting for 'abs(J)'

i_f J less 0 then -J else J

2.17 The standard trigonometrical procedures

The arguments of sin(E), cos(E) and tan(E) are expressed
in radians. If, within the limits of the representation E is an odd multiple of
m/2, then tan(E) is assigned the value of the greatest representable positive

number (=5.79 x 107%).

The inverse functions satisfy

-m/2 arctan(E) mn/2
-mn/2 arctan(E) n/2

0 arccos(E)

In extreme cases the results of these operations are
indistinguishable from 0, ¥ /2 and . As a result of the finite accuracy of

the representation both limiting values can occur in each case.

2.18 Sequence of operations

The order in which operations are performed within an
arithmetic expression is undefined except insofar as it is determined by the
rules of precedence:

(1) exponentiation
(2) multiplication and division

(3) addition and subtraction.

32
(Issue 2)

2.1.5.2

Thus in

a:=b+c+d

the order of evaluation of b,c and d is undefined so that if one of them is a
type procedure which affects the value of one of the others (a 'sneaky’
procedure), the value of a will be undefined. If it is important that b, c and
d are evaluated in that order, they should be converted into expressions by

the use of brackets:
a:=(b)+ (c)+(d)

Similarly, if it is important that tne two additions are performed in the order

shown, the expression should be written:

a:=(b+c)+d

If a,b and ¢ are real, and are of widely differing magnitudes,

then (a + b) + c may not be equal to a + (b + c).

2.19 Boolean expressions

In the evaluation of a Boolean expression,every term is

evaluated. Thus, in the expression
A:=B or CorD

even if B is found to be true, and thus the value of the expression determined,
C and D are nevertheless still evaluated. Hence any side effects from C and

D always occur.

Remarks analogous to those of 2.17 apply to the order of

operations withina Boolean expression.

2.20 Correspondence between formal and actual parameters

In most cases if the formal and actual parameters of a

procedure are of different type, conversion of the actual parameter

33
(Issue 2)

2:1.5.2

automatically takes place. However, in certain cases the correspondence
between formal and actual parameters must be exact. These are as

follows:

2.20.1 Array parameters

If a formal parameter of a procedure is specified
to be an array, the corresponding actual parameter must in all cases be of

the same type and have the same number of dimensions.

2.20.2 Parameters called by name

If a formal parameter of a procedure is called by
name and within the procedure body has a value assigned to it, then the
corresponding actual parameter must be a variable of the same type. It

must not be a constant or an expression.

No error indication is given during translation or
running. Any attempt to assign a value to a constant or an expression at run

time normally results in the loss of the assigned value.

2.2]1 Array dimensions

An array may only comprise 31 dimensions.

2.22 Arrays in a segment

A maximum of 31 arrays may appear in an array segment.

2.23 Multiple placings of labels

This will not be detected.

2.24 Restrictions in the use of recursive procedures

2.24.1 The following obscure case of recursion will

produce incorrect results:

34
(Issue 2)

2.1:D0.2

A procedure A which contains a procedure B which
calls A must not have any declarations (other than procedure declarations)

preceding a call of B.

example procedure A;
begin procedure B; _1

hegin T

A body
of
B body

of
end; i &

beEin real p,q,1;

end

end;

The contents of p,q, r would be lost on entry to B.

Provided B is not a type-procedure, this may be

avoided by making all declarations before declaring B.

If B is a type procedure used in a complex
arithmetic expression, incorrect results may also be produced even though

there are no declarations after the body of B and before its use.

35
(Issue 2)

2.1.5.2

2.24.2 A procedure may not contain a 'for'" statement
having a recursive call of the procedure within the body of the statement if there
is more than one '"for' list element.

e.g. procedure wrong(n);

fori:=1,2,3,4 do wrong (i)

In this case, this could be overcome by:

procedure right(n);

for i:= 1 step 1 until 4 do right (i)

2.25 Alterations required to programs written for the ALGOLI1
compiler

2.25.1 Significant space characters

If there is a space between the : and = of an assignment

statement an error will occur.

2.25.2 Procedures 'dump' and 'precompile’

As these procedures are not available with ALGOL3,

error number 20 will be displayed if programs with these procedures are input.

2.25.3 Arrays in an array segment

The maximum number of arrays permitted in an

array segment with ALGOL3 is 31; more than this will give error number 16.

2.25.4 Procedure 'elliott'

There is a restriction in 'elliott' orders with

ALGOL3 - see Chapter 4.7.2.1.

An alteration may be required to programs containing

references to arrays inside 'elliott' procedures - see Chapter 4.7.2.1.

36
(Issue 2)

2:1.5.3

Chapter 3: INPUT AND OUTPUT FACILITIES

1. INTRODUCTION

ALGOL 60 provides no method of programming a computer
to input the data for a calculation or to print out the results. In view of this,

each implementor is obliged to adopt a system of his own.

1.1 print and read statements

The system chosen for Elliott ALGOL is based on the
introduction of two new types of statement, the print statement and the read
statement. The syntax of these statements is very simple, since they

consist only of the underlined words print or read, followed by a list of

operands, the items of the list being separated by commas, e.g.

read x,u,b[jl

print 2? W, X*}'.Cﬂﬂfqu) n h[j]i

The effect of a read statement is to cause one or more

numbers to be read from some input device, and assigned (in the sequence
read) to the variables specified in the list. The effect of a print statement
is to cause the values of the arithmetic expressions occurring in the list to

be output (in the order given) on an output device of the computer.

1.2 Structure of read and print lists

The elements of a read or print list may be arithmetic

variables or procedures. A print list may also contain arithmetic or boolean
expressions and strings. These elements are scanned in the sequence in

which they are written, with the following effect:

37
(Issue 2)

2.1.5.3

itemn

arithmetic variable

number or
arithmetic
expression

non-type procedure
other elliott.

arithmetic
procedure (inside
the body of the
procedure)

arithmetic
procedure (not
inside its own
body)

Boolean variable

or procedure or
expression

string or string
parameter

Elliott procedure

1.3

effect in a
read list

A number is read from the
current input device and its

value is assigned to the
named variable

NOT PERMITTED

The procedure body is
executed

As for an arithmetic variable

NOT PERMITTED

NOT PERMITTED

NOT PERMITTED

NOT PERMITTED

Input data tape

effect in a
print list

The value of the variable
is printed on the current
output device.

As for an arithmetic
variable.

The procedure body is
executed.

This is taken as a recursive
call of the procedure; hence
it must have parameters.
The value assigned to the
procedure by this call is
printed on the current output
device.

The procedure body is
executed and the value of
the procedure is printed

on the current output device.

As for arithmetic variable
expressions and procedures,
i.e. prints the value true or
false. -

The string is printed on
the current output device.

NOT PERMITTED.

Numbers to be read by the computer should conform to the

ALGOL definition of number, and each number must be followed by some

character other than a digit, a decimal point or subscript ten.

This terminal

character may be followed by any sequence of characters excluding the digits

38
(Issue 2)

2.1.5.3

0 to 9 and the characters . ;, £ + - . The sequence may be of any length; its
only function is to separate the numbers on the data tape, and itis otherwise

completely ignored. Note that spaces may not normally be used in the middle
of numbers, since they are classified as terminating characters (but see 2.5.3

of this chapter).

Blank tape is ignored under all circumstances. The

character 'halt' in any position on the input tape causes the computer to wait.

The character £ is not permitted on a data tape, except in

connection with the 'instring' facility (see 2.6 of this chapter).

The example data tape is read as a succession
of numbers:

item 176329 176329
197 ft 7 ins 197
7
g=1.276,, -11 1.276, ¢ -11
7.392,, -4 7.392, -4
710623 1.49700 710623
1.49700

1.4 Presumed settings

The print and read statements of the simmple type explained

above are executed under the control of the presumed settings; methods of
changing the settings and obtaining varied and more sophisticated effects of

format control is described in 2.3 of this chapter.

All numbers read under control of the presumed settings
are read from tape reader number one, and all numbers output on tape punch

number one.

Numbers printed under presumed settings appear on

separate lines with up to eight digits. The values of integer expressions less

39
(Issue 2)

2.1.5.3

than 100 000000 are printed with leading zeros replaced by spaces and, in the
case of a negative number, the sign floated, i.e. the sign is moved along so

that it immediately precedes the most significant digit.

E.g. - 00000252 is printed as
-252

Larger integers are printed in a form similar to that of large real numbers.

The values of real expressions, if less in absolute
magnitude than 100 000 000, are printed as decimal numbers containing eight
digits and preceded if necessary by a minus sign. Larger numbers are

printed with an exponent part and only four significant digits.

Examples of printing under presumed settings:

Integers Real numbers
9 -9.0000000
-127 127.30614
239610 -23961.000
-14306971 .00000000
~2.75; + 11 -1.364,, + 22

1.5 Output of text

In order to output headings and other messages, the
characters which comprise the message should be enclosed within the string
quotes £ and ?, and included as an item of the list of a print statement; these

items being output in the sequence in which they appear.
Examples:

print £ height weight speed?;
print F, £ ft ? ,i, £ ins ?7;

To output lines, spaces, blanks, or the symbols £ and 7,
an inner string should be used which consists of certain special interpreted

characters enclosed by two pairs of string quotes (£ and ?). These characters

40
(Issue 2)

2:1-5:3

may appear inside single string quotes amongst text which is itself enc losed
in string quotes. The meanings of the special characters are given in the

following table:

Character Interpretation
¢ new line
8 space
r blank (i.e. runout)
q £ (i.e. quote)
u ? (i.e. unquote)
t tabulate
h stop

All the above characters will be accepted on upper case as

well as lower case.

if any of these characters is followed by an unsigned
integer, the effect is the same as writing the character the specified number

of times.

Spaces, tabulation syrnbols and changes to a new line may
also occur within a single pair of string quotes, and they are reproduced in
the same way as other characters; care must be taken to ensure that only

those characters required are guoted.

Examples:

print ££ 047 chapter?,n, &£ £028577;
print ££§#?height £812? weight £812? speed?;

Text is output on the same device as a number in the same
list. Under presumed settings,therefore, output will be on punch one. Text
is not preceded by a change to a new line, and therefore is printed on the same
line as the last number. A change to a new line may be specified as part of

the text.

4]
(Issue 2)

2’1!5'3

2. SETTING PROCEDURES

The presumed settings are adequate for inexperienced
programmers, for program testing and low-volume output. In many
applications, however, the programmer may wish to use all available input
and output devices, to tabulate his results, and to exercise control of output
format. For these purposes a number of procedures (setting procedures)

are provided.

A setting procedure statement normally occurs in the list of a

print or read statement, separated in the normal way by commas from the

other operands. All numbers and text in a list subsequent to a setting
procedure statement will come under the control of the settings specified.
Any number occurring previously in the list or in the lists of other print
statements, is totally unaffected. Thus operations in a list previous to any
setting procedure statement are always executed under the control of the

presumed settings (see 1.4 of this chapter).

A setting procedure statement may also occur as a separate
statement of the program. In this case, once it is obeyed it will be effective
until it is cancelled by a contradictory setting procedure statement. Sucha
cancellation may occur locally inside a print statement, or globally as a

separate statement of the program.

Where a parameter of a setting procedure is of type integer,
the actual parameter may be an expression, allowing the format of results

to be determined dynamically.

When a procedure body is executed as a result of a procedure

call inside a read or print statement, any setting procedures called globally

(i.e. not inside a print or read statement) will remain effective for the

remainder of the read or print statement containing the procedure call. When

this particular read or print statement is completed, however, the values of

42
(Issue 2)

2.1.5.3

getting procedures are restored to the values they had upon entry to it.

Particular care should be taken when the procedure called

contains a label parameter through which exit may be made, since the

settings which were current inside the read or print statement will now be

effective outside the statement until changed by further calls of the setting

procedures.
e.g. EXAMPLE 1
begin real a, b, c, d;

end;

integer procedure F(x); value x; integer x;

begin F := x%2;
punch (3);
end ;
a:=1;
b= 2;
c = 3;
d:= 4;
print a, punch (2), b, F(c), d;

comment a is output to punch 1, b is output to punch(2), and the
result of the procedure call F(c) is to cause 6 and the value of d to
be output to punch(3) since the procedure F contains a call of
punch(3) ;

print a;

comment a is output to punch 1;

43
(Issue 2)

2.1.5.3

EXAMPLE 2

begin intege.r b;
ewitch ss := L1, L2;

integer procedure F(L,a) ; value a ;

integer a ; label L ;

i._fa:= 2 then goto L;
F := a*2;

end ;
b:=1 ;

L1 : print b;

if b = 1 then goto L2;
stop ;
L : b i=2;
print punch(3), b, F(L1, b) ;

end ;

In the second example, the first time the print statement at Ll
is obeyed, the value of b will be output to punch 1. However, the second
time this statement is obeyed, b will be output to punch(3), since this was the
value of the setting procedure "punch'' current inside the print statement

which contained the call of the procedure F.

2.1 Device setting procedures

In order to use input and output devices other than the first
reader and punch, it is only necessary to mention the name of the device prior

to the operands concerned.

reader (n) This standard procedure enables a particular device to be
used for the input of data. n is an integer parameter and

is the input device number. The value of n must satisfy

14n £10.

44
(Issue 2)

2.1.5.3

If n lies outside this range, a return to the presumed

setting occurs, i.e. reader (1).

punch (n) This standard procedure enables a particular device to be
used for the output of results. n is an integer parameter
and is the output device number. The value of n must

satisfy
l1<n< (2'9-1), i.e. 524, 287.

If n lies outside this range, a return to the presumed

setting occurs, i.e. punch (1).

lineprinter This is exactly equivalent to the statement
punch (4);
2.1.1 Device used

When A3D wishes a character input as a result of

a read statement, "instring' or "advance', it will enter a common program

(CHARIN) with the current input device number in the accumulator.

The particular device number which is associated

with a particular input device is determined by CHARIN.

In CHARIN ISSUE 1:-
reader (1) will set input from paper tape reader 1
reader (2) will set input from paper tape reader 2
reader (3) will set input from the typewriter.

reader (n) where n satisfies 3 {n £ 10 will set input from paper tape reader 1.

When A3D wishes a character output as a result of
a print statement or "outstring'', it will enter a common program (CHAKROUT)

with the current output device number and the character to be output in the

45
(Issue 2)

2.1.5.3

accumulator. The particular device number which is associated with a

particular output device is determined by CHAROUT.

In CHAROUT ISSUE 1:-
punch (1) will set output to paper tape punch 1.
punch (2) will set output to paper tape punch 2.
punch (3) will set output to the typewriter.
punch (4) will set output to the lineprinter.
punch (n) where n satisfies 4 {n § 524,287 will set output to paper tape punch 1.

2.1.2 Method of Use

The presumed settings for the input and output
devices, are, reader (1) and punch (1). If a call of a device setting procedure

is made inside a read or print statement, the device specified is used only for

the remainder of the statement in which it appeared. If the procedure is

called outside a print or read statement it will cause the device specified to

be used until changed by another call of the device setting procedures.

Example
EXAMPLE;

begin read v,w,x,y,2z,a}

read v; comment v is input from the presumed device,

tape reader 1;
reader (2) ;

read w; comment w is input from tape reader 2;

read x; reader (3}. ¥, z; comment x is input from tape reader 2,
y and z are input from the typewriter;

read z; comment z is input from tape reader 2;

end;

2.2 Prefix setting procedures

The procedure 'sameline' should be used to print numbers

46
(Issue 2)

2¢1.5.3
on one line; this will suppress output of the prefix (new line) normally output
before each number.
The statement

Erint t, £tons?,sameline,c, £cwt?, i, £1bs?;
causes the value of t to be printed on a new line (the presumed setting),
followed by the rest of the numbers and text on the same line, e.g.

17tons 12 cwt 191bs

If all the numbers to be printed on one line are to be
preceded by the same character or characters, the procedure 'prefix (£....7)'
should be used. This causes the text displayed between £ and 7
to be printed (in the place of new line) before every number. If the
procedure 'prefix' is used, the procedure 'sameline’ is unnecessary. In
fact, 'sameline' will cancel the effect of 'prefix' if it occurs after it in the

list, and vice versa.

For example, to print five numbers on a line separated

by a comma and two spaces, write the statement

print a,prefix(£,£82?7),b,c,d, e;

2.3 Format setting procedures

The presumed format settings are satisfactory for numbers
up to a hundred riillion in absolute size, with an accuracy of eight significant
figures. If the range of numbers to be printed could be greater or less than
this, or if a greater or lesser accuracy is required, it may be desirable to
change the number of digits printed. To specify the number of digits in an
integer expression, write 'digits(n)' in the list just before the items to be

printed with n digits, where 1 {n {12.

47
(Issue 2)

2:1:5.3

For example, if i,j and k are integer variables, the

statemnent
print i, digits(4),j,k;
could produce the output:

-213
-1024
362

The first integer is printed under control of the presumed setting (8 digits),
while the other two have up to four digits, and therefore take less room in the

column.

The procedure 'digits' has no effect on the printing of the
values of real numbers or real variables. To achieve the same effect with
real numbers, use the procedure 'freepoint(n)', where 1 ‘ ng 9; this has no

effect on the printing of integers. For example, the statement

print x, freepoint(4),v, z;
could produce the output:

1.9632450

176.1

.0032

2.4 Scaled and aligned formats

When a column of numbers is to be printed, it is often
desirable to position the numbers in such a way that the decimal points of all
the numbers in the column are aligned one beneath the other. Elliott 503
ALGOL provides two methods of doing this. The scaled format always
places the decimal point after the first digit, and uses an exponent part to
indicate the scale of the number. The aligned format allows the programmer

to specify the number of digits to be printed before and after the point.

48
(Issue 2)

2.1.5.3

To obtain the scaled format with n digits, write 'scaled(n)’
as a setting procedure, where 1{ n {9; to obtain aligned format with m digits
before the point and n digits after, write 'aligned(m,n)' as a setting procedure,
(m + n £ 15); to revert to the freepoint format with n digits, write
'freepoint(n)' as a setting procedure. Note that more than one setting
procedure may appear in a print statement; if the setting procedures
contradict each other, the later ones cancel the effect of the earlier. Thus
the statement

print x, prefix(£, ?), scaled(4), x, aligned(4, 3), x, freepoint(4), x

would cause the following sample output if it were obeyed repeatedly:

-1.2345678, -1.235,,;+ 00, -1.235, -1.235
123,45678, 1.234,,+ 02, 123.457, 123.5
.001234567, 1.235,,+ 03, 0.001, .0012

2.5 Additional format setting procedures

2.5.1 Grouping of dig}'ts

The special format setting procedure 'grouping(n)’
should be used to obtain a spacing of digits in printed numbers. The digits of
numbers output under control of this setting procedure are grouped in sets of
n, the sets being separated by a single space. The origin of the grouping is

the decimal point for real numbers, and the least significant digit for integers.

This procedure may be used to improve the legibility
of numbers which consist of a long series of digits. It is not recormmended for
use with the freepoint format. Tapes produced under the control of
'grouping(n)' can be reinput only under the control of special(4) (see 2.5.3 of

this chapter).

49
(Issue 2)

2-1.5.3

The following examples illustrate the effect of the
procedure statement 'grouping(3)' on the output of integers, and of real

numbers in the aligned and scaled formats.

1076 253 12 073.193 6 1.207 319,,+ 04

-92 765 - 120.965 0 1.209 650,,+ 02

- 142 -24 306.701 4 2.430 670,,+ 04

12 630 441 12.000 0 1.200 000,,+ 01
2.5.3 Leading zeros

Integers are normally printed with leading zeros
replaced by spaces and the sign floated. The setting procedure statement
'leadzero', allows the programmer to specify any character to replace these

leading zeros. It also suppresses the floating of the sign.

i normal print setting procedure resulting print
format statement format
-9 leadzero (£07) -00000009
176 leadzero (£%7) Hokokokok 176
-9 leadzero (£7) -9
-12345 leadzero (£7) -12345
-12345 leadzero (£ ?) - 12345

Note that if the actual parameter is a null string, the significant digits and the
sign if negative, are the only characters printed. Also the characters & ?
blank and erase may not appear within the string (i.e. an inner string is not

allowed)

2.5.3 Specialities

The design of output documents sometimes requires

certain special effects which may be obtained by the use of the procedure

'special(n)', (1 $n £4).

50
(Issue 2)

. PG BT

special(l) causes the space normally output before
positive numbers to be suppressed. It should not be used when printing

negative numbers.

special(2) causes a plus sign to replace the space
normally output before a positive number. It should be used if the numbers

are separated by spaces and are to be reinput under special(4).

special(3) causes any sign output not to be floated

see 2.5.2 of this chapter.

special(4) affects reading only, and causes spaces,
normally treated as terminating characters, to be ignored. This facility

enables tapes with grouped numbers to be reinput.

special(l) cancels special(2) and special(3), and

vice versa. special(2) and special(3) can coexist.
2.5.4 presume

The standard procedure '"presume’’, which has no
parameters, may be used to restore all the setting procedures to their
presumed values.

i.e. reader (1)
punch (1)
digits (8)
freepoint (8)
prefix (££177)
leadzero (£ ?)

""grouping (n)" and '"'special (n)'" are cancelled.

It may be used with local effect, when placed in a

read or print statement and with global effect when placed outside a read or

print statement in exactly the same way as is described for the procedures

51
(Issue 2)

2.1.5.3

"reader(n)" and "punch(n)" (see this chapter 2.1, method of use).

2.5.5 Character handling procedures
advance (n) This has the effect of entering a common program

(CHARIN) to be supplied with 1 character from input
device n.
The characters erase and blank are ignored. n is an

integer parameter and must specify

1< ng 10.
If n does not lie within this range, the statement has the
effect of "advance(l)". The character received will be
stored in a 1 location buffer (see 2.9) associated with input
device n overwriting the character previously stored there.
This character can be accessed using the standard

procedures "buffer'" or ''character'.

buffer (n, £ a?) This is a boolean procedure which takes the value true, if
and only if the current character in the buffer for input
device n is the character "a'". ''a" must be a single
character but not £ or ? or blank or erase. No character
is actually input from a read device. The use of an inner
string is not allowed in thie case. n is subject to the same

conditions as are described under "advance'.

character {n) This is an integer procedure with takes the 503 paper tape
code value of the character currently in the buffer for input
device n. No character is actually input from a read
device. n is subject to the same conditions as are described

under "advance"

52
(Issue 1)

2.1.% %

2-5-& ETIGI‘I

1f an attempt is made to print a number that is too
large for the style of printing called for, e.g. to print 289.2 in the aligned(2, 4)
formar, or to print 12347 in the digits(4) format, then 'alarm printing' occurs
in such a way that the layout of the printed page is undisturbed. Provided that
the total number, n, of characters called for is greater than six, the mumber
is printed in scaled(n-6) format; if n {6, the letter H and a halt code are

printed, preceded by (n-1) spaces.

An attempt to print a real number that is not in

standard floating point form causes the message PRINT ERROR to be displayed.

2-5.7 Parameters out of range

If the parameters of a format procedure are ocut of

the permitted range, a return to presumed settings occurs as follows:

Procedure called :fe;;nri:::t:::ge Pre::::rt:.i:;tﬂng
digits(E) 1{ES12 digits (8)
freepoint(E) 1 $E £9 freepoint(8)
scaled(E) 1$E €9 freepoint(8)
aligned(E, F) 1SE+F 15 freepoint(8)

g rouping(E) 1 $E §12 prefix(££47?)

Cancels grouping,
special(l), epecial(2)
and special(3) as for

speeial(E) 1E4 grouping but special(4)

is also cancelled.
reader(E) 1$E <10 reader (1)
punch(E) 1 $E §524,287 punch (1)
advance(E) 1§ E €10 advances one reader one
buffer(E, £ ?) 1S E §10 tests buffer of reader one.

53
(Issue 2)

2:1.5.3

2.6 Input and output of strings

[see also 'output of text' (1.5)].
Strings may be read in as data, and printed out again by
using the procedures

instring (A, m)

outstring (A, m)

A is a single dimensional integer array

m is an integer variable (it may be subscripted but it must not be a constant).

2.6.1 Instring (A,m);

This procedure causes a search on the current
input device to find the opening string quote '""£'". If, during this search, a

numeric character is found the message
READ ERROR
is displayed.

The string which follows the "£'" is input as

follows:

¥

input characters

{

A Store in A[m] see 'storage of strings' (2.7)

f

m:=m+]l

until the close string quote '""?', which brackets the original "£", is found.

54
(Issue 2)

2.1.5.3

The string is therefore stored in successive
elements of the array A starting at A[n] (where n is the value of m on entry

to the procedure) and m is set to the index of the next available element of A.

Thus, if the procedure is now re-entered, the next
string will be automatically stored in the array without overwriting the
previous string. If it is required to output the strings in an order which
differs from the input sequence, the value of m on exit from the procedure

should be recorded (see outstring).

No check is made on the content of inner-strings

by this procedure (see outstring).

The array A should be large enough to contain all
the strings read. A string of n characters will occupy
(n+ 4) + 5 locations.

(see 'storage of strings' 2.7).
g

2.6.2 outstring (A,m);

This procedure will output on the current output
device a string, previously stored in the array A by the instring procedure,

as follows:

.|

l extract the characters in A[m]

W

T output characters

[

m:=m + 1

|

until the end of the string is found.

55
(Issue 2)

2.1.5.3

Thus, on exit from the procedure, m is set to the

index of the element containing the first characters of the next string (if any),

8o that on repeated entry to the procedure successive strings stored in the

array A will be output in succession. Alternatively, strings may be selected

by setting m to the appropriate value (see instring).

Inner-strings are interpreted in the same way as

that specified for strings occurring in print statements. (See 1.5 of this

chapter).

56
(Issue 2)

2.7

(a)

(b)

String parameters and storage of strings in 503 ALGOL

String_Ea.ra:netEr in a call of "elliott" or a code statement

The characters of a string are packed into a group
of consecutive locations with the leading characters in the
lowest-addressed location (see below). The address of
this location is assigned to the string parameter; thus if 5

is a string parameter the order
elliott (0,0,5,1,3,0,0); or code 005/30 0;

will place the contents of the first location of the string in

the accumulator.

Method of packing strings

The 7-bit characters are packed five to a location
to occupy the least significant 35 bits. Bits 36, 37 and 3B
are always zero, but bit 39 is set to 1 in the last location
of the string. The order of the characters in the location
is such that the character in bits 35-29 precedes, in the
string, the character in bits 28-22 which precedes the
character in bits 21-15 and so on. If there are less than
5 characters in the last location the characters are stored

such that any spare bits are at the least significant end.

2.1.5.3

When a location is full the adjacent higher-
addressed location is filled and so on until the whole string
has been stored. The string thus occupies a group of
consecutive locations such that the leading characters are
in the lowest-addressed location.

e.g. the string

£ ABCDEFG12345677

is packed as

39 35
1. A B C D E
L+1 F G 1 2 3
L+2 1] 4 5 6 7
R 0
bit 39 = 1 all zero

Inner Strings

The initial £ and the final ? are not packed.

However, inner £'s and inner 7's are stored.

Characters within an inner-string are stored in
the normal 7-bit form.

e.g. the string

£ An ExampleL3? ?

is stored as

39 35
L Al x (space) | E| x
L+1 S a m P E e
1L+2 1 i L 3 ?
-—‘m T
Bit 39 = 1 ZEero

57
(Issue 2)

2.1.5.3

2.8 Procedures in read and print lists

The body of a procedure occurring in a read or print list

may contain read and print lists and setting procedures. On entry to each

read or print list the current read format or print format settings respectively

are preserved. They are restored on exit. Thus the input and output of
numbers during the execution of a procedure can be controlled externally by

putting the procedure call into an appropriate read or print list.

2.9 Read device buffer

Because it is possible to have a data tape in which the
terminator of one unit of data is the first character of a second unit of data,
caution must be exercised when data is input using elliott orders or code
statements. A one location buffer inside A3D, is associated with each input
device, in which A3D will store the last character read from that device by

the ALGOL routines, read, "instring' or '"advance'.

This buffer is examined by A3D whenever it is possible

that it could hold a significant character.

e.g. consider a tape of the form
2.45ABC?

The number, if input as a result of a read statement would be terminated by

the £ of the string. Unless this character is preserved in the character
buffer it would be lost, resulting in errors when the string was read by the

"instring'' procedure.

2.10 Lineprinter procedures

The lineprinter is made the current output device, by

using either of the device setting procedures "punch(4)" or "lineprinter".

The procedures "top of form", "find(M)", "lines(M)", and "overprint" are
available in ALGOLS3.
58

(Issue 1)

2.1.5.3

2.10.1 top of form

This procedure causes the lineprinter to search for
a hole in the top of form channel of the lineprinter vertical format control
loop and print on that line. [t is the responsibility of the programmer or
operator in charge to see that the control loop is correctly placed before the

program is run.
2.10.2 find(M)

This causes the lineprinter to search for a
character of value M on the control loop and print on the corresponding line.
M must take values from 0 to 30. If M is negative or greater than 30, then
the message "ERRCALL LP" is displayed on the output typewriter, followed
by a "Dwait". If the left most F2 digit (Key 19) of the word generator is
depressed, the procedure ''top of form'" is entered and the program is allowed

to continue.
2.10.3 lines(M)

This causes the lineprinter to throw M lines. The
call "lines(1)" has no effect. The same range and error action occur as with

"find(M)"
2.10.4 overprint

This will cause the lineprinter to overprint as soon
as a newline character is encountered or the buffer is full. In this case the
effect of a newline character is to print on the same line all the characters
formed since the last newline character. It is the responsibility of the

programmer to determine proper page layout.

NOTE: The printing and other operations are not performed
on the lineprinter until a newline character is en-

countered or until the lineprinter buffer is full.

59
(Issue 2)

2.1.5.4

Chapter 4: ADDITIONS TO THE LANGUAGE

1. INTRODUCTION

In addition to the standard functions described in the ALGOL60
report, certain other functions and procedures are available to users of

Elliott ALGOL without explicit declaration.

2. ADDITIONAL STANDARD FUNCTIONS

arccos(E) : result in range 0 to m

arcsin(E) : result in range -n/2 to +n/2

tan(E) : the tangent of the value of E

oflo used to suppress certain error messages
noflo and affect the continuation values after the

call of certain standard procedures
(see chapter 5.4.3.1).

3. CHECKING FUNCTIONS

The standard checking functions provide the programmer witha

means of optional printout of intermediate results during the course of a

calculation.

There are four such functions:

checkr for real argument
checki for integer argument

checkB for Boolean argument (the spelling checkb is also
accepted)

checkS outputs a string trace

and they are written in the program as functions with a single parameter,e.g.

A := checkr(B + 2%C) + 1.5;

If the B-digit on the keyboard is not depressed during translation,

the checking functicns are ignored - that is to say, the statement (1) is treated

60
(Issue 2)

2.1.5.4

exactly as if it were

A:=(B+2*C)+ 1.5

If the B-digit is depressed during translation, then extra orders
are compiled so that, if the B-digit is depressed also during the running of
the program, the value of the argument is output on the current device.

Thus (1) would have the effect of assigning to A the value of B+2*C+1.5, and

of printing out the value of B+2*C.

In the case of Boolean checking, the output is one of the words
true or false. 1In all cases check output is preceded by a change to a new

line and an asterisk.
The first three checking functions may be nested, so that it is
possible to write
A := B + checkr(M[checki(i + 3)]);
in which case the value of (i + 3) would be output before the value of M[i + 3].
There is a checking procedure
checks
whose parameter is a string. It can conveniently be used to provide a form

of 'trace' of the progress of a calculation, or to identify the output of the

checking functions. A typical call of this procedure would be

checks(£ stage 1 complete?).

Groups of checked output can be spaced by using the procedure

call checks(£?), which outputs a newline character and an asterisk only.

4. ARRAY HANDLING PROCEDURES

In certain applications of ALGOL it is considered highly
important to produce an efficient program. While the ALGOL translator in

general produces machine code programs of reasonable efficiency, there are

61
(Issue 2)

2.1.5.4

certain occasions where ALGOL prevents efficient use of the computer. For
this reason, some facilities, similar to those available in machine code, have

been introduced in Elliott ALGOL.

4.1 Addreuaing facilities

The addressing of subscripted variables is one of the less
efficient aspects of ALGOL. Elliott 503 ALGOL therefore provides facilities
which enable the programmer to write his own address calculation routines in
a notation very close to that of ALGOL, without necessitating a knowledge of

the machine code of the 503.

In order to do this effectively, it is necessary to know the
method of storing arrays in the computer. A variation of one in the last
(rightmost) subscript of an array variable corresponds to a variation of one
in the address of the variable. A wvariation of one in the other subscripts
corresponds to a variation in address equal to the product of the ranges of all
subsequent subscripts. Thus, in the case of a matrix, storage may be said
to be rows.

E.g- Given the array All:8, 1:9, 1:10]
and two elements Al3,4,5)] and A[3,5,5]
the difference in the addresses of the locations in which they are

held = 10.

In order to compute the address of a subscripted element
of an array, use may be made of the following standard functions, which have

integer values:

address(A) the address of the first element of the array A;

lowbound(A,I) the declared lower subscript bound for the Ith
subscript position from the left in the array A;

range(A,I) the number of values in the range of the Ith
subscript position from the left in the array A;

size(A) the number of elements in the array A.

62
(Issue 2)

2-1.5.4

The first element of A is the subscripted variable all of

whose subscripts take values equal to their lower bounds. The range of a
subscript is computed by subtracting the lower bound from the upper bound
and adding one. The size of an array is equal to the product of the ranges
of its subscripts.
E.g. given the array A[1:8, 3:12, 5:15];

address (A) would take the value of the address of the subscripted

variable A[1,3,5];

lowbound (A, 2) would take the value 3

range (A, 2) would give the value 10

size (A) would give the value 8 x 10 x 11

i.e. 880

All these standard procedures may be used with main
store or with core-backing store arrays (see Section 10), However, when
using the standard function "address' the user must realise that he will be
given the address of a location on core-backing store, if the parameter is the

name of an array held on core-backing store.

For a description of the error message displayed if in a
call of "lowbound" or ""range'' the value of I does not satisfy the condition
14 Ié number of subscripts of A, see chapter 5.

The following table gives the formulae which may be used

to calculate the addresses of subscripted variables:

variable address

A (1) I - lowbound(A,l) + address(A)

AllJ)] (I - lowbound(A, 1)}range(A, 2) +J - lowbound(A, 2) +
address(A)

A[I,J,K] ((I - lowbound(A,1))*range(A,2) + J - lowbound(A, 2))

*range(A, 3) + K - lowbound(A, 3) + address(A)

63
(Issue 2)

2.1.5.4

location [I]

is a subscripted variable of type real which is used to access the main store

location whose address is the value of the unsubscripted integer variable I.
[In effect "location' is a single-dimensional array whose subscript takes

values corresponding to addresses of main store locations].

Like any arithmetic variable, it may occur on either side

of an assignment statement.

A particular use of this variable is to access elements of
main-store arrays where the addresses have been calculated by the above

standard functions, e.g. calculate the address of the element I of array A:-

i := I-lowbound (A,I) + address (A) ;

and now access this element

x := location[i] +2.0; (assigns the value of A[I] +2.0 to x)

location[i]:= x; (assigns the value x to A[I].

NOTE: The corresponding facility for core-backing store
may be obtained by using the single-word transfer

orders for core-backing store in a code statement.

The facility for explicit address calculation will be most

profitable in the following cases:

(i) the same subscripted variable occurs several times in

close proximity

(ii) array variables with the same subscript bounds appear
with the same subscripts several times in close

proximity

64
(Issue 2)

2.1.5.4

(iii) one or more variables used as subscripts are controlled
by nested for clauses, and none of the relevant sub-
scripts is altered by assignment within the loop. In
this case the necessary increment to the address may
be computed outside the loop and there is no need to

resort to a multiplication inside the loop.

5. STOREMAX PROCEDURE

The standard integer procedure 'storemax' takes as its value
the number of locations of free store currently available in the main stere

for use by an array. The declaration for this array would be:

begin array A [1: storemax];

If any other arrays are declared in the same block head or in an
inner block, or as workspace of a procedure called in the block, the combined
size of these arrays must be subtracted from storemax; otherwise space

overflow may result.

The activation of recursive procedures or procedures in which
a local array is declared, is also likely to cause space overflow in a block

whose arrays already occupy most of the available space.

The procedure storemax may not be used to obtain the number
of free locations on core-backing store. However, if this facility is required,
the information given in Chapter 1.2.2 should enable a user to write his own

procedure.

6. CONTROL PROCEDURES

Elliott ALGOL provides a number of standard procedures to
assist in the operating of a program; most of them do not have any effect on

the actual calculations.

65
(1ssue 2)

2.1.5.4

6.1 wait

This procedure causes the operation of the program to be
held up until a signal is given by the operator to continue. It should be used
in cases where some action is required from the operator (e.g. changing
paper or magnetic tapes). The operator must be informed what action is

required by an entry under Special Instructions on the Operating Sheet.
6.2 restart

This procedure causes a transfer of control back to the
beginning of the program. It should be used whenever it is expected that the

same program will be run several times with different sets of data.

If the 'restart' instruction is omitted from a program, andg
it is required to run the program several times, the operator may be asked to

make a manual restart at the end of the program.

6.3 stop

This procedure causes an immediate end of the program,
thereby freeing the computer for the next program to be run. However, itis

atill possible to make a manual restart.

7. MACHINE CODE

There are certain operations which may be performed very
efficiently when expressed in the machine code of the 503, which cannot be
performed efficiently when they are specified in ALGOL. This is because
the ALGOL translator must cater for all possibilities, but the programmer
writing in machine code, need only consider his special case. Therefore a
facility is included for writing machine code instructions in an Elliott ALGOL

program.

66
(Issue 2)

Z:1i5.8

Machine code is particularly effective in cases where the

following operations occur in inner loops:

(1) multiplication or division of integers known to be positive

(2) multiplication and division of positive integers by a

power of 2.

The use of machine code imposes on the programmer the
responsibility for testing and clearing overflow where necessary, and of
ensuring that the program itself is not interfered with by a B-lined instruction.
It is strongly recommended that all programs should be written exclusively in
ALGOL during the testing stages, and that when some of the operations are
replaced by machine code, all the tests should be run again to ensure that no

coding error has occurred.

ALGOLS3 provides for ALGOL programs containing machine code
instructions to be compiled provided that the instructions are written in the
form of code statements (see 7.2 below). Code statements have largely
superseded the standard procedure "elliott'", but programs including "elliott"

procedures are accepted by ALGOLS3.

7.1 Code statements

Talul General

Code statements provide a means of writing in
machine code within an ALGOL program. The format is based on 803 TI
code (T102) with the main addition of 'diamond bracket' (DB) constants. All
references to other words within the code statement are made using relative
addressing.

E.g. 30 1,
loads the accumulator with the contents of the second line of the

code statement.

67
(Issue 2)

2.1.5.4
7.1.2 Szntax

A new basic word code is defined which begins the

code statement. A code statement is an unlabelled basic statement
(see 4.1.1 revised ALGOL report Computer Journal, January, 1963). It
can hence appear anywhere that an assignment statement can appear. Itis

terminated in the usual way by end or else or semicolon.

7.1.3 Description

5 . | Every line of code specifies a machine word.

A line of code is terminated either by a newline or by the end or else or

semicolon at the end of the code statement.
7.1.3.2 Each line of code can be either

(a) a wholeword

(b) an instruction pair.

7.1.3.3 Wholewords

There are five kinds of wholeword: -

(a) Numbers
These consist of a sign followed by an unsigned
number in the ALGOL format, e.g.

+3

- .47
+3.14159
'1&5

+1 .ﬂm-Z

NOTE: spaces and tabs are ignored.

68
(Issue 2)

2.1.5.4

(b) Octal Groups

These consist of an 8 followed by 13 octal digits.
e.g. B7700775770077

NOTE: spaces and tabs are ignored.

(c) Alphanumeric Groups

These consist of a £ sign followed by 5 characters.
The 5 characters following the £ are packed in
reverse order. e.g. £ ? A, [, would be packed
into a location as ,, /, A ? and the top four bits would

be left clear.

NOTE: spaces, tabs and newlines are packed in the same

way as other characters.

(d) RAP replacements - see advanced facilities,
ref. 4.2.

(e) RAP words - see advanced facilities, ref. 4.3.

7.1.3.4 Instruction Pairs

An instruction pair consists of two
instructions separated by the appropriate B-digit (/ or :). If only one

instruction is supplied the separator must still be specified.

An instruction is either null or consists of

two octal digits (specifying the function) and an address.

An address is either null, absolute,

relative, or a DB constant.

69
(Issue 2)

2.1.5.4

70
(Issue 2)

(a) Relative Addresses

(i) An identifier

The identifier is replaced by an address at time of

translation as indicated in the table below: -

Identifier

simple variable or formal
parameter called by value,
i.e. real, integer or
Boolean. Simple name
variables must not be used.

array or formal parameter
specified as an array whether
called by name or value

label within the current block
which is NOT a formal
parameter of a procedure

label within the current block
specified as a formal name
parameter (a label cannot be

specified as a value parameter)

Address

the address of the location in
which is stored the value of the
variable, e.g. 26 a sets the
variable a to zero.

the address of the representative
location of the array, i.e. the
address of a location which contains
the address of the first element of
the array, e.g. 00A/260 sets the
first element of the array A to zero
whatever ranges the subscript(s) of
A have. (For the method of storing
arrays, see section 10 of this
chapter).

the address of a location which
contains a jump to the statement
which the label prefixed. Only the
orders 40,41,42,43 should be used.

the address of the representative
location, i.e. a location which
contains a jump to a routine which
determines the ultimate destination
of the label.

Note: If the procedure has an array
parameter called by value then it is
not possible to refer to the label
parameter even though the body of
the procedure is not a block.

2.1.5.4

Identifier Address

type procedure within own address of the location which

body

holds the value of the procedure.

string specified as a formal the address of a location which
name parameter contains the address of the first

(ii)

(iii)

(iv)

(b)
(i)

NOTE:

location occupied by the string,
e.g. 00S/300 picks up the first
location of the string.

Relative to the first location occupied by the
code statement. A relative address consists of
an integer followed by a comma, e.g. 0, or 15,
The first location of the code statement has
relative address 0. Hence 0, refers to the first
location and 15, refers to the sixteenth location
or word of code in the statement in which it

appears.

Reference to another program - see advanced

facilities, ref. 4.4.

References to the dynamic routines, public block -

see advanced facilities, ref. 4.4.4.

Absolute Addresses

An intege r

The integer may be signed or unsigned, e.g. 3 or

+4 or -1.

In an instruction with a negative absolute address,
the address is made positive by decreasing the
function digits, e.g. 20-1 is turned into 178191.
If the instruction is 00 then no carry is made,

e.g. 00-1: 00-1 is translated as 77 8191: 778191.

71
(Issue 2)

2.1.5.4

(c) Diamond bracket (DB) constants

These consist of < followed by a wholeword or an
instruction pair and terminated by >.
e.g. <+3> or <-3.142> or <40255/00255>

or <20 a: 776,> or < />

It specifies the contents of a location whose address
is allocated by the compiler. The DB constant is
replaced by the address of the contents of the DB.
e.g. 30 <+7>

loads the accumulator with +7.

The space for the DB constant is allocated by the
compiler. All constants of the same value are
allocated the same address and are commoned with
the constants in the rest of the program.
e.g. a:= 1; code 30<+1>: 20b

30<:001>: 20c;

will only use the single constant +1.

NOTE 1. DB constants cannot be nested.

2. Apart from the restriction imposed by 1. above,
any whole word or instruction pair can appear

inside the diamond brackets.

7.1.4 Advanced facilities

7.1.4.1 Compound Addresses

The absolute part of an address can be split.
e.g. In the instruction 744129 the 4129 may be represented as 4096+33 or
even 4096 + 32+1 denoting that A is output to the typewriter; or 764869
could be written as 76 4096+512+256+4+1, i.e. prepare to write to

magnetic tape using controller 2 format 2, handler 1 even parity.

72
(Issue 2)

2.1.5.4

(a) Relative compound addresses, e.g. a+2 or 6,-3
are allowed but they must be used with care. Two
relative addresses may not be combined to form a

single address, e.g. at2, will be rejected.

If the resultant reiative address lies below the
program or data area, then the address will be

rejected causing error no.103 to be displayed.

(b) Each part of the address, and the final result must
not be greater than 8191, i.e. both 4096+4096 and
8192-15 are not allowed.

T1.4.2 RAP replacements

The following references to RAP subroutines

are allowed as wholewords: -

RAPlprint, RAPprint, RAPiprint, RAPsearch, RAPsneak,
RAPread.

RAPiprint (737932:448069) displays the accumulator on the
typewriter as a four digit integer with no suppression of
leading zeros and no sign. The accumulator is taken to

be positive.

RAPsneak (737932:448147) obeys the order pair in the

accumulator on entry.

The order pair in the accumulator is obeyed and the resultant
content of the accumulator is preserved so that on the next
RAPsneak entry, this result will be restored to the
accumulator before obeying the order pair. The auxiliary

register is not preserved.

73
(Issue 2)

2.1.5.4

RAPsneak is mainly used for altering the reserved area

without producing an error interrupt.
For a specification of the other words, see the description
of RAP (2.2.1.7).
The following references to the RAP workspace
are allowed:-
RAPFF,RAPLF,RAPpointer, RAPword, RAPsep, IMASK.

They are all treated as relative addresses

when in their mnemonic form.

For a specification of these addresses see the

description of RAP (Section 2.2.1.7 of the MANUAL).

7.1.4.3 RAP words

These are wholewords and consist of a 9
followed by letters, digits and spaces. These characters, up to a maxmum
of six are packed in RAP reduced form, i.e. for output by the RAP sub-
routines RAPlprint and RAPprint.

NOTE 1. a tab is treated as a space.

2. any characters after the sixth are ignored.

3. if the RAP word is terminated before the sixth
character, spaces are added to bring the total

number of characters packed up to six.

7.1.4.4 References to other Programs

(a) Each reference consists of a relative address
followed by the named program.

e.g- 5,PML or 0,PML.

74
(Issue 2)

2.1.5.4

0, is taken to refer to the first location after the
RAP head. For SAP programs this would be the
LINKCP.

(b) This facility is particularly useful when using
another program as a comimon program.

e.g. 73 0, OWNPROG : 40 1, OWNPROG.

NOTE: the reference is treated as a relative address,

insofar as it cannot be combined with another

relative address.

(c) The program referred to must be in store at the
time of translation. If owncode is produced, no
check is made that the program referred to is in
store when the owncode is read in. If itis notin
exactly the same place in store then the subsequent

action is undefined.

(d) References to the Dynamic Routines

If the program referred to has the name DRS then
the reference is taken to be to the public block of
the ALGOL Dynamic Routines.

i.e. 731,DRS sets the main link.

7.1.4.5 Title Facility

This is a compile time facility.

If an equal sign (=) occurs at the beginning of
a line, then subsequent characters up to, but not including, the end of the
line are output, preceded by a newline to the typewriter. The line is gther-

wise ignored.

75
(Issue 2)

2.1.5.4

7.1.4.6 Wait Facility

This is a compile time facility.

If a close round bracket or a double minusi.e.)
or --, occurs at the beginning of a line by themselves they cause an Swait and

are otherwise ignored.

7.1.5 Differences between code statements and other

input routines

i B Elliott

The standard procedure elliott only inserts a

wholeword each time it is used whereas a code statement can insert more.

code statements can insert a single whole word and in this way could be used

in the same manner as elliott. All the facilities of elliott are available in

code statements.

7.1.5.2 T102

The following facilities of T102 are not

allowed: -
1. permanent directories i.e. @
2. temporary directories e.g. +3,7 8
3. block addressing e.g. 4,6
4. increasing block count i.e. *
5. preset parameters e.g. 2015,8'4
6. error cancellation i.e. 7
7. skip i.e. %
8. relative constants e.g. +3,

76

(13sue 2)

2.1.5.4

The following facilities have been altered:-

1. stopi.e. -- now causes an Swait

2. stop and increase block count i.e.) now causes
an Swait

3. title facility = bl output the title -

WHICH 1S TERMINATED BY A NEW LINE to
the typewriter.

4. Alphanumeric facility, i.e. £ . All non-
printable character, e.g. blank and erase, are
ignored and only 5 characters are packed in the

word.

All permitted contractions are allowed,
e.g. 30,:means 30 0, : Identifiers in the address portion are also allowed

in code statements.

T1.5.3 S.A.C.

The following facilities of S. A.C. are not
available: -
1. Instructions cannot be labelled.
2. A single order cannot appear by itself unless

accompanied by a B-digit specifier.

3. No declarations or implied declarations are
allowed, e.g. in S. A.C. block A; declares
the block A and its LINK

4. Relative constants are not allowed.

5. Replacements other than those referring to RAP
are not allowed. This includes standard

identifiers like COMP and EXIT.

77
(Issue 2)

7.1.6 Error messages

See Chapter 5, paragraph 5.1.

7.2 elliott procedures

For description see section 2.1.3.3.4.2.1 of the Manual

but note the following: -

T.2.1 Modification required to programs containing

elliott procedures

In ALGOLI, the location (called the ''representative
location'') assigned to an identifier which had been declared as an array
contained only the address of the first element of the array in the least

significant 13 bits of the word.

However, in the case of ALGOL3, this representative
location will also contain other information required by the dynamic routines.
Thus it might be necessary to insert a collate instruction in "elliott" procedures

which contain references to an array identifier.

In ALGOL3, the sign bit is set in the representative
location if and only if the array is stored on core-backing store, bits 38 to 20
contain information required by A3D for handling the array, and the address of
the 1st element of the array is held in the least significant 19 bits, (more bits
are required than in ALGOLI1 since the address may now refer to a core-

backing store location).

8. USE OF SAC COMMON PROGRAMS WITHIN AN ALGOL PROGRAM

To enable SAC common programs to be used as subroutines of an

ALGOL program, a standard procedure "enter cp' has been introduced.

78
(Issue 2)

8.1

2.1.5.4

entercp (m,n, o)

This standard procedure is used to enter SAC common

programs at a specified entry point. The parameters m,n and o must all be

of type integer.

(i) m. This must hold the name of the SAC program
to be entered. The name should be packed in the

RAP form (see section 2.2.1.9 of the Manual).

(ii) n. This must hold the entry point number at which

the program is to be entered.

(iii) o. When entry is made to the common program,
the contents of o will be in the accumulator. This
provides a method of passing a 39 bit parameter

over to the common program.

To enter the SAC program LPRINT, the following could be written

in the ALGOL program:-

code

comment

entercp

comment

30 <9LPRINT=>

20 m :

This will place the name, LPRINT, packed in RAP form,
in the location assigned to the integer variable m;

(m, 2, j);

This will cause entry to LPRINT at entry point 2. The
contents of the variable j will be in the accurmulator when

entry is made;

The address of the location holding the call of the standard

procedure "entercp' will be planted in the LINKCP of the common program,

so that it is possible to pick up several parameters once entry has been made

to the common program.

79
(Issue 2)

2.1.5.4

e.g. The ALGOL program might contain the following:-

code

entercp

code

30 <9SEVFPAR>
20 m s
(m, 4, j);

40 a: 01 b
20c /OO0 4d
01 f: 00 7930 ;

and at entry point 4 of the common program SEVPAR, the code

might be:-

20 WSI (WSI:= contents of the variable j)

67 LINKCP (LINKCP holds the address of the call
of the procedure entercp)

30 1

20 Wsz (WS2:=40a:01b)
67 LINKCP

30 2

20 WS2 (WS3:= 20 ¢ /00 d)
67 LINKCP

30 3

20 WS4 (Ws4:

il

01 £: 00 7930)

EXITCP, 4.

The exit instruction in the common program must be

suitably modified so that return is not made into the parameters following the

entercp instruction in the ALGOL program.

Repeated entries to the same program at the same entry point

The procedure "entercp' will leave the instruction

73 LINKCP of

40 i .
SAC program required entry point

in location ""127, DRS" (see code statement description 7.1), so that when

80
(Issue 2)

2.1.5.4

entercp hae been used once, the contents of this location could be accessed

and stored in the ALGOL program.

This instruction could then be obeyed whenever entry has
to be made to this common program at the same entry point, with a consequent
increase in speed of execution. The instruction will remain in 127,DR's until
overwritten by a further call of "entercp''. Itis only necessary to have the
common program in store when the ALGOL program is running, so that it
could be input when the '""Dwait' is displayed at the end of compilation of the

ALGOL program (see Chapter 6 for operating instructions).

9. PROGRAM SEGMENTATION

Programs which are too large for the available main store may
be run if some parts are made segments. [See also 10,core-backing store
arrays] . These segments are held on backing store (see this Chapter, 9.6)
and are automatically brought into main store when required. Space is saved
because the segments share the same main store area, known as a segment

area (see 9.2 of this Chapter).

Except for the condition that a segment must be a block which is
itself not part of a segment, the programmer has complete control over the
segmentation of a program. In general no programming restrictions are
imposed; for example, a programmer may include in a segment a call of a

procedure whose body is also a segment.

9.1 Method of Use

To specify that a block is a segment, write a "significant

comment'' (see 9.1.1) immediately after the begin of the block.

81
(Issue 2)

2.1.5.4

9.1.1 Definition of Significant comment for aegmentaﬁop

<comment list>: :=<any sequence not containing ;>

<segment-area number>: :=<unsigned integer:-'l +<unsigned integer>

<gignificant comment>: :=comment segment [<segment-area number>]
<comment list>;]

comment segment:<comment list>
The segment-area number must lie in the range 1 to 16 inclusive (see 9.2).

comment segment: ; is equivalent to

comment segment[1] ;

The part of the comment which follows the] or the : is not significant and

may be used for the ordinary purposes of comment. Thus,

comment segment[2] This is an example ;
e A L™ v [¥ — B |

significant part \ non-significant

segment area number

E.g. begin comment segment [2] ;
real a, b ;
etc

NOTE: (i) Only blocks may be segmented (a declaration must

follow the comment statement)

(ii) Segments must not be nested (a segment may not

contain another block specified as a segment).

9.2 Segment Areas and Segment Area Numbers

At compile time up to 16 areas of main store, known as

segment areas, are set aside.

B2
(Issue 2)

2.1.5.4

A segment is allocated to an area by means of its segment

area number, and each area is as big as the largest segment associated with it.

The main program (all the code not contained in segments)
always remains in main store, and a copy of each segment is always held on
backing store (see Chapter 9.6). When a segment block is entered, if it is not
already in main store, it is copied into the segment area corresponding to its
segment area number. Thus, segments with the same number may not be in
store together, but if a segment is re-entered several times before another
segment associated with the same area is entered, it is not re-copied from

backing store.

9.3 How to segment efficiently

9.3.1 Space

A segment area is as big as the largest segment
associated with it. Thus, in order to reduce the size of the program in main

store more than one segment must be associated with each segment area used.

The greatest amount of space is saved when all
segments are placed in one segment area, and this is the simplest method of

segmentation, but see TIME (this Chapter, 9.3.2).

9.3.2 Time

Because segments must be transferred from
backing store to main-store, segmentation tends to increase the running

time of a program.
Therefore to keep this increase to a minimum,

(i) segment as little of the program as possible,

(ii) segment those blocks which are infrequently entered,

83
(Issue 2)

2.1.5.4
(iii) place segments which are entered repeatedly one
after the other, in different segment areas so as to
reduce the frequency with which they are re-copied
from backing store. But note that the program may
have to be segmented further to allow for the space

occupied by the extra segment areas.

(iv) try not to segment procedures with parameters that
are called by name, if the procedure is called from

other segments in the same segment area.

9.4 Segment Sizes

To assist the programmer in the decisions taken as to where
the program may best be segmented a facility is provided whereby the size of
each segment created is displayed on the typewriter at compile time. This
facility is invoked by depressing key 38 on the word generator. As each
segment is compiled the size of the segment is printed as a 4-digit integer
preceded by the number of the associated segment area, also as a 4-digit

integer (no suppression of leading zeros).

9.5 Error message interpretation (see Chapter 5)

*¥error no.55 (a) Nesting of segments has been attempted.
(b) The significant comment has been placed

illegally, e.g. an attempt has been made

to segment a compound statement.

(c) an impermissible segment area number
has been used, e.g. greater than 16 or
the number was not terminated by a close

bracket.

B4
(Issue 2)

2.1.5.4

9.6 Backing store

The storage of the segments depends on the compiler
system and may be on core-backing store or magnetic tape. The initial
writing -up of the segments to backing store and the subsequent re-copying
into main store is carried out automatically and requires no action by the

programmer.

10. ARRAY STORAGE

The arrays in a program compiled by ALGOL3 may be stored
either in main store or in core-backing store. An array will be allocated
space in core-backing store (provided it is fitted) if and only if the
declaration in which the array appears is immediately preceded by a
significant comment. In all other cases the array will be stored in main

store. This applied to both own arrays and non-own arrays.

The syntax of the significant comment is:-
<comment list>: :=<any sequence of basic symbols not containing ;>

<sgignificant comment>: := comment CBS:<comment list>

If the first word following comment is CBS and the next
character (ignoring the typographical features such as blank, space or
change to a new-line, and the special characters & and halt-code) is not :

then error No.55 will be displayed.

If no core-backing store is present then the significant comment
will be checked syntactically but the array will be allocated space in main

store.

The significant comment applies to the arrays in the

declaration immediately following it and to no others.

85
(Issue 2)

2.1.5.4
Thus,

comment CBS : any comment list;
integer array A[1:100],B,C,D[1:50,2:4];
integer array E[1:20],F[1:3];

will cause arrays A,B,C and D to be stored in core-backing store and arrays

E and F to be stored in main store.

10.1 Arrays as parameters of procedures

A procedure which has a value array parameter will store
the copy of the array in the same medium, (i.e. main store or core-backing
store) as that containing the corresponding actual parameter. Itis not
possible to specify the medium on which the formal array parameter is to be

stored.

11. LIBRARY FACILITY

ALGOL3 provides a facility for accessing a library of ALGOL
routines held in character form on a magnetic tape. A new basic word
library is introduced which serves to call the texts specified after it. A
text on the library tape could be a procedure, a series of declarations or any
other piece of code. The program LIBRI1 acts merely as a macro-generator,
taking the macro texts plus any associated texts from a tape previously

prepared by the program LIBR2.

11.1 Writing texts to magnetic tape

The names and texts to be written to magnetic tape should
be on paper tape in the following form. Firstly, a list of names of texts
each separated by a comma the last name being followed by a semi-colon then the
corresponding texts each separated by a HALT CODE, the last text being
terminated by a HALT CODE. If, however, no more names and texts are

to follow two consecutive HALT CODES must be provided.

86
(Issue 2)

2.1.5.4

In a library statement (read by LIBR1) or a list of names
and texts (read by LIBR2) the paper tape characters with the following values
are ignored:-

0, 2, b4, 123-127
and the following are treated as significant:-

20, 16-25, 32, 33-58, 76, 97-122
If any other character is encountered,the programs display an error message
and do not continue. In addition, if any significant character appears in the
wrong position, e.g. a halt code in a name, an error message will be
displayed, (see LIBR! and LIBR2 program description, Chapter 7).

Example 1

a, b, A, text of a Halt Code text of b Halt Code

text of A Halt Code
b, a; text of a Halt Code
X, y. Z; text of X Halt Code text of y Halt Code
text of Z 2 Halt Codes

The letters a,b, A, X,y, 2 act merely as names to
identify each text on the magnetic tape and in the source code when the text
is called ; the name need not appear in the text itself. Only the first 6
characters of the name are significant ; the first character must not be an
integer. If more than one name of a text is listed before a semi-colon all but
the last name are treated as auxiliary names and texts. In example | a, b,
X and y are auxiliary tests. As such, each time text A is called, the auxiliary
texts a and b are also read irom the library tape and similarly with Z, texts X

and y will also be read. The number of auxiliary texts used by | routine must

not exceed 6.

NOTE: The single halt codes should always be followed on the

tape by a non-significant character (e.g. new line, space).

87
(Issue 2)

2.1.5.4

11.1.1 Texts already on the library tape

Note that if auxiliary texts are already on the
library tape, as is the case with b in the second line of example 1, the names
must be listed prior to any others although the texts should not be given.
However, in the case of a text calling other auxiliary texts, see a in the

second line of example 1, the text must always be given.

11.2 Reading texts from magnetic tape

To call a routine from the library tape, a statement using
the basic word library and the name(s) of the texts is included in the ALGOL

source program. The statement is terminated by a semi-colon in the
usual way,

Example 2

a=1:1:
library A, name, X ;

if b = 2 then go to label ;

The program LIBR1 reads characters from the tape in
reader 1 until the basic word library is encountered. It then reads the
specified library texts from magnetic tape and passes this code to the

semi-colon
compiler. When the /at the end of the library statement is reached the
program LIBR1 returns to reader 1 to obtain its characters to pass to the
compiler. Note that the texts specified after library will be compiled inta
store in their order on magnetic tape and not in the order as listed in the

statement. A maximum of 30 texts may be referred to either directly or

indirectly in any one library statement.

Example 3

lihra.ﬂ'.h. B, C, D, E;
where texts A, B, C, D and E each have 6 auxiliary texts.

88
(Issue 2)

2.1.5.4

Example 4
library A;
where A has 6 auxiliary texts, each auxiliary text calls 3 other texts

one of which calls 5 more texts.

In example 2, the texts specified by A, name and X will
be read from magnetic tape and the code passed to the compiler, although not
necessarily in the order as listed in the library statement. If, as in
example 1, auxiliary texts were written up with text A and X they will also
be read from the library tape and passed to the compiler each time the main
texts, in the example A and X, are called. However, if one of the auxiliary

texts is called, only this one will be compiled.

NOTE: A call of library is not permitted inside a library text

12. EDIT FACILITY

ALGOL3 makes use of the program EDITS8 to give an editing
facility so that source programs may be edited whilst being compiled. The
edit commands tape must be prepared according to the EDITS description
(see Manual, Section 2.2.3.27). No edited tape is produced but it would be

possible to provide such a facility by modifying the common program INTER.

12.1 Edit and compile

The program tape to be edited is loaded in reader 1 and
the edit tape in reader 2. The tapes are read by the program EDITS8 and

the edited characters presented one at a time to the compiler.

12.2 Edit, list and compile

The program tape to be edited is loaded in reader 1 and
the edit tape in reader 2. The tapes are read by the program EDIT8 and
the edited characters presented one at a time to the compiler and the program
ALPL (for output on the lineprinter)

89
(1ssue 2)

2.1.5.4

12.3 Edit, input library text and compile

The program tape to be edited is loaded in reader 1 and
the edit tape in reader 2. The tapes are read by the program EDIT8 and the
edited characters presented one at a time to the program LIBR1. This

program in turn passes the characters to the compiler.

NOTE: The editing facility applies only to the program tape;

texts input by the program LIBRI from magnetic tape

may not be edited.

12.4 Edit, list, input library text and compile

The program tape to be edited is loaded in reader 1 and
the edit tape in reader 2. The tapes are read by the program EDITS8 and the
edited characters presented one at a time to the program LIBRI, (this
program in turn passes the characters to the compiler), and the program

ALPL (for output on the lineprinter).

NOTE: The editing and listing facility applies only to the

program tape; texts input by the program LIBRI

from magnetic tape may not be edited.

For method of operation of these facilities see Chapter 6.

13. LISTING FACILITY

ALGOL3 makes use of the common program ALPL to give a
ilsting facility on the lineprinter so that source programs may be listed as

they are compiled into store.

13.1 List and compile

The program tape is loaded in reader 1 and the characters

are presented one at a time to the compiler and the program ALPL.

90
(Issue 2)

2.1.5 4

13.2 Edit, list and compile

See 12.2 of this chapter.

13.3 Edit, list, input library text and compile

See 12.4 of this chapter.

13.4 List, input library text and compile

The program tape is loaded in reader 1 and the
characters are presented one at a time to the programs LIBR1 and ALPL.
The program LIBRI1 passes the characters on to the compiler after having
read any necessary library texts from magnetic tape and the program ALPL

outputs the characters from reader 1 on the lineprinter.

NOTE: Library texts input from magnetic tape are not listed

on the lineprinter although this is a facility that could

be provided by modifying the program LIBRI.

For method of operation of the listing facilities see Chapter

91
(Issue 2)

2.1.5.4

92
(1ssue 2)

14. SUMMARY OF STANDARD PROCEDURES

abs
Bin
cos
arctan
entier
sign
exp

In

eqrt

tan
arcsin
ATCCOB

e e i

digits

freepoint)
scaled)

aligned)
sameline)
prefix)
reader)
punch)
grouping
leadzero
special
presume

instring)
outstring)

advance)
buffer)
character)

entercp
oflo
noflo

address)
size)
range)
lowbound)
storemax

elliott

see ALGOL 60 report

see Section 2 of this Chapter

see Chapter 3.2.3

see Chapter 3.2.4

see Chapter 3.2.2

see Chapter 3.2.1

see Chapter 3.2.5.1
see Chapter 3.2.5.2
see Chapter 3.2.5.3

2.5.4

-

see Chapter 3.
see Chapter 3.2.6
see Chapter 3.2.5.5

see Section 8 of this Chapter
see Chapter 5.4.3.2
see Chapter 5.4.3.1

see Section 4.1 of this Chapter

see Section 5 of this Chapter
see Section 2.1.3.3.4.2.1 of the Manual

2.1.5.4

stop see Section 6.3 of this Chapter

wait see Section 6.1 of this Chapter
restart see Section 6.2 of this Chapter
checki)

checkr)

i f thi hapt

checkb Check 8) see Section 3 of this Chapter
checks)

top of form)
find)
lines)
overprint)

see Chapter 3.2.10

93
(Issue 2)

2. 15,5

Chapter 5: ERROR INDICATIONS

1. INTRODUCTION

Error indications given by the common programs which are
used by A3C, A3L, A3D and the executive will be preceded by the common

program name.

e.g. "OCBS error BSfull'" would be displayed by OCBS if it discovered that

there was not sufficient room on core-backing store for the segments.

For the meaning of an error message which is displayed by
a common program and the possible action to be taken, the relevant common

program description should be consulted.

The error indications described below (Sections 2, 3 and 4)

will originate in A3C, A3L or A3D.

. ERRORS DURING THE TRANSLATION OF A PROGRAM -

lst PASS

When a syntax error is detected by the compiler, the

following action is taken:-

(1) The program is now invalid, so, if this is the first

error, output of owncode is stopped.

(2) The error is classified: A3C ouiputs to the error-

message program the message

*¥error no. n
(preceded and followed by a newline character) where n
is an integer which gives a reference in the ERROR
TABLE (2.4). 1If the error occurred in a library text
held on magnetic tape, this message is followed on a new
line by

*in mt text

95
(Issue 2)

2.1.5.5

(3) (a) Sufficient of the text following the error is also
output in order to help pin-point the position of the

error, (see COPIED TEXT).

(b) That part of the text which is immediately affected
by the error is not checked for further errors.
This means all characters between the error and

the end or semicolon which terminates the

statement, declaration, or procedure, (when the
error occurs in the head of the procedure), are

ignored. In the case of an error in a code

statement the text is ignored only as far as the

next newline, end, else or semicolon.

(¢) The rest of the program is checked for further

errors.

2.1 Copied text

The executive specifies the name and entry point of an
auxiliary program to which syntactic error messages (see Chapter 1.2.1) are
sent. This auxiliary program determines the amount of the text following the
error which is to be displayed. (See INTER description, Chapter 7.3.7).
The number ~f characters displayed using INTER issue 1 is 31.

Should a further error be detected in the text which is
being copied, A3C will output the appropriate error message and copying will

start anew.

1f the ALGOL program is being both printed on the
lineprinter and compiled, then if the error messages are also printed on the
lineprinter no code is copied since the error messages will be inserted

immediately after the error (see INTER description).

96
(Iesue 2)

2.1.5:bh

2.1.:1 Note on default option

If the A3C default option is used, A3C will itself,
display on the typewriter the syntactic error message followed by 31

characters of the source code.

2.2 Notes on error no.20 and error no.49
2.2.1 Error no.20 (undeclared identifier) is treated
specially

The name of the offending identifier is output after
the error number and the identifier is treated as though it had been declared
to be of type integer in the head of the innermost current block or, if the

symbol immediately following it is an open bracket, of type integer array.

If this declaration is incompatible with the use of the identifier - for example,
if it is used as a label or switch - then further, spurious, error indications

will cccur.

2.2.2 Ervor no.49

(Program tco complex to be compiled), occurs if
A3C requires mcre room in main store than is available. For methods of
modifying the ALGOL program to avoid this situation see OVERFLOW
CONDITIONS (Section 5 of this chapter).

2.3 Spurious errors

The explanations given by the error table will normally be
correct. There are, however, some cases when an error will be detected
but attributed to a cause unrelated to what has been written. When this
happens, the actual error will usually be found in a statement near the

apparent error.

97
(Issue 2)

2.1,5.5

It is possible for one actual error to lead to several
spurious error indications; for example, errors in declarations are bound

to cause spurious errors later since part of the declaration will be ignored.

2.4 Error Table
n Error
1 (a) Number of impermissible form.
(b) Error in an underlined word.
2 (a) Impermissible beginning to a statement.
(b) Symbol following own not real, integer,

Boolean or array.

(c) Procedure declaration not terminated by
semicolon.
(d) Name in declaration not followed by comma

or semicolon.
(e) Declaration following procedure declaration
not a procedure declaration.
Name declared twice in same block head.
Item after a comma in a declaration not a name.
} First identifier in switch declaration not

followed by ':=".

=l o W b W

In a procedure declaration:

(a) Item following procedure name not semicolon
or open bracket.

(b) No semicolon or close bracket after formal
parameter part.
N.B. If the item following the close bracket is
not a semicolon, the compiler will ignore a
letter string until ':'.

(c) List in value or specification part has

impermissible form.

98
(Issue 2)

7 (q)
8 (a)
(b)
(c)

10

11 (a)
(b)

12

13
(a)
(b)
(c)

14

15

16

17 (a)
(b)
(c)

18

19

20

21
22

Error 2.1s5:b

Specification part occurs before value part.
Parameter of non-allowable type.

Too many parameters (> 1023).

Parameter not specified.

Recursive procedure with real,integer or

Boolean name parameter.

Name in value part not a formal parameter.

Name in specification part not a formal parameter
Parameter specified twice.

go to statement leading out of a procedure body.
In array declaration:

No comma or open bracket after identifier.

No colon between upper and lower bounds.

No comma or close bracket after bound pair.

Negative own array size.

own array with variable or real bounds.

array with more than 3] dimensions, or array
segment with inore than 31 arrays.

No end or semicolon after statement in
compound tail.

Mo colon after a label.

Impermissible beginning to a statement.

Left part variable in assignment statement not
followed by ':='.

Value assigned to a procedure identifier
outside procedure body.

Identifier not declared, or used outside scope
of declaration.

'location' not followed by '[integer identifier]'.
Inadmissible complex primary in arithmetic

expression.

99
(Issue 2)

zi I-I 5. 5

100
(Iesue 2)

23
24
25
26
27

28
29
30
31 (a)

(b)
(c)

32
33 (a)
(b)

34
35
36
37
38
39

40
41

(a)

(b)

Error

Empty arithmetic expression.

Missing operand in arithmetic expression.
No close bracket after subscript list.
Missing bracket.

Wrong number of subscripts in subscripted
variable.

Missing else.

Missing then.

Conditional statement or expression after then.

Missing or inadmissible operator in arithmetic
expression.

Boolean operand in arithmetic expression.
Missing open bracket after name of procedure
with parameters.

Non-identifier or Boolean variable in a read list.
Inadmissible identifier as left part element.
Inadmissible identifier as controlled variable in
for statement.

Empty Boolean expression.

Missing relational operator.

Missing operand in Boolean expression.
Inadmissible complex Boolean primary.

Inadmissible operator in Boolean expression.

Type procedure name in read list, but not

within its own body.

Inadmissible symbol at start of an expression.
During procedure call:

No open bracket following name of procedure
with parameters.

Actual parameter not followed by comma or

close bracket (cf.error 7(b)).

42

43

44
45 (a)

(b)
46
47

48
49
50
54 (a)

(b)

55 (a)

(b)

(c)

(d)

56

N.B.

2,1.5,5
Error

Error in parameter delimiter of form

') letter string:('.

No actual array or string parameter where one
expected in a procedure call.

Non-allowable parameter in a procedure call.
Controlled variable in for statement not
followed by ':='.

For list element not followed by a comma or do.
Incorrect designational expression.

Arithmetic expression in for list element not
followed by step,while, do or a comma.

Missing until.

Program too large or compex to be compiled.
Label not declared in innnermost possible block.
Occurrence of a £ within an inner string

(possibly caused by omission of 7 at end of a

previous string).

comment occurs otherwise than after a

semicolon or a begin.

Nested segment.

Segment is not a block.

Segment area number is less than 1 or greater
than 16.

In a significant comment, '"segment" or "CBS"
is followed by an incorrect terminator.

Wrong number of parameters in a call of a

procedure.

The following errors will cause an ALGOL

program tape to shoot through the reader, instead of stopping at the end:-

101
(Issue 2)

2.1.5.5

102
(Issue 2)

(ii)

(iii)
(iv)

2.4.1

Error No.

101

102

103

104
105

106

107

108

No HALTCODE at the end of a tape which
is not the last tape of the program,

Insufficient end's to match all the begin's in the

program.

No semicolon after the final end.

Missing ? at the end of a string, causing the
program statements that follow to be treated as
part of the string. (This error will be detected
(Error 54) if an inner string occurs in any

subsequent statement.)

Code statement errors

Cause

more than one word on a line, e.g. newline
omitted.

impermissible beginning to word, e.g. function
digits omitted.

(a) named program not found
(b) negative relative address.
error in function digit.

impermissible address, e.g. address or part
of address > 8191.

error in DB constant, e.g. close diamond
bracket missing.

(a) more than one B specifier in a word

(b) more than one sign in a word

(c) incorrect number, e.g. decimal exponent
part o .4

(a) error in octal group

(b) impermissible word.

2.1.5.5

Error No. Cause
109 impermissible identifier in address part.
110 (a) block address used, e.g. 3, 17
(b) identifier used as wholeword is not a
standard replacement.
2.5 Errors not detected
(1) Labels placed more than once.
(2) Labels not placed at all.
3. ERRORS DURING CONVERSION OF OWNCODE TO

MACHINE CODE - 2nd PASS

The errore described below are detected by A3L, which will

enter the executive for the following error messages to be displayed.

Message

AdLerrl

A3lLerr2

AlLerr3

Meanin

An error has been detected in the owncode
supplied to A3L. No continuation is
possible. This means an error has
occurred in the system programs rather
than the ALGOL source program.

There is not sufficient room in main store
to hold the translated program. No
continuation is possible. (See segmentation
Chapter 4.9 and also storage of own arrays
on core-backing store, Chapter 4.10.)

A3C allocates space to the core-backing own
arrays on the basis of the value it finds in
the pointer BSLF. A3L

has now discovered that BSLF no longer
holds this value. No continuation is
possible, (see Chapter 1. 2.2.2). This
means an error has occurred in the sytems
programs rather than the ALGOL source
programs.

103
(Issue 2)

241:5:5

Message Meanin
A3Lerr4 There is not sufficient room available in
core-backing store to hold core-backing
store own arrays. No continuation is
possible, (see Section 5 of this chapter).
4. ERRORS DURING RUNNING OF PROGRAMS

In some of the error messages described below the medium

on which an array is stored will be displayed. The convention is:-

MS means main store

BS means core-backing store.

4.1 Non-continuable errors
Message Meanin
INT OF LO The result of some integer operation

SUBSCR OFLO

MS NOROOM

104
‘Issue 2)

(e.g. division by zero) is outside the
range -2% to (2% -1).

A subscript of a subscripted variable is
outside the range declared for the
corresponding array. The medium on
which the array is held and the name of
the array will be displayed. This will
be followed by further diagnostics in the
order listed:

(i) The subscript position at which the
error occurred.

(ii) The value of the erroneous subscript.

(iii) The current lower and upper bounds
of each subscript position of the array,
subscript position 1 first.

The program requires more space than is
available in main store.

Ldessage

MS NOROOM FOR
MS ARRAY A.

BS NOROOM FOR
BS ARRAY A.

MS NOROOM FOR
BS ARRAY A.

VAC NOROOM

BOUND ERROR

LOWBOUND ERROR

RANGE ERROR

2.1.5.5

Meaning

There is not sufficient room in main store
for array A. This is displayed when the
array has to be allocated space.

There is not sufficient room in backing
store for array A, This is displayed
when the array has to be allocated
space,

There is not sufficient room in main store
for the information which describes the
core-backing store array A. This is
displayed when the array has to be allocated
space.

There is not sufficient room to hold the copy
of a value array parameter. The medium
on which the actual array parameter is held
and the name of the actual array parameter
will be displayed, (see Chapter 4.10).

The upper bound is less than the lower
bound in one of the subscript positions of
an array. This will be displayed when
space is being allocated to the array. The
medium on which the array was to be held
and the name of the array will be displayed.
This will be followed by the subscript
position at which the error occurred and
the current lower and upper bounds for

this subscript position.

An error has been detected in a call of the
procedure "lowbound'". The medium on
which the array parameter is held and the
name of the array will be displayed.

An error has been detected in a call of the
procedure '"range'". The medium on which
the array parameter is held and the name
of the array will be displayed.

105
(Issue 2)

2.1.5.5

Message Meanin
IOSTRING ERROR The value of the subscript m (see

Chapter 3.2.6) during the execution of the
procedures "instring' or "outstring' lies
outside the range declared for that substript
position of the array. This message will
be followed by the diagnostic information
that follows SUBSCR OFLO.

DIV ERROR. The result of the operation div is outside
the range -2°% to (2%8-1).

ENTIER ERROR. The result produced by the standard
procedure "entier'" or a necessary
conversion of a number from real to
integer (e.g. assigning a real number to
an integer variable) lies outside the range
« 28840 (2% =1):

SWITCH ERROR. The value of a subscript expression in a
switch designator lies outside the range 1
to n where n is the number of labels in the
switch list of the corresponding switch
declaration.

These errors will all be followed by the name of the last
array (in the dynamic sense) successfully allocated. The name of the array is

preceded by the word
ALLOC.

The copying of an array which occurs when a procedure which has a value
array parameter is entered does not affect the name displayed for the last

array allocated.

4.2 Continuable errors

After the following error messages, a '"Dwait" will be
displayed. The program can be continued by changing the leftmost F2 digit

(key 19) on the word generator. In the descriptions below, x stands for the

106
(Issue 2)

2.1.55

argument of the function which caused the error and cv the value which the

function will assume if the program is continued.

MennaEe
EXP EREROR

SINE ERROR

LOG ZERO

LOG ERROR

TAN ERROR

ARCSIN ERROR

SQRT ERROR

STRING ERROR

M Eaning

x> 255 log 2 (**176.75)

cv=(1-2%)x2%° (i.e. largest positive
number the computer
can hold).

This is displayed for an error in both the
functions sine and cosine.

x 2 2°9 (= 107).

cv = 0.

x=0

cv = -2°%% (largest negative number the
computer can hold).

This is caused by: -
(i) In (x).

where x< 0. The continuation value

is In(]x|)

(ii) attempted evaluation of qu
with p £ 0 and q real and § 0.
The continuation value of the function
is zero.

3% 3 2% L 10%Y,

cv =20

This is displayed for an error in both the
functions arcsine and arccosine.

x>1

cv=2>0

x<0.

cv = sqrt (|x}))-

The string being printed contains an

inadmissible character. On continuation,
the rest of the string is ignored.

107
(Issue 2)

2.1.5.5

Mes sage
READ ERROR

BUFFER ERROR

PRINT ERROR

ERRCALL LP

Meanin

(a) error found in the number being
input (in particular, if a number
expected to be an integer contains
a decimal point or a subscript ten
or is too large), or £ read at the
etart of a number. On continuation,
the read subroutine is re-entered.

(b) 'instring' has read either a numeric
character before reading a £, or a
£ within an inner string. On
continuation, the program continues
with the statement following the call
of 'instring'.

The string parameter in a call of 'buffer'’
is an empty string. On continuation, the
function is assigned the value false.

The real number to be printed is not in
standardised floating-point form. On
continuation, the printing of the number
is omitted.

The parameter m in a call of the procedures
'""lines" or '"find" is outside the range

0< m < 30.

On continuation a call of the procedure

'""top of form'" is executed.

After these continuable error messages it is possible to

have displayed the name of the last array allocated by suitably modifying the

common program CHAROUT. The run may then be stopped or allowed to

continue (see CHAROUT description, Chapter 7.3.5).

4.3 Suppression of certain error messages

Two standard procedures, '"noflo'" and "oflo'" have been

introduced, which can be used to suppress some of the error messages and

modify the values given to certain of the standard functions with particular

arguments. Used in conjunction with the SAC program ERINT, '"noflo" can

108
(Issue 2)

2.1.5.5

also be used to suppress the error message ERRINT 1.

4.3.1 noflo

This is a procedure without parameters which,
when called, affects the standard functions "In'", '"'sqrt", and '"exp'" in the

manner described below.

(i) 1In(0) The message "LOG ZERO" and the '""Dwait" are not
displayed. The continuation value is as before,
Tul 2 B,

(ii) exp(x) where x > 255 loge 2 (=116.73)
The message "EXP ERROR'" and the '"Dwait'" are
not displayed. The continuation value is as before,
ioe. (1-27%9) 5 2966

(iii) sqrt (x) where x = (1-2-29) x 29°

This expression takes the value (1-2-3%)x 2355,
Since sqrt (x) when x <0 is evaluated as sqrt (] x|)
then, when x = - (1-2-29)x 225, this expression will
also be given the value (1-2-??) x 2°%®%_, The error
message SQRT ERROR will still be displayed,
however, when x is negative.

(iv) 1n (x) where x = (1-2-29)x 2%°

This expression takes the value (1-2-%7)x 2355,

Since In(x) where x <0 is evaluated as In (] x|) then,
when x = - (1-2-29)x 225 this expression will also

be given the value (1-2-29)x 2°5% . The error
message LOG ERROR will still be displayed, however,
when x is negative.

4.3.2 oflo

This is a procedure without parameters and is used
to cancel the procedure '""noflo''. The action taken in the cases listed in 4.3.1

of this chapter then reverts to that described in 4.2 of this chapter.

109
(Issue 2)

z' ll 5'5

The procedure which is called last in the dynamic
gense is the one that is operative. The presumed state corresponds to a

call of "oflo".

4.3.3 Continuation after floating point overflow,

i.e. ERRINT 1.

A SAC program ERINT has been provided to enable
the run of an ALGOL program to be continued after the detection of a floating

point overflow.

1f ERINT is in store when the error interrupt
occurs, RAP will enter ERINT which, unless the procedure ""noflo" is

currently active in the ALGOL program, will display

" ERINT 1

Dwait "

When the leftmost F2 digit (key 19) of the word generator is changed, the
ALGOL program continues with the value (1-2-??) x 2°% taken as the result

of the operation which generated the floating point overflow.

If the procedure '""noflo" is active in the ALGOL
program then the run will be continued without an error message and with the

continuation value (1-2-29) x 225, (see ERINT description, Chapter 7. 3.1.2.)

5. NOTES ON SPACE OVERFLOW CONDITIONS

[all solutions require the program to be re-compiled]

5.1 Compile time [i.e. during the first pass]

(a) Error No.49 - program too complex to be compiled
at all.
cause: the compile time list and dictionary occupy

all the available main store space.

110
(Issue 2)

(b)

gsolution:

(i)

(ii)

2.1.5.5

if the error occurs at the start of a
block reduce the number of variables
declared in that block (possibly by
splitting the block into 2 un-nested
blocks)

if the error occurs during the evaluation
of an expression (arithmetic or boolean)
split it into a number of smaller

expressions if possible.

QCBS error BSfull

cause: the owncode has filled the core-backing store.
solution: recompile and place the owncode on magnetic
tape. This involves modifying the executive
so that it will cause A3C to use OAST in-
stead of OCBS for the output of owncode (see
OAST, ALGOLB and GMT (for ALGOL3)
descriptions, Chapter 7).
5.2 Conversion of owncode to machine code - 2nd pass
(a) A3Lerr2
cause: not enough room in main store for the
compiled program and its workspace.
solution: segment the program or put main store
own arrays on core-backing store.
(b) A3Lerr4
cause: not enough room on core-backing store

between BSLF and BSMIN (when second

pass begins) for core-backing store own

arrays.

i1l
(Issue 2)

2,.1.5.5

gsolution: If core-backing store is used as described
in chapter 1.2.2 the size of the reserved
areas, the number or the size of core-

backing store own arrays must be reduced.

(c) OCBS error BSfull
cause: not enough room on core-backing store for
segments, i.e. first free location is equal

to last free location.

solution: reduce the size of the reserved area.
5.3 Runtime

(a) MS NOROOM
MS NOROOM FOR MS ARRAY.
MS NOROOM FOR BS ARRAY.
VAC NOROOM MS ARRAY.

cause: the dynamic stack in main store requires

more space than is available.

solution: (i) Segment the program
(ii) Place some of the arrays on core-

backing store.

(b)) BS NOROOM FOR BS ARRAY.
VAC NOROOM BS ARRAY

cause: the dynamic stack in core-backing store
requires more room for core-backing

store arrays than is available.

112
(Issue 2)

golution:

or

(1)

(ii)

2.1.5.5

if possible, reduce number or size

of core-backing store arrays,

if segments are in core-backing store,
place them on magnetic tape instead.
This will involve modifying the

executive so that it will cause A3L to
pass segments to OAST instead of OCBS,
and A3D to enter OAST to be supplied
with segments. (See OAST, ALGOLB
and GMT (for ALGOL3) descriptions,
Chapter 7).

113
(Issue 2)

2. LBl

Chapter 6: OPERATING INSTRUCTIONS

| OPERATING INSTRUCTIONS WITH THE CORE-BACKING
STORE EXECUTIVE PROGRAM (ALGOLB)

1.1 Creating the system

1.1.1 Introduction

It is suggested that if magnetic tapes are available
a batch holding the system is produced. When this batch is loaded into main
store and core-backing store, the executive (called ALGOLB) and any
programs that the user requires in main store during all phases of compilation
and running will be in main store. A3C,A3L and A3D and their common
programs will be in the bottom of core-backing store. For installations with
no magnetic tape handlers, the program CBIT (see Chapter 7), has been

produced to reduce the time taken to input the systems programs from

papertape.
k.12 Operating instructions
Typed Message output Tape in
¢ Lyped SRS AR R Kk
e Instruction by Typewriter reader 1 S
0 IN. OCBS QCBS Input OCBS and any
other programs re-
quired during all
phases of compil-
ation and running.
1 IN. ALGOLB ALGOLB
2 IN. ALPL ALPL) G orAmnon DEOEE
3 IN. EDIT8 EDIT8) it s
4 IN. INTER INTER) 9 y
5 IN. GMT GMT) Common programs
6 IN. LIBR 1 LIBR 1) required by A3C if

programs with
library calls are to
be compiled and run.

115
(Issue 2)

2.1,5.6

Step

*7

10
11

12
13
14

*15

16
17
18

T)ﬂl)ed

Instruction

IN.

IN.

ALGOLB;2.

ImMm.mN.

Im.n.

IN.
IN.
IN.

IN.

IN.
IN.
IN.

116

(Issue 2)

Message cutput
by Typewriter

PROGRAM NAME

A3C

BSMIN=

BSMAX=

END

ALP
CHARIN
CHAROU

PROGRAM NAME

A3D
A3L
PROGRAM NAME

Tape in

reader 1

A3C
)
)
)
)
)

ALP)

CHARIN)

CHAROU)

A3D

A3L

Remarks

Any other programs
required during the
first pass.

A3C may be input
anywhere between
steps 1 and 8.

0€{m {a-1

0&n ‘S 8191

where a = number of
+ units of CBS.
BSMIN must be >3
but see Section 4
note 2.

If XRANGE is dis-
played see ALGOLB
description 'ERROR
MESSAGES'.

ALGOLB now copies
the section of main
store above ALGOLB
occupied by A3C and
its common programs
to core-backing store.
All programs input
after ALGOLB are
now deleted from main
store.

Commeon programs
required by A3D and
A3L.

Any programs wanted
in store during run-
time.

Any programs wanted
in store during the
second pass. If there
are any auxiliary
programs required only
by A3L they should be
input here.

2.1.5.6

Typed Message output Tape in
Instruction by Typewriter reader 1

Step Remarks

19 ALGOLB;2. END ALGOLB copies to
CBS the section of
main store above
ALGOLB occupied by
A3D, A3L and their
auxiliary programs.
All programs input
after ALGOLB are
now deleted from
main store.

20 IN. DUMP2 DUMP2

21 DUMP2.NAME. The created system

END should now be dumped
on magnetie tape
(previously prepared
by DUMP2) as a main
store and backing
store batch called
NAME.

NOTE: If ALGOLB is corrupted at any stage it is necessary to
restart at step 1. This is because ALGOLB contains
information about the positions and sizes on CBS of the
main store copies and the current values of the backing

store pointers.

* Step 7 may be made at any time between steps 2 and 7 inclusive.

Step 15 may be made at any time between steps 12 and 15 inclusive.

117
(Issue 2)

2,1.5.6

(Issue 2)

Remarks

Input the ALGOL3 main
store and backing store
batch from magnetic
tape - prepared as
described in

Section 1.1.2 of this
chapter.

Handler 7 should be
loaded with a library
tape of texts (written
up by LIBR2 - see
Chapter 7.3.9). If
there are library
statements in the
ALGOL program.

See Section 3 of this

chapter for key ton

a = main store first
free location.

b = main store last
free location.

Change key 19 and the
compiled program is
entered.
Alternatively, to
enter the program
interrupt and type
ALGOLB.R.

ALGOLB enters the
compiled ALGOL
program.

1.2 Compiling and running an ALGOL program
Typed Message output Tape in
Instruction by Typewriter reader 1
IN; NAME
END
ALGOLB. n. SOURCE PROGRAM
PROGRAM NAME
FREE STORE a-b
Dwait
> DATA TAPE
ALGOLB.R. DATA TAPE
Note It is not necessary to read down the batch containing ALGOLB
and the systems programs each time an ALGOL program is
run. It is only necessary initially and if ever the systems
programs on core-backing store are overwritten in which case
an error message will be displayed when an attempt is made
to compile a new program.
118

2.1.5.6

2. OPER ATING INSTRUCTIONS WITH THE MAGNETIC TAPE

EXECUTIVE PROGRAM (ALGOLM)

2.1 Creating the system

. B | Introduction

The ALGOL3 systems programs and the SAC
common programs they require, are held as blocks on magnetic tape. They
are written and read using the programs OAST and GMT (for ALGOL3). At
the beginning of the tape are three dummy blocks (5 words long). Next on the
tape are an information block and systems block for stage 1 followed by two
similar blocks for stage 2. If OAST (for two handlers) is in store, the three
dummy blocks will be preceded on the tape on handler 1 by a DUMP2 or
DUMP2M batch which contains ALGOLM, OAST and GMT (for ALGOL3).
This batch may be either preceded or followed by any number of DUMP2 or
DUMP2ZM batches. Once the batches have been written up it is not
recommended that selective overwriting takes place as this can lead to the
ALGOL3 systems blocks being corrupted. Segments are also written to

handler 1; these will be placed after the systems blocks

If OAST (for 3 handlers) is in store the systems

blocks and segments will be written to the tape on handler 5.

8ot 4 GHT BLocK S . eoT

N gATcH \ N ©N, ¢

NN contaning N s RC;E' S ﬂﬂ}){ML

ENEN o N & N Nsywens N SOTEnS

= 5 Pyl = E BLock S Block
4— Duif2 o DUNP2ZH —p Tunn |HFctnM INFRNATIN t £

BATCHES Buckl Block FR Buck wR 'Linfgrﬁuir
A3c AZD |ASL 8Y A3L

DIAGRAM OF MAGNETIC TAPE FORMAT - HANDLER |
(with OAST (FOR 2 HANDLERS) IN STORE)

119
(Issue 2)

2.1.5.6

NOTE When OAST (for 3 handlers) is used, the format

for the tape on handler 5 (which holds the systems
blocks and segments) is essentially as above.

The difference being that there are no DUMP2M or
DUMP2 batches on the tape so that dummy block 1

is at the beginning of the tape.
Block numbering is as follows: -

Blocks 1-3 Dummy blocks

Block = Information block for the A3C block.

Block 5 A3C + auxiliary programs block.

Block 6 Information block for the A3L/A3D block.
Block 7 A3L and A3D and auxiliary programs block.

Blocks 8 and upwards are segments formed by
A31L.. The block numbering for segments starts at 8 each time a new
program is compiled. Users with core-backing store may reserve part of
the store (from location 4 upwards) for their own requirements (see Chapter 1.2.2)

by typing in limits at steps 13 and 14 (see below) when creating the system.

2.1.2 Operating Instructions
Typed Message output Tape in
Brep Instruction by Typewriter reader 1 Bemuiis
1 See Section 4, note 1
2 RESET. - RAPMT in store
3 1IN GMT GMT (for
ALGOL3)
4 IN. OAST OAST
5 IN. PROGRAM NAME Any programs

required during all
phases of compil-
ation and running.
(See Chapter 1.2.2).

120
(Issue 2)

Typed
Step Instructi.on_
6 IN.

? A.LGOI.JM;Z .

8 IN.

9 DUMP2ZM;2.NAME

10 IN.
11 IN.
12 IN.
13 IN.
*14 IN.
15 IN.

16 ALGOLM;3.

17

Message output Tape in
by Typewriter reader 1
ALGOLM ALGOLM
END

DUMFZM DUMP2ZM
ALPL ALPL)
EDITS8 EDIT8)
INTER INTER)
LIBR! LIBRI
PROGRAM NAME

A3C A3C

CBS OK

NO CBS

2.1, 5

Remarks

First free location
increased by one.
This is to allow one
spare location for
GMT to write in the
block number when
stages | and 2 are
written to magnetic
tape.

Dump the main store
as a batch called
NAME on magnetic
tape (handler 1) see
note 4 in Section 4.

Common programs
required by A3C

Common program
required by A3C if
programs with
library calls are to
be compiled and run.

Any other programs
wanted during the
first pass.

ALGOLM writes
away three dummy
blocks.

If core-backing store
is available.

If core-backing store
is not available. In
this case steps 18 and
19 are omitted.

121
(Issue 2)

2.1.5.6

18
19

20

21
22
23

24

25
26
27

28

St Typed Message output
°P Instruction
BSMIN=
m.n.
BSMAX=
m.n.
END
IN. ALP
IN. CHARIN
IN. CHAROU
IN. PROGRAM NAME
IN. A3D
IN. A3L
IN. PROGRAM NAME
ALGOLM;4.
END

122

by Typewriter

(Issue 2)

TaEa in

reader 1

ALP)

CHARIN)
CHAROU)

A3D
A3L

* Step 14 may be made at any time between steps
10 and 14 inclusive.

)
)
)

Remarks

0 5_ m $ a-1

0gn £8191
where a = number
of 3 units of CBS.
BSMIN must be >3
but see Section 4
note 2. If XRANGE
is displayed see
ALGOLM descript-
ion '"ERROR
MESSAGES'.

ALGOLM now

writes away: -

a) an information
block for stage 1.

b) a block containing
A3C, and the
common programs
input after the
Executive.

Common programs
required by A3L
and A3D.

Any programs
wanted in store
during run-time

Any programs
wanted in store
during the second
pass only or by
A3L only.

ALGOLM writes

away: -

a) an information
block for stage 2.

b) a block contain-
ing A3L, A3D and
their common
programs.

2.1.5. 6

2.2 Compiling and running an ALGOL program

Typed Message output
Instruction by Typewriter

IN;NAME END

ALGOLM.n.

PROGRAM NAME
FREE STORE a-b

Dwait

ALGOLM.R.

Tape in
reader |

SOURCE
PROGR AM

data tape

data tape

Remarks

Input an ALGOLS3
batch containing

the program GMT
(for ALGOL3),0AST
and ALGOLM -
prepared as
described in

Section 2.1.2 of

this chapter.

Handler 7 should be
loaded with a
library tape of texts
(written up by LIBR2
- see Chapter7.3.9)
if there are library
gtatements in the
ALGOL program.
See also Section 4
note 1 for other
tapes required.

See Section 3 of thise
chapter for key ton

a is first free
location
b is last free
location

change key 19 and
the compiled
program is entered.

the run of the
program last
compiled is repeated.

123
(Iesue 2)

2.1.5.6

124
(Issue 2)

CODE FOR COMPILING ENTRY TO THE EXECUTIVE

C.

CE.

CP.

CEP.

CL.

CEL.

CLP.

CELP.

compile from reader 1

compile from reader 1 and edit from reader 2.
compile from reader 1 and print the ALGOL text
on the lineprinter.

compile from reader 1, edit from reader 2 and
print the program text on the lineprinter.
compile from reader 1 and input library texts
from magnetic tape.

compile from reader 1, edit from reader 2 and
input library texts from magnetic tape.

compile from reader 1, input library texts and
print the text of the program (in reader 1) on the
lineprinter.

compile from reader 1, edit from reader 2, input
library texts and print the text of the edited
program (not including the library texts) on the

lineprinter.

GENERAL OPERATING NOTES

NOTE 1

If OAST (for 2 handlers) is in store the following

handlers are required:

HANDLER 1 Remote - write permit ring - tape
with DUMP2 or DUMP2ZM batches.

Used to hold segments and systems blocks

HANDLER 4 Remote - write permit ring - scratch

tape used to store owncode.

If OAST (for 3 handlers) is in store the following

handlers are required:

NOTE 2

NOTE 3

NOTE 4

2.1.5.6

HANDLER 1 Remote - batch tape (required
initially if a batch containing GMT
(for ALGOL3) OAST and ALGOLM is

to be read into store).

HANDLER 4 Remote - write permit ring - scratch

tape. Used to hold owncode.

HANDLER 5 Remote - write permit ring - scratch
tape. Used to hold segments and

systems blocks.
With both versions of OAST the tape on handler 4 is

not needed once the ALGOL program is compiled.

The values to be set in the pointers BSMIN and
BSMAX are read as two integers m and n. The
actual address placed in BSMIN is given by

(m x 8192) + n

i.e. m represents the integer number of 3 units of
core store and n is the address of a location inside
a 3 unit so that n satisfies 0 { n { 8191.

e.g. to reserve the first two units of core-backing

store type 4.0 for BSMIN.

It is not necessary to read down the batch containing
OAST, GMT (for ALGOL3) and ALGOLM each time
an ALGOL program is run. The batch need only be

brought down initially.

The program DUMPZM would normally be used to
dump the batch but DUMP2 should be used if
information in the reserved areas of core-backing
store is to be preserved. If DUMP2 is used it may
be necessary to retrieve the dumped batch before it

is possible to move onto the next stage of creating

125
(Issue 2)

2,1.5.6

the system (DUMP2 destroys the main store when
certain entry points are used).

By dumping the main store as a batch, input of
GMT (for ALGOL3), OAST and ALGOLM from
papertape each compile time is avoided. In any
case, these programs have to occupy the same
position in main store as they did when the ALGOL3
system was created. Inputting from magnetic tape

is the best way of ensuring this.

5. DUMPING AN ALGOL PROGRAM ON MAGNETIC TAPE

Because A3D continuously updates locations 7925 and 7926,
it is possible to interrupt a running ALGOL program, input DUMP2
or DUMP2M and dump the main store (and core-backing store if it is being

used to hold arrays) onto a magnetic tape batch.

To continue the run later, the batch should be read into store
and
CONT .
typed.

However, DUMP2 ISSUE 1 and DUMP2M ISSUE 1 do not dump
location 8176 with the batch written to magnetic tape, so that should a 76
instruction but not the corresponding 77 instruction have been obeyed when the
program is interrupted, an error interrupt could occur when an attempt was

made to continue the run of the dumped program.

126
(Iesue 2)

2' 1'. 5'?

Chapter 7: DESCRIPTIONS OF PROGRAMS USED IN ALGOLS3

1. SYSTEMS PROGRAMS

1.1 A3C

Code RAP - binary

Function To convert syntactically correct ALGOL text

to owncode.

Store used 4672 locations.

Method of use

A3C is used as a common program by the Executive.

To start the first pass of compilation, the Executive
enters A3C to hand over the names and entry points of the three auxil iary

programs which A3C will use for:-

(1) Input of ALGOL text or source code.
(2) QOutput of syntax error information.

(3) Output of owncode.

A3C then translates the source-code to owncode and
finally exits to the Executive with an indication as to whether the translation

was successfully completed.

EXECUTIVE

*cmnt-

SOURCE CadE > R3C > OWNCODE

*

SYNTAX ERRORS

127
(Issue 2)

2.1.,58,1

Interface between the Executive and A3C

The three auxiliary programs are specified by three
consecutive parameter words within the Executive. 5o that A3C can access
these parameters, the Executive, on entry to A3C, plants the address of the
location preceding the parameters in the LINKCP of A3C [i.e. the location
immediately following the program head]. A3C will eventually exit to the
4th location after the address in LINKCP.

Parameters are of the form

00 A, : 00 Ay
where A, and A; are the addresses of the locations containing the name and
entry point respectively.

e.g. 00 <90CBS>:00<+2>

Interfaces between A3C and its auxiliary programs

ENTRIES
1. Source-code program.

A3C enters this program to obtain one character.
Exit should be made with the character in the

accumulator.

2. Error-messages output.
A3C enters with the character to be displayed in
the accumulator.

3. Qutput of owncode.

A3C enters with 39 bits of owncode in the

accumulator.

128
(Issue 2)

EXIT

2.1.5.7

All exits from these programs should be made using the

instruction

EXITCP

Entry to A3C

There is one entry point, and the instructions in the

Executive are of the form

SUBR, A3C*ENTERCP
Source code parameter
error message parameter

owncode parameter

SUBR, A3C*ENTERCP is an entry instruction to a

routine which finds A3C in store, plants the address of the instruction in its

LINKCP. and then enters it. (See description of the Executive, 2.1).

Default Options

Paper tape reader 1.
A3C will automatically read source-code from
paper tape reader 1 if the A, address of the source

code parameter contains zero.

Error-messages on typewriter.

A3C will automatically print any error messages
on the typewriter if the A, address of the error
message parameter contains zero. The error
message will be followed by 31 characters of the
source code to enable the position at which the

error occurred to be pin-pointed.

129
(Issue 2)

2,1.5.7

Exit from A3C

Immediately prior to the exit, A3C displays the name of
the ALGOL program on the typewriter.

The exit instruction within A3C is effectively EXITCP, 4
and the accumulator is set as follows: -

Accumulator zero: The source code was syntactically correct and

translation to owncode has been successfully completed.

Accumulator non-zero:
Syntax errors were found or translation to owncode wae

not completed successfully (see error No.49).
Tapes
A tape coded in RAP binary form is supplied.

Error messages

A3C classifies syntax errors and outputs this

information to the error message program (see 3.7 and 3.8 of this Chapter).
ERRerr

This message is displayed if A3C discovers that it is

corrupt. The absence of this message does not mean that A3C is not corrupt.

130
(Issue 2)

2.1.5.7

1.2 A3L

Code RAP binary.

Function To convert owncode produced by A3C into
machine code. The segments of a segmented ALGOL program are supplied
to a common program for storage. The remainder of the machine code is

placed in the main store.
Store used - 383 locations.

Method of use

For operating instructions see Chapter 6. A3L is used
as a common program. It has one entry point which is used by the ALGOL3
executive. To start the second pass of compilation the Executive will enter
A3L to hand over the names and entry points of the SAC common program

A3L is touse. The common programs are required to perform two functions:-
(1) supply owncode to A3L
(2) if the ALGOL program is segmented, to store

the segments formed by A3L.

Programs must be specified by the Executive to perform

both functions as there are no default options in A3L.

A3L translates the owncode to machine code, and finally
exits to the Executive; the value in the accumulator indicates whether or not

the translation was successful.

131
(Issue 2)

2.1.5.7

PROCESS USED

Interface between Executive and A3L

The common programs to be used by A3L are specified
by two consecutive parameter words within the Executive in the same way as
ie described in the description of A3C. The first parameter gives the name
and entry point of the program to be used to supply owncode and the second

gives the name and entry point of the program to be used to store segments.

Interfaces between A3L and its auxiliary programs

ENTRY

(1) Input of owncode.

A3L will enter this program to receive 39 bits of
owncode. Ezxit should be made with the owncode

in the accumulator.

(2) Output of segments.

When a segment has been built up in the main
store, A3L will enter the auxiliary program with
a parameter in the accumulator. The parameter

is of the form:

00a: 00D
a is the segment length
b is the address of the start of the segment in main

Btore.

The auxiliary program copies the segment onto backing
store and will exit back to A3L with a parameter in the least significant 19
bits of the accumulator. This should enable the segment to be identified and
will be one of the parameters which A3D passes to the auxiliary program

which retrieves the segments at run time. (In the case of OCBS, which

132
(Issue 2)

2.1.5.7

sends segments to core-backing store, the 19 bit parameter is the address of
the start of the segment cn core store, and in the case of OAST, the parameter

is the block number of the segment on magnetic tape).

EXIT

A standard exit should be made from the auxiliary programs,
i.e. by the order
EXITCP.

ENTRY TO A3L

There is one entry point, and the instructions in the executive
causing entry are of the form described in the A3C description (1.1 of this
Chapter).

i.e. SUBR, AJL*ENTERCP
owncode input parameter

segment output parameter.

EXIT FROM A3L

The exit instruction within A3L is effectively

EXITCP, 3
The value of the accumulator upon exit from A3L is significant. The code

is as follows: -

Accurnulator Meaning
0 The second pass has been successfully
completed.
+1 The owncode supplied by A3L is incorrect

(i.e. an error has been found in the syntax
of the owncode). This implies an error in
the systems programs, not in the ALGOL
gource program.

133
(Issue 2)

2,1.5.7

Accumulator Mea,tﬂnE
+2 There is not sufficient room in the main store

for the compiled program. (This may be
corrected by introducing or increasing the
program segmentation.)

+3 The value found by A3L in the core store
pointer BSLF is not that found by A3C when
translating the source code referring to core
gtore own arrays (see Chapter 1. 2.2.2).
This implies an error in the systems programs.

+4 There is not sufficient room between BSLF and
BSMIN for the core store own arrays.
(See Chapter 1.2.2).

TAPES

A tape coded in RAP-binary form is supplied.

ERROR MESSAGES

If a common program specified by the executive for use by A3L

cannot be found in main store, the name of the program will be displayed,

followed by "NOPRCG". This will also occur if A3D is not in main store when
A3L begins the second pass. A3L will then return control to the Executive
with +1 in the accumulator.

1.3 A3D

Code RAP-binary.

Function

A3D consists of the dynamic routines and standard

procedures required by the running ALGOL program.

Store used - 1760 locations.

134
(Issue 2)

2.1.5.7

Method of use

For Operating Instructions, see Chapter 6.

A3D is entered by the Executive when a translated
ALGOL program is to be run. A3D is supplied by the Executive with the
names and entry points of the auxiliary programs it is to use. It requires

the common programs to perform six functions.

(1) To retrieve segments of a segmented program from

backing store and place them in main store.

(2) To input characters from a specified input device.
This is required by read statements and the

procedures "instring" and "advance''.

(3) To output characters to a specified output device.
This is required by print statements and the

procedure "outstring'.

(4) To set a character in the first location of the
lineprinter buffer. This is required by the
procedures '"top of form', "lines(m)", "find(m)"

and "overprint'.

(5) To output a single character of an error message,

when the message cannot be output using (6) below.

(6) To output an error message when an error is
detected in the running ALGOL program. The
message is specified by a number passed to the

program by A3D.

Programs must be specified by the Executive to perform

all six functions as there are no default options in A3D.

135
(Issue 2)

2,1.5.1

EXECUTIVE

&ld} Cﬁ¢1’lﬂL

PROERAM mm‘? :?WHES‘ ASD

oy o REME>

tor Losacrer 1y
Burrgr "N o Lingpg

SINELE
CHARACTER

OF
ERRIR HES/ACE

PROCESS USED

Interface between A3D and Executive

The common programs to be used by A3D are specified
by six consecutive parameter words within the Executive in the same way as
is described in the description of A3C. The programs names and entry

points appear in the order in which their functions are described in

Method of Use above.

Interfaces between A3D and its auxiliary programs

ENTRY

(1) Retrieval of segments.

This program is entered when a segment has to be

retrieved from backing store into main store. The
segment and the position on main store in which it

is to be placed are specified by two consecutive

parameter words within A3D. 5o that the common

136
(Issue 2)

(2)

Lo.145,7

program may access these parameters, A3D on
entry, plants the address of the location preceding
the parameters in the LINKCP of the common

program.
The two parameter words are of the form:-

00 L: N

000 : 00 M
where L is the length of the segment, N is the 19 bit
parameter supplied to A3L when the segment was
copied onto backing store (see A3L description, 1.2)
and M is the starting address of the area in main
store in which the segment is to be placed. Thus,
the segment will occupy locations M to M+L-1 in

main store.

Exit must be made from the common program by the

order EXITCP, 3.

See descriptions of OAST (3.10) and OCBS (3.11).

Data input.

A3D enters this program to obtain one character
from a specified input device. The input device
number will be in the accumulator when entry is

made.

The format of this parameter is the accumulator
is:

00 n: 000
where n is the input device number and will satisfy

1< ng 10.

The character input must be in the least significant
7 bits of the accumulator upon exit. (See

description of CHARIN 3.4).

137
(Issue 2)

2e1.5.7

138
(Issue 2)

(3)

(4)

(5)

Qutput of results.

A3D enters this program to output one character to
a specified output device. The character and the
device number will be in the accumulator when

entry is made. The format will be:-

n:00c
where n is the output device number which will
satisfy 1 < ng 524, 287 and c is the character to

be output, (see description of CHAROUT, 3.5).

Setting a character in the lineprinter buffer.

A3D uses a common program to set a character in
the first location of the lineprinter buffer. This 18
required by the standard procedures 'top of form",
"lines(m)", "find(m)" and "overprint''. The
character will be in the least significant seven bits
of the accumulator upon entry, (see description of

CHAROUT, 3.5).

Error message output, one character at a time.

Certain messages following the detection of an
error in a running ALGOL program will be followed
by diagnostic information that cannot be output using
the method described in (6) below, e.g. the numbers
and array names following the message

"SUBSCR OFLO". This information is output,

one character at a time, to an auxiliary program.
The character will be in the.least significant seven
bits of the accumulator upon entry to the common

program (see the description of CHAROUT, 3.5).

&: 157

(6) Output of an error message specified by a number.

When A3D has detected an error in a running
program, a common program will be entered with
a number in the accumulator. This number
specifies the message to be output. The
correspondence between number and message to be
displayed is listed in the description of CHAROUT,
(3.5). PROCESS USZD, entry point 5.

The action that will be taken by A3D after a coutinuable
error message has been displayed is determined by the value of the

accumulator upon return from the common program.

For details see CHAROUT (3.5), PROCESS USED, entry

point 5.
EXIT

Exit from the common programs is made by the order EXITCP
except in the case of the program which retrieves segments which exits by
the order

EXITCP, 3.

EXIT FROM A3D

The exit instruction within A3D is effectively
EXITCP, 7.

The value of the accumulator upon exit is significant.

139
(Issue 2)

z- la 5.?

Value in Accumulator Meaning
zero The program has run to its conclusion
or a non-continuable error has been
detected.
positive The program is to be re-run. This

occurs when the procedure ""restart"
is called in an ALGOL program.

TAPES
A tape coded in RAP-binary form is supplied.

ERROR messages

If a common program specified by the Executive for use by A3D
cannot be found in mainstore, the name of the program will be displayed
followed by "NOPROG'. This also occurs if the program which is to be
entered using the procedure "entercp' cannot be found. A3D will then return

to the Executive with +0 in the accumulator.

o EXECUTIVE PROGRAMS

2.1 ALGOLB

Code SAC
Function

ALGOLB is the Executive program for the ALGOL system

in an installation with core-backing store (CBS).
Facilities
ALGOLB contains facilities for

(1) Initial storage of the components of the system

(A3C,A3L, A3D and their auxiliary programs) on CBS.

140
(Issue 2)

2o Bl

(2) Supervision of A3C, A3L, A3D: allocation of auxiliary

programs and the detection of error conditions.

(3) Distribution of space on CBS, loading of the
appropriate components of the system into main
store during the two stages of compilation, and,
where necessary, the initialisation and close-down

of auxiliary programs.

(4) Communication between the computer operator and

the system.
Store used - 327 locations, including workspace.

Method of use

There are three phases in the life of an ALGOL program:
Compilation (pass 1), Compilation (pass 2) and Run-time. The system is
arranged so that during any phase only those programs necessary for that
phase are in main store. Before any programs can be compiled the system
has to be created; it has to be decided which facilities are to be included,
(library, edit, listing etc.) and the programs loaded into CBS. Eventually
the system will be overwritten either by the space demands on CBS of a
compiled program or because the computer will be used for purposes other
than the running of ALGOL programs. In order that it should be unnecessary
to re-make the system, it is envisaged that the main store and the appropriate

part of CBS will be written as a batch to magnetic tape.

To run a series of programs, the previously created

batch is read down from magnetic tape and ALGOLB entered (see below).

Core-backing store (CBS) pointers

The first four locations of CBS are used by the system

to indicate the extent of CBS available to the ALGOL system and the current

141
(Issue 2)

2.1.5.7

first-free and last-free locations.

Location Name Content
0 BSFF address of first-free location.
1 BSLF address of last-free location.
2 BSMIN address of first location available to system.
3 BSMAX address of last location available to system.

These pointers are available for use by any auxiliary programs (e.g. OCBS).

The settings of BSMIN and BSMAX define the limits of
CBS for the ALGOL system. It is thus possible to reserve space both at
the bottom and the top of CBS for any use whatsoever outside the ALGOL
system, e.g. by a SAP-program which is used by the compiled ALGOL

program via the entercp procedure (see Chapter 4.8).

Creation of system

Part 1 (i) Read into main store any programs which
are required to be in main store during

both compilation and running of ALGOL

programs .
(ii) Read ALGOLB into main store.

The main store now looks like:-

0 8191
ALGOLB program | Rrap
worksepace
Initial Inutrucm programs input at (i)
Note In general there are no programs in the category

described in (i), thus ALGOLB will usually be the first

program in store.

142
(Issue 2)

Fig.1

2. 1.5.7

ALGOLB and any programs input before it, remain in

main store and are not copied to CBS.

Part 2 This is split into two stages corresponding to

the two passes of compilation.

(a) Stagel

(i)

(ii)

Message from ALGOLB

BSMIN=

BSMAX=

Read into main store the programs needed
for the first pass of compilation, i.e. A3C
and its auxiliary programs [A3C may be

input at any point].
Enter ALGOLB by typing

ALGOLB;?2.

ALGOLB detects that A3C is in store and
checks that A3L and A3D are not present.
It then reads from the typewriter the values

of BSMIN and BSMAX as follows:-
Action

type the address (see below) of the first

location of CBS available to the ALGOL

Bystem.

type the address (see below) of the last
location of CBS available to the system.

[The CBS is supplied in units of 16384 locations, thus

each unit is twice the size of the main store. It is

convenient to consider CBS addresses in terms of mair

store sizes.

The address must be given in the form

X. Y.

143
(Issue 2)

2.1,5.7

where x represents the number of times 8192 can be
divided into the address and y is the remainder.
e.g. if there are four units of CBS attached to the
computer and all of the CBS is available to the ALGOL
system then BSMIN = 0.4.

and BSMAX=7.8191.]

ALGOLB checks BSMIN 2 4
BSMAX 2 BSMIN

and that the address specified for BSMAX exists. If these conditions are

satisfied the backing store pointers are set up (see Fig.2).

M
of | - v High
]
B|B| B|B ' :
s|s|s|s . :
CBS F|lL| MM ' : Fig.2.

F|F|1I A : '

N| X , '

| ¢

>

ALGOLB now copies the section of main store occupied
by A3C and the auxiliary programs to CBS together with RAP pointers (see
below), specifying the current state of the main store, and updates BSFF.

It also notes the position and length of the copy of main store on CBS.

144
(Issue 2)

0 8191
main store ALGOLE B30+ ENEiLEDy workspace| RAP | Fig.3
i prﬂgra:rna
- < 8SLF
o BWNs BSFF BSHAX High
A3C + auxiliar
CBS N y
programs
3
RAP pointers
1
CBS
Pointers
B|B|B|B
S |S|S5]S
FILIM|M
FIF|I | A
N| X

ALGOLB now deletes from main store all the programs

input after it (i.e. A3C, etc.), so that the main store is now as in Fig.l.

Stage 2 of the system is now prepared.
(b) Stage 2

(i) Read into the main store prepared by
stage 1 the programs needed during the
running of an ALGOL program, i.e. A3D
and its auxiliary programs, followed by

A3L and then its auxiliary programs

(naturally programs used by both A3D
and A3L need only be input once if they
are input before A3L).

145
(Issue 2)

2, 1.5: 7

(ii) Enter ALGOLB by typing
ALGOLB;2.

ALGOLB detects that A3C is not present
and checks that both A3D and A3L are in
store. (Though this is the same entry
point as in stage 1 (ii), the effect is
different because A3C is not now in store).
ALGOLEB now copies the section of the
main store occupied by A3D, A3L etc. to
CBS together with the RAP pointers (see
below), specifying the current state of
main store, and updates BSFF. It also
notes the position and length of the copy

of main store on CBS (see Fig.4).

MAN _STORE
o 2141
AZDy A3Lr
rocan| AL6OLB [32 3L | AZD [ASL| conmn weRKsPAce | RAP
L ortadnt PROGRANS
PROCRANS

CoRE BACKING _ STOoRE

0 X H;SL
b | ysers AX A3L A7Ls
B |resened EE oo | A E e LU L RIERIED
AREA gé‘ - 25 Chy o AREA
s by gt
BSHAX

NeTE C.P.r = Cortned PROERATS

ALGOLEB now deletes from main store all the programs
input after it (i.e. A3D, A3L etc.), so that the main store once again appears

as in Fig. 1.

146
(Issue 2)

2.1.5.7

Notes on auxiliary programs

Since the names and entry points of these programs

must be stored within ALGOLB any change of name

or entry point will require an alteration to ALGOLB.

Part 3

The system is now complete and is dumped as a
batch onto magnetic tape. It is only necessary
to dump that part of CBS up to the current value
of BSFF, which includes the main store copies.
The backing store pointers can be examined using
the library program PML (see Section 2.2.3.30
of the Manual).

Note that ALGOLB contains information regarding the

positions and sizes on CBS of the main store copies and the current values of

the backing store pointers.

Therefore, it must not be deleted from store.

In fact should it be corrupted during any of the preceding stages it will be

necessary to restart at Part 1.

Operation of system

Part 1

Input of the system.

The system batch is read down from magnetic
tape. Programs may now be compiled, and it
will not be necessary to re-read the batch
unless so much core-backing store is required
by a running program that the system is over-
written or if ALGOLB is corrupted. The main
store appears as in Fig.1 and the CBS as in

Fig.4.

147
(Issue 2)

2.1.5.7

Part 2

(ii)

Compilation.

To compile a program, ALGOLB is entered by
typing ALGOLB.

followed by a series of letters which denote

the form of compilation required (see ENTRY
POINTS).

First Pass.

ALGOLB resets the backing store pointers (in
case this is not the first program to be compiled)
and copies A3C and its auxiliary programs from
CBS to main store and also resets the RAP
pointers. The main store now appears as in
Fig.3.

Auxiliary programs are initialised if necessary

and control passes to A3C.

Second Pass.

After the first pass, A3C hands control back to
ALGOLB, and if the pass has been error-free
A3D, A3L etc. are copied from CBS and the RAP
pointers reset. The main store now appears as
in Fig.4.

A3L is entered and returns control to ALGOLB
when the second pass is finished. If the
owncode has been loaded correctly, A3L is
deleted (thus any programes in the RAP list
originally input after A3L are also deleted) and

the compiled program is ready to be entered.

Note Compilation may be stopped at any point and

started afresh.

148
(Issue 2)

Part 3

(i)

(ii)

2.1.5.7
Running the compiled program.
Input of binary programs.

In order that a running ALGOL program may be
interrupted at any point and repeated, ALGOLB
notes the current values of a BSLF and main
store last free pointer on the first entry to the
compiled program. This means that any SAP-
binary programs needed by the running ALGOL
program, (as opposed to the auxiliary programe
used by A3D) must be input before the program

ig first entered.

Entry and exit.

To enter the compiled program ALGOLB passes
control to A3D together with the names and entry
points of its auxiliary programs. A3D then
enters the compiled program and control does
not return to ALGOLB until the end of the
program is reached or the program obeys a
restart procedure or a non-continuable error
occurs.

If the program requests a restart, ALGOLB
hands control back to A3D, otherwise control

is finally returned to RAP.

149
(Issue 2)

2.1.5.7

RAP pointers

The state of the main store is indicated by the following
three locations: -
7920 RAP-pointer points to the head of the first

program in the RAP chain
(i.e. last one input).

7925 first-free) indicate the first-free and
7926 last-free) last-free location in store
respectively.

ENTRY POINTS

To create the system type ALGOLB;2. (See CREATION
OF SYSTEM).

To compile an ALGOL program type ALGOLB, followed by a
series of letters. (See Chapter 6.3 for details).

To repeat or restart a compiled ALGOL program type
ALGOLB.R.

Alterations may be made by individual installations to the
Executive and the method of entry to suit thelir particular requirements,
(e.g. for batch processing). To delete a program from store, together with

all programs input after it where NAME is the name of the program, type

ALGOL. B;3.NAME.

MESSAGES

(1) During creation of the system

Mulaga Maa.ning
EXEC Al err Either A3C is in store with A3D

andfor A3L, or A3D and A3L are
not both in store. Restart the
appropriate stage.

150
(Issue 2)

Message

BSMIN=
BSMAX-=

XRANGE

EXEC error BSOFLO

(2) During compilation

Message

NORUN
[A3C exits with
accumulator non-zero]

A3Lerrl

A3Lerr2

A3Lerr3

Al3Lerrd

2.1.5.7

biesing

) the addresses of the first and
) last locations of CBS available

to the ALGOL system are to be
typed.

An incorrect address has been
typed for BSMAX or BSMIN,

i.e. BSMIN <4 or BSMAX<BSMIN
or BSMAX does not exist.

Retype the correct value(s).

BSFF>BSLF. Will occur if there
is not enough room on CBS during
stage 1 or stage 2. Creation of
system will have to be restarted.

Meanin

Syntax errors are present in the
ALGOL text.

Compilation stops and control
returns to RAP.

Error detected in owncode.

Some part of the system is
corrupted, (see A3L description -
EXIT FROM A3L).

Not enough room in main store
to hold the compiled program.
(See A3L description - EXIT
FROM A3L).

Value of BSLF used for own
backing store arrays has been
altered when A3L tests it. (See
A3L description - EXIT FROM A3L

Not enough room on CBS for own
backing store arrays. (See
A3L description - EXIT FROM A3L

151
(Issue 2)

2.1.5.7

Mes sage

FREE STORE (followed
by the freestore limits)

Dwait

EXEC err BSOFLO

EXEC err CBSerr

Meaning

The limits of the main store
available to the compiled program
are displayed.

The compiled program may now

be entered.

ALGOLB enters a sign key loop.
When key 19 of the word generator
is changed ">" is displayed and

the compiled program is entered.
Alternatively, to enter the compiled
program, interrupt and type
ALGOLB.R. (see ENTRY POINTS).

BSFF>BSLF, auxiliary programs
which use CBS have not carried
out their own tests and an overflow
condition has occurred.

BSFF<BSMIN

or BSLF>BSMAX

The backing store is corrupt or the
backing store pointers have been
corrupted.

(3) On entry to ALGOLB to compile a program

Message
RELOAD SYSTEM

(4) At any time

NOPROG (preceded by
a program name)

Meanin

The main store copies on CBS
have been overwritten. The
system batch on magnetic tape
will have to be read down.

The named program is required
by the system but is not in store.

ENTRY TO AUXILIARY PROGRAMS

Since ALGOLB will be input to store before any auxiliary

programs, it is not possible to use the SAP macro COMP to enter auxiliary

152
(Issue 2)

2.1:5:7

programs. ALGOLB therefore, contains a subroutine ENTERCP which
exactly replaces COMP.

Example
To use ENTERCP to enter a SAC program called INTER at

entry point 3 write in ALGOLB the instructions

30 <9INT ER>:00<t 3>
SUBR, ENTERCP

These instructions are equivalent to

COMP,INTER, 3

A3C,A3L and A3D are RAP-binary programs (i.e. not written in symbolic
assembly code). There are specified entries in ENTERCP for these

programs viz:

SUBR, A3C*ENTERCP
SUBR, A3L*ENTERCP
SUBR, A3D*ENTERCP

TAPE

ALGOLB is issued as a SAC mnemconic tape. Individual
installations will have to make their own binary versions. The program, as

issued, is sum-checkable.

2.2 ALGOLM

Code SAC 1

Function

Executive program to control the ALGOL3 systems and

SAC programse in a magnetic tape installation.

153
(Issue 2)

z. 1‘ 5‘ ?
Cnnﬁgura‘ti on

503 + 2 magnetic tape handlers.

TaEe

A tape coded in SAC is supplied; for use with ALGOL3 a
binary tape must be assembled using SAP 1 with keys 35 and 36 depressed to

prevent a checksum being formed.
Store used
360 locations, including workspace.

Method of use

All entries are from the keyboard.

Entry point 1

Type

ALGOLM.n.
(n is C for compiling. CE for edit and compile, etc. - see Chapter 6.3) with

the ALGOL source program tape in reader 1.

Entry point 2

Type
ALGOLM;2.

to make the first free location one greater.

Entry point 3

Type
ALGOLM;3.

to write to magnetic tape that part of the main store above ALGOLM up to, but

154
(Issue 2)

2.1.5.7

excluding the location whose address is in location 7925, (see PROCESS
USED).

Entry point 4

Type
ALGOLM; 4.

to write to magnetic tape that part of the main store above ALGOLM up to,

but excluding the location whose address is in location 7925, (see PROCESS
USED).

Entry point 5

Type
ALGOLM;5. NAME

to delete a program NAME from main store together with all programs input

after it.

Process used

The ALGOL3 system for magnetic tape has been designed
for use with two or three handlers depending on which version of OAST is in
store. If OAST (for 2 handlers) is in store, a DUMP2 or DUMP2M batch

must be at the beginning of the tape on handler 1.

This is because GMT will always look for the last batch
before writing blocks (systems blocks and segments) to handler 1. Owncode
is written to the tape on handler 4. If OAST (for 3 handlers) is in store the
systems blocks and segments are written to handler 5 and owncode to
handler 4. It is suggested that with either version of OAST in store, a batch
is held on magnetic tape consisting of the program GMT (for ALGOL3), OAST
and ALGOLM, assembled in that order. These three programs must be in
main store when the system is created and each time a program is compiled
they must occupy the same locations. For this reason it is advisable to have

the programs on a magnetic tape batch.

155
(Issue 2)

2.1.5. 7

156
(Issue 2)

Creating the system

(1)

(2)

(a)

(d)

(b)

Any programs required in main store during
both compilation and running of ALGOL

programs should be read into store.

GMT (for ALGOL3), OAST and ALGOLM are

read into store in that order.

Type

ALGOLM;2.
to increase by one the address in the first free
location. This is to provide one location in
which GMT will write a block number when
the systems programs are written to magnetic

tape .

Input DUMP2 or DUMP2ZM and dump the main
store as a batch to magnetic tape. Read back
this batch to main store, if the contents of
main store were destroyed when the batch was

dumped.

The programs required for the first pass of
compilation are read into store, i.e. A3C and

its auxiliary programs.

Type

ALGOLM;3.
ALGOLM detects that A3C is in store and that
A3D and A3L are not present. It then writes
three dummy blocks of five words each to

magnetic tape. (If OAST (for 2 handlers) is

2' l‘ EFT

in store the program GMT ensures that these
blocks are written beyond the DUMP2 or
DUMP2ZM batches on handler 1. If OAST

(for 3 handlers) is in store the dummy blocks
are written to handler 5 . The dummy blocks
are written up to avoid trouble should it be
necessary to retreat in reading or writing
from block 4 onwards on handler 1, i.e. in

case OAST (for 2 handlers) is in store.

1f there were no dummy blocks it would be
possible for the handler to retreat into the
DUMP2 batch area in which blocks are not

numbered.

At this stage ALGOLM tests to see whether or
not core-backing store is present and sets a
marker appropriately. If core-backing store
is available the limits (see ALGOLB,
description 2.1, CREATION OF SYSTEM) of
the region available to the ALGOL system are

read from the typewriter and checked.

ALGOLM now writes to tape a 9-word
information block, numbered 4. This contains

the following details:-

00 BLOCK NUMBER : 00 CONTENTS OF CBS MARKER

00 LENGTH OF STAGE 1 : 00 START ADDRESS OF STAGE 1
IN MAIN STORE

00 0 . 00 CONTENTS OF RAPPOINTER(7920)

00 0 : 00 CONTENTS OF RAP FIRST FREE(7925)
00 0 . 00 CONTENTS OF RAP LAST FREE(7926)
00 0 CONTENTS OF CBS FIRST FREE

157
(Issue 2)

I W

158
(Issue 2)

00 0

00 0

00 0
(3 (a)

(b)

CONTENTS OF CBS LAST FREE
CONTENTS OF CBS MIN.
CONTENTS OF CBS MAX.

Stage 1 of the system (the section of main
store above ALGOLM which consists of A3C
and its auxiliary programs) is then written to

magnetic tape as block number 5.

ALGOLM now deletes from main store all the
programs input after it (i.e. A3C,etc.) 8o
that the main store is now as it was when
ALGOLM was read into store.

Programs required during the running of an
ALGOL program are read into store (i.e. A3D
and its auxiliary programs), followed by those
required during the second pass of compilation

(A3L and its auxiliary programs).

Type
ALGOLM;4.
ALGOLM detects that A3C is not present in

store and that both A3D and A3L are in store.

Another 9-word information block containg the
details mentioned in 2(b) above, (but relating
to A3D, A3L,etc.), is written to tape as block
number 6. This is followed by block 7 which
comprises the section of main store above
ALGOLM up to and including the last program
read in, i.e. A3D, A3L and their common
programs. ALGOLM now deletes from main

store all the programs input after it.

2.1.5.7

Operation of system

1. Compilation

To compile a program, type ALGOLM.
followed by a series of letters which specify the

form of compilation required (see section 3 of

chapter 6).

(a) First Pass

ALGOLM first reads from magnetic tape the
information block for stage 1 (i.e. A3C,etc s
The values of first free pointer, last free
pointer, etc. in main store and core-backing
store are then set to the values held in the
information block, i.e. restoring the values
to those that existed before A3C and its
common programs were written to magnetic
tape. The systems block for A3C and its
common programs is then read into store
immediately above ALGOLM. Auxiliary
programs are initialised if necessary and

control passes to A3C.

(b) Second Pass

A3C returns control to ALGOLM and if the
pass has been error-free, the information
block and then the systems block for stage 2
(A3D and A3L) are read from magnetic tape.
A3D, A3L and their common programs now lie
in main store immediately above ALGOLM;

the RAP pointers in main store are reset to

159
(Issue 2)

F 3 P

160
(Issue 2)

Note

the values held in the information block in

the same way as for stage 1.

The core-backing store pointers are not altered.
A3L is entered and returns control to ALGOLM
when the second pass is finished. If the
owncode has been loaded correctly, A3L is
deleted (thus any programs in the RAP list
originally input after A3L are also deleted)

and the compiled program is ready to be entered.

Compilation may be stopped at any point

and started afresh.

(c)

Running the compiled program

(i) Input of binary programs.

In order that a running ALGOL program
may be interrupted at any point and
repeated ALGOLM notes the current
values of BSLF and main store last free
pointers on the first entry to the compiled
program. This means that any SAP-binary
programs needed by the running ALGOL
program (as opposed to the auxiliary
programs used by A3D) must be input
before the compiled ALGOL program is
first entered.

(ii) Entry and Exit.

To enter the compiled program ALGOLM
passes control to A3D together with the
names and entry points of its auxiliary

programs. A3D then enters the compiled

2.1.5.7

program and control does not return to
ALGOLM until the end of the program is
reached or the program obeys a restart
procedure or a non-continuable error

oCCurs.

If the program requests a restart,
ALGOLM hands control back to A3D,
otherwise control is finally returned to

RAP.

RAP pointers

The state of the main store is indicated by the following

three locations:-

7920 RAP pointer points to the head of the first program in

the RAP chain (i.e. last one input).

7925 first-free) indicate the first-free and last-free

7926 last-free) location in store respectively.

)

Error messages

Message Condition and Action
EXEC A3 err (a) A3C is in store with A3D and/or A3L

or (b) A3D and A3L are not both in store.

Restart the appropriate stage.

NORUN There is an error in the source code.

Compilation stops.

AdL errl There is an error in the owncode rétrieved

from magnetic tape.

161
(Issue 2)

2.1.5.7

Message Condition and Action

Some part of the system is corrupt.
No continuation possible (see A3L,

description, EXIT FROM A3L).

A3L err2 There is not enough room in main store to
hold the compiled program. No
continuation is possible.

(See A3L description - EXIT FROM A3L).

A3L err3 The value of backing store last-free location
used for own arrays on CBS is not what A3C
assumed. No continuation is possible,

(see A3L description - EXIT FROM A3L).

A3L err4 There is not enough room in core-backing
store for own arrays. No continuation is
possible, (see A3L description - EXIT
FROM A3L).

XRANGE The limits typed in for BSMIN or BSMAX
are out of range.
Program prints BSMIN or BSMAX again

and waits for new limit.

PROGRAM NAME The named program is required by the

NOPROG system but is not in store.

Entry to auxiliary programs

ALGOLM uses the same method as ALGOLB (see
description), to enter auxiliary programs, although entries to OAST, which
has to be input before ALGOLM in any case, are made in the usual way,
i.e. COMP, OAST.

162
(Issue 2)

2.1.5.,7

3. AUXTILIARY PROGRAMS

3.1 Introduction

The programs whose descriptions follow, are used as
common programs by A3C, A3L, A3D and the Executives ALGOLB and ALGOLM,
(see Chapter 1.2). By modifying these common programs, local versions can
be produced, best suited to the requirements and configuration of a particular
installation. Where appropriate, the descriptions include the format of the
parameters with which A3C, A3L, A3D and the Executives will enter the common

programs and the format of the parameters which are expected to be returned.

The auxiliary programs should be written in SAC1. The
systems programs A3L, A3D, A3C form (using the program names and entry
points supplied by the Executive), the instructions which will enable them to
enter their auxiliary programs directly. To do this, it has been assumed that
the head and trigger list of the auxiliary programs are of the form attached to a

program assembled under SAPI.

3.2 ALP
Code SACI1
Function

Common program to output characters on the lineprinter.

Configuration - 503 + lineprinter.

Tape

A tape coded in SAC is supplied. For use with ALGOL3

a binary tape must be assembled using SAP1 with key 36 depressed.

Size - 208 locations, including workspace.

163
(Issue 2)

2.1.5,7

Method of use

A standard common program entry and exit is made.

Entry point 1

This is the initialisation entry point. The buffer is
cleared and pointers set so that the next character input, though entry point 2
will eventually be output at the beginning of a lineprinter line. The first

location of the buffer is set to give output on a newline. The entry call is:-
COMP, ALP, 1

Contents of the accumulator on entry and exit are undefined.

Entry point 2

COMP, ALP, 2

The character in the accumulator is placed in the next location of the buffer.

On exit the contents of the accurmmulator are undefined.

Entry point 3

COMP, ALP, 3

The character in the accumulator is stored in the first location of the buffer,

i.e. line spacing can be specified for the next line to be output (see

Section 1.4.3 of the Manual).

Output format

The maximum number of characters to a line is 120.
The characters in the buffer are output in accordance with the lineprinter

code (see Section 1.4.3 of the Manual) with the following exceptions:-

164
(Issue 2)

has been set at entry 3.

(1)

(2)

(3)

(4)

2. l‘ 5.?

Newline characters (Decimal 2) will output the buffer.
If the buffer is full and no newline character is
received the buffer is output. When a newline
character is received the characters in the buffer
are shifted so that output is on the right-hand side

of the next line.
Tab character (Decimal 4). Six spaces are output.

Lower case characters (Decimal 97-122). These
characters are all converted to upper case

characters on output.

(Decimal 123-127). These characters are ignored.

Vertical format

Qutput is on the next line unless the first buffer location

Error message

The message:-

ALP error LPErr

is displayed, if the lineprinter becomes unavailable. If the error state is

cleared the run will continue automatically.

3.

3

Code

A.

ALPL

SACI1

Function

Common program to output characters on the

lineprinter.

165
(Issue 2)

2.1,5.7

B. To list on the lineprinter a tape placed in reader 1
until the end of tape is reached or a halt code

character (Decimal 76) is read.

Configuration - 503 + lineprinter.

Tape

A tape coded in SAC is supplied; for use with ALGOL3 a
binary tape must be assembled using SAP1 with key 36 depressed.

Size - 275 locations, including workspace.

Method of use

Function A
A standard common program entry and exit is made.

Entry point 1

This is the initialisation entry. The first location of the

lineprinter buffer is set to give output on a newline. The entry is:-

COMP, ALPL, 1

Contents of the accumulator on entry and exit are undefined.

Entry point 2

COMP, ALPL, 2

The character in the accumulator is placed in the next location of the buffer.

On exit the contents of the accumulator are undefined.

166
(Issue 2)

P)

Entry point 3

COMP, ALPL, 3

The character in the accumulator is stored in the first location of the buffer,
i.e. line spacing can be specified for the next line to be output, (see
503 Manual, 1.4.3).

Function B

Entry point 4

This is the keyboard entry point. Load the tape to be
listed in reader 1 and type
ALPL; 4.

Entry point 5

Type
ALFPL; 5.

to output the contents of the buffer.

Last line output (Common program entries i.e. Entry point 2)

The buffer is output if a newline character (Decimal 2) or
halt code character (Decimal 76) is met. A standard common program exit

is then made.

Last line output (Keyboard entries i.e. Entry point 4)

If key 39 of the word generator is clear when a halt code

character (Decimal 76) is met the program will output the buffer and stop.

If key 39 is depressed, the program will output the buffer

when a halt code is met and then continue to read characters from reader 1.

167
(Issue 2)

2, 1.5.7

Output format

The maximum number of characters to a line is 120.
The maximum number of lines output on each page is 55. As soon as this

number has been output a top of form instruction ie given.

The characters in the buffer are output in accordance
with the lineprinter code, (see Section 1.4.3 of the Manual) with the following

exceptions: -

(1) Newline character (Decimal 2) will output the buffer.
If the buffer is full and no newline character is
received the buffer is output. When a newline
character is received the characters in the buffer
are shifted so that output is at the right-hand side

of the new line.
(2) Tab character (Decimal 4). Six spaces are output.

(3) Upper-case characters (Decimal 33-59).
A vertical bar is output on the next line beneath the

character to be printed.

(4) Vertical bar character (Decimal 62). The next
significant character in the buffer will be overprinted

by a vertical bar.

(5) Halt code character (Decimal 76). The buffer is
output. If entry point 4 has been used the word

generator is read (see above).

6) Underline character (Decimal 126). A minus sign
g
(Decimal 30) is output on the following line under-

neath the appropriate character.

168
(Issue 2)

Z2.1.5.7

(7) Decimal characters 123-125, 127 are ignored.

Vertical format

Output is on the next line unless the first buffer location
has been set at entry 3 or unless 55 lines have been printed on a page. When

this number is reached a top of form instruction is given.

Error message

The message: -
ALPL error LPErr

is displayed if the lineprinter becomes unavailable.

If the error state is cleared the run will continue

automatically.
3.4 CHARIN
Code SACI
Function

To input one character from a specified input device.

CHARIN is used as a common program by A3D.
Store used - 21 locations, including workspace.

Method of use

CHARIN can only be used as a common program and has
one entry point. A parameter specifying the input device to be used must be
in the accumulator when entry is made, (see PROCESS USED for the format

of the parameter). A standard exitis made, i.e. by the order EXITCP.

169
(Issue 2)

Z2ele 8.7

Process used

Entry is made with a parameter of the form

00n:000
in the accumulator. n is a number which specifies the input device to be used
and will satisfy 1& ng 10 when used with ALGOL3. The correspondence

between device number and input device is given below.

n input device used
1 tape reader 1
2 tape reader 2
3 typewriter
4 to 10 tape reader 1

One character is input and this is in the least significant

seven bits of the accumulator when exit is made.

TaEes

A mnemonic SAC tape is provided; a binary version

should be produced using SAP1l. The program is sumcheckable.
3.5 CHAROUT

Code SAC

Function

CHAROUT is used as a common program by A3D. It

has three functions.

(1) To output a character to a specified output device.

(2) To output error messages originating in A3D.

170
(Issue 2)

2.1.5.7

(3) To set a character in the first location of the
lineprinter buffer so that the line on which printing
occurs may be controlled, (see Section 1.4.3 of

the Manual).
Store used - 164 locations, including workspace.

Method of use

CHAROQOUT can only be used ag a common program and

hae six entry points. A standard exit is always made, i.e. by the order EXITCPF

Entry point 1

This is an initialisation entry point, used by the ALGOL
compiler Executive, (see PROCESS USED).

Entry point 2

This is used by A3D to output one character to a
specified output device. A parameter consisting of the character and output
device number will be in the accumulator when entry is made, {aee PROCESS

USED for parameter format).

Entry point 3

This is used by the ALGOL3 Executive when the run of
an ALGOL program has been terminated, (see PROCESS USED).

Entry point 4

This is used by A3D to set a character in the first
location of the lineprinter buffer. The character will be in the accumulator,

when entry is made (see PROCESS USED).

171
(Issue 2)

2.1.5.7

Entry point 5

This is used by A3D to display a single character of an
error message. The character will be in the accumulator when entry is made,

(see PROCESS USED).

Entry point 6

This is used by A3D to display error messages. The
message is specified by a number which will be in the accumulator when entry

is made, (see PROCESS USED).

Process used

Entry point 2

The parameter that will be in the accumulator when entry
is made, is of the form

n: 00 c

where ¢ is the character to be output and n is the number which specifies the
output device to be used. It has the value of the device number parameter
used in the call of the procedure "punch(n)" in the ALGOL program. n will
satisfy 1 < ng 524, 287 (2'® -1). The output device actually associated with
a device number is determined by CHAROUT and for CHAROUT ISSUE 1, the

correspondence is given below.

n device used
1 tape punch 1
2 tape punch 2
3 typewriter
4 lineprinter

5 to 524,287 tape punch 1

CHAROUT uses the program ALP to have characters output on the lineprinter
(see 3.2).

172
(Issue 2)

2.1.5.7

Entry points 1 and 3

The ALGOL3 Executive will enter CHAROUT at entry
point 1 before an ALGOL program is run so that any initialisation required
may be performed. In the case of CHAROUT ISSUE 1 this consists of
initialising the lineprinter program ALP and of clearing a marker. This
marker will be set if a character is output to the lineprinter during the
running of an ALGOL program. CHAROUT is entered at entry point 3 when
the ALGOL program has run to its conclusion or has been terminated by a
non-continuable error message, so that CHAROUT may complete the output
of data to buffered devices. In the case of CHAROUT ISSUE 1, the lineprinter
marker referred to aboveis examined and if set then the lineprinter buffer is

printed.

Entry point 4

A3D uses this entry point when it has to set a special
character in the first location of the lineprinter buffer as a result of a call of
the procedures ""top of form', "lines(m)", "find(m)" or "overprint" in an
ALGOL program. The character will be in the least significant seven bits

of the accumulator when entry is made.

As CHAROUT uses ALP to have characters printed on
the lineprinter, this character is passed to entry point 3 of ALP (see ALP

description, 3.2).

Entry point 5

This entry point is used by A3D to print error messages
which cannot be displayed using entry point 6, e.g. the array name and the
numbers which follow the message "'SUBSCR OFLO'". The message is passed
over to CHAROUT one character at a time. The character is in the least
significant seven bits of the accumulator when entry is made and will be

displayed on the typewriter by CHAROUT ISSUE 1.

173
(Issue 2)

2,1.5.7

Entry point 6

This is used by A3D to display certain error messages.

The message is specified by a number which must be in the accumulator when

entry is made.

follows: -

174
(Issue 2)

The correspondence between number and message is as

number

o D =1 O~ e W B ke

[LURN o6 TR o SR X TR % T TR e B g
N T TR % = S = TR« B« « B Y TN | N - S 7 I o

Message

INT OFLO
SUBSCR OF LO
MS NOROOM

BS NOROOM
FOR MS ARRAY
FOR BS ARRAY
VAC

BOUND ERROR
RANGE ERROR
LOWBOUND ERROR
IOSTRING ERROR
DIV ERROR
ENTIER ERROR
SWITCH ERROR
SQRT ERROR
EXP ERROR
SINE ERROR
LOG ERROR
TAN ERROR
ARCSIN ERROR
STRING ERROR
READ ERROR
PRINT ERROR
BUFFER ERROR

2.1.5.7

number Message
25 LOG ZERO
26 ALLOC
27 MS ARRAY
28 BS ARRAY
29 ERRCALL LP

After a non-continuable error message (see Chapter 5),

A3D will enter CHAROUT to display the name of the last array allocated.

This is done by using CHAROUT entry point 6 to display "ALLOC" and by using

entry point 5 to display the name of the array, one character at a time. When

a continuable error message has been displayed, the state of the accumulator

upon exit from CHAROUT determines the action taken by A3D.

(1) Accumulator zero.

(2) Accumulator negative.

(3) Accumulator positive.

This causes A3D to come
to a "Dwait'". The run of
the ALGOL program may
be continued by changing
the leftmost F2 key (key 19)
of the word generator.

This causes A3D to display
the name of the last array
allocated. This is followed
by a "Dwait". The run of
the ALGOL program may be
continued by changing the
leftmost F2 key (key 19) of
the word generator.

This causes A3D to display
the name of the last array
allocated, after which the
run of the ALGOL program
is terminated.

CHAROUT ISSUE 1 exits with the accumulator zero after

a continuable error message. All messages are displayed on the typewriter.

175
(Issue 2)

2.1.5.7

Ta.Ees

A mnemonic tape in SAC1 is supplied. For use with

ALGOLS3 a binary tape must be assembled using SAP1. The program is

sum-checkable.
3.6 GMT (for ALGOL3)
Code SACI1
Function

The program enables blocks to be written to and read

from any specified magnetic tape handler.

Configuration - 503 + Magnetic Tape Handler(s)

TaEe

A tape coded in SAC is supplied. For use on ALGOL3
a binary tape must be assembled using SAP1 with keys 35 and 36 depressed

to prevent the checksum being formed.

Size - 308 locations, including workspace.

Method of use

Entry poi.nt 1

COMP, GMT

This is the initialisation entry point and needs to be entered for each handler
used; the handler number must be in the accumulator on entry. Exit is by

EXITCP, 1.

176
(Issue 2)

2. 1.5: 7

Entry point 2

COMP, GMT, 2

This is the entry for writing to magnetic tape. The handler number must be
in the accumulator on entry and the call must be followed by one parameter

word containing the following information:-
00 length of block : 00 start address in main store for transfer.

As the address of the location preceding the parameter
is planted in the LINKCP of GMT when the common program entry is made,
GMT is able to access the parameters : GMT will eventually exit to the second

location after the address in the LINKCP, i.e. by the order EXITCP, 2.

On exit the number of the last block written to magnetic

tape is in the least significant 19 bits of the accumulator.

Entry point 3

COMP,GMT, 3

This is used for reading and must be given the handler number in the
accumulator and two parameter words must immediately follow the common

program entry:-

parameter 1) 00 length of block : 00 start address in main store for transfer

parameter 2) 00 0 : block number

Exit is by the order EXITCP, 3.

Entr}r pnint 4

COMP,GMT, 4

This entry is used by ALGOL3 (program OAST), to set the segment block
numbering to start from 8 each time a program is compiled. The contents

of the accumulator are undefined on entry and exit.

177
(Issue 2)

«e 1, 5.7

Entry point 5

COMP,GMT, 5

This entry is used by the program LIBR2. There are certain magnetic tape
instructions in LIBR2 so that when it calls GMT to write a block, itis first
necessary to set correctly, the GMT identifiers for block numbering

("last block + n'" which holds the value of the last block read on handler n-1
and "blockmax + n'" which holds the value of the greatest block number
written to handler n-1). On entry, the accumulator holds a value which is
written into "blockmax + 3" and 'last block +3'". Exit is by the order
EXITCP, 1.

Entry point 6

COMP,GMT, 6

This entry is used by ALGOL3 (program LIBR1)to read a block from the
current position of the read head on magnetic tape. The handler number must
be in the accumulator on entry and one parameter word must immediately

follow the commmon program call: -

00 length of block : 00 start address in main store for transfer.
Format

The first word of each block written contains the block
number. This is written in by the routine and is put in the more significant

half of the first word.
Blocks are read and written using odd parity, format 2.

Writing and reading may be alternated on any one or more

handlers.

Process

The routine divides into three different sections. These

178
(Issue 2)

are

(i)
(1i)
(iii)

2.1.5.7

An initialisation section.

Writing onto tape.

Reading from tape.

(i)

(i)

(iii)

The initialisation section must be entered before any other

entry, to set markers and check the state of the handler.

The writing section writes given blocks to tape, first
checking the state of the handler. It checks that the
block is of a suitable length, i.e. >4 locations and then
writes onto tape a block following the last one written.
1f the handler is 1 and is at the beginning of tape, the
routine searches for the last block of the last DUMP2
or DUMP2M batch. This block is five words long with
the word "LAST" in the first location. When this block

is found, the routine proceeds to write blocks to magnetic

tape. Blocks are numbered consecutively beginning at 1.

The parity bit of the control word is checked after writing
and during the search for the last block. If set, the
position of the block just written is found by, retreating
to the block before the one now being written, (unless at
the beginning of tape) and advancing to its end. Part of
the tape is then erased and writing takes place again.
After ten attempts to write an error message is output.
An error message is also output when the end of tape

marker is reached.

This section reads a block from tape. It checks that the
block number required is within the range of blocks already
written onto tape, and also the state of the handler is

checked. If no blocks have been written to tape, then no

checks are made on the block number range. If the

179
(Issue 2)

2.1.5.7

handler is 1 and is at the beginning of tape, the routine
searches for the last block of the last DUMP2 or DUMP2ZM
batch. This block is five words long with the word "LAST"
in the first location. When this block is found the routine
proceeds to read the required block. The block number

is compared with the position of the tape and the
appropriate position aimed for by retreating or advancing.
A block is then read, and its number checked with the one
required. If this is not correct, the appropriate retreats
are given or the next block read.

When the correct block number is found, if the parity bit

is set on reading, retreats are made and the block read
again. After three attempts an error message is output.
If the parity bit is not set on reading, a short or long block
is checked for. If there is a noise block on error message
is output and the next block read. If there is an ordinary
short block, ten attempts are made at reading and then an
error message output. On detecting a long block an error

message is output.

Error messages

Message Meaning and effect

GMT error MAN H 'n' The required handler 'n' is in
Manual or has no write permit ring.
The program continues when this
is corrected.

GMT error H EOT End of tape is reached. No
continuation is possible.

GMT error BL TS The block length given for writing
is too short, i.e. <4 location.
No continuation is possible.

180
(Issue 2)

Mes gage
GMT error CANTW

GMT error CANTR

GMT error NOISE

GMT error LTH ER

GMT error SHORT

GMT error BLNOTL

3.7 INTER

Code SACI1

Function

201.5.7

Meaning and effect

Handler unable to write.
No continuation is possible.

Handler unable to read.
No continuation is possible.

Noise block encountered.
Program continues.

Long or short block with no parity
error found on reading.

Displayed when a short block
which is not a noise block is
encountered on reading.
Program continues.

Block number too large, i.e. out
of range. No continuation possible.

INTER is used as a common program to supply A3C either

directly or via LIBR1 with ALGOL source code. It will obtain source code

either from tape reader 1 or from EDIT8 when the editing facility is required

(see Chapter 1.3) and will send it to the lineprinter program ALPL when the

listing facility is required, (see Chapter 1.3).

It is also used by A3C to display syntactic error messages

on the lineprinter.

181
(Issue 2)

2i1.5.7
Ta.Ee

A tape coded in SACI1 is supplied; for use with ALGOL3

a binary version should be produced. The program is sum-checkable.
Store used - 44 locations, including workspace.

Method of use

Entry point 1

COMP, INTER 1.

This entry is used for initialising the markers used for the output of error
messages and characters to the lineprinter. The common programs ALPL
and EDIT8 are also initialised; these are required for certain facilities.

(See other entry points).

Entry point 2

COMP, INTER 2.

This entry is used to read a character from reader 1 which is then held in the
accumulator on exit. The character read is also passed to the program ALPL

(entry point 2) for output on the lineprinter.
This entry gives the compile and print facility.

Entry point 3

COMP, INTER 3.

This entry is used to obtain a character from the program EDIT8 (input from
reader 1 or reader 2). The character is in the accumulator on exit. The
character is also passed to the program ALPL for output on the lineprinter.

This entry gives the edit, compile and print facility.

182
(Issue 2)

2.1.5.7

Entry point 4

COMP, INTER, 4.

This entry is used to obtain a character from the program EDITS. The
character is in the accumulator on exit. This entry gives the edit and compile
facility. If, however, a marker is negative indicating that the error output
entry has been used (entry point 5), and 31 characters following the error

have not yet been displayed, the character will also be passed to ALPL to

be displayed on the lineprinter.

Entry point 5

COMP, INTER, 5.

This entry is used by A3C when a syntactic error has been discovered in the

ALGOL source program. The message
* error No. n

will be passed, character by character, to INTER at this entry point, where
it will be displayed on the lineprinter using ALPL (entry point 2). A marker
is set which will cause 31 characters of the ALGOL source code to be sent to
the lineprinter if entry point 4 of INTER is being used to supply source code.
If A3C's default option for the supply of source code (see Chapter 7.1. 1) is
being used, then A3C will itself send 31 characters to this entry point for

display.
On entry the character to be displayed is in the accumulator

Entry point 6

COMP, INTER, 6.

This is the entry point used by the Executive at the end of the first pass of
compilation to ensure that the final contents of the lineprinter buffer are

output if necessary.

183
(Issue 2)

2.1.5.7

Entry point 7

COMP, INTER, 7.

This is the entry point used by the program LIBR1 during the first pass when
a syntactic error has been discovered by A3C in the ALGOL source program.

The message
* grror no. N

which was passed to LIBR1 by A3C, will be passed, character by character,
to INTER (entry point 7) where it will be passed on to ALPL (entry point 2)
for display on the lineprinter. If the error was in a library text the

mesgsgage

* in mt text

will also be sent to INTER (entry point 7) to be displayed. The following 31
characters of the ALGOL source code (from papertape or magnetic tape) are

then passed to INTER by LIBRI1 for output by ALPL.

A standard exit is made from all entry points, i.e. by

the order EXITCP.

3.8 LIBR1

Code SACI1

Function

To pass characters of the ALGOL source program to A3C
and to provide a facility for accessing a library of ALGOL texts held in

character form on a magnetic tape.

Configuration - 503 + 1 magnetic tape handler.

184
(Issue 2)

2.1.5.7

Tape

A tape coded in SACI1 is supplied. For use with ALGOL3
a binary tape must be assembled using SAP1 with keys 35 and 36 depressed to

prevent a checksum being formed.

Size - 513 locations, including workspace.

Entry points

Entry point 1

This is the initialisation entry, made from the Executive

ueing its subroutine, "ENTERCP" (see ALGOLB description, 2.1).

The contents of the accumulator are undefined on entry

and exit. A standard exit is made, i.e. by the order EXITCP.

Entry paint 2

This is the entry point used by A3C to obtain characters
of the ALGOL source program. It will be entered when the program is to be
compiled using the library facility. Characters will be read from reader 1

directly or from magnetic tape.

On exit from LIBR1 (which is made by the order EXITCP)

one character will be in the accumulator.

Entry point 3

This is the entry point used by A3C to obtain characters
of the ALGOL source program, when the editing and listing facilities are
required. On exit from LIBRI1 (which is made by the order EXITCP) one

character will be in the accumulator.

185
(Issue 2)

2, 1.5, 7

Entry point 4

This is the entry point used by A3C to obtain characters
of the ALGOL source program when the listing and library facilities are
~equired. On exit from LIBR1 (which is made by the order EXITCP) one

character will be in the accumulator.

Entry point 5

This is the entry point used by A3C to obtain characters
of the ALGOL source program when the editing, listing and library facilities
are required. On exit from LIBRI1 (which is made by the order EXITCP) one

character will be in the accumulator.

Entry point 6

This is the entry point used by A3C if it discovers a

syntactic error in the ALGOL source code. The message
¥ error no. n

is passed over character by character and sent on to INTER (entry point 7),
for output by ALPL on the lineprinter. A marker is also set to ensure that

31 charactexss of source code are subsequently passed to INTER.
Process

Unless the editing or listing facility is teing used, LIBRI1
reads characters from reader 1 and passes the characters on to the compiler

urtil the basic word library is read.

Example library A,B, C;

In the example, LIBR1 will retrieve from magnetic tape
(handler 7) library texts A, B and C (previously written up by LIBR2) and any

auxiliary texts these may use. All these texts will then be passed on to the

186
[Issue 2)

2.1.5.7

compiler, one character at a time, in the order that the texts were written on
the tape. When all the texts have been read, LIBRI] returns to obtain its
characters from reader 1. However, when the editing facility is used, LIBkl
does not use reader 1 but obtains characters from the common program INTER,

which uses EDITS8 to provide it with the edited character stream.

When the listing facility is used, LIBRI1 enters the
program INTER which will send the character to ALPL to be listed on the

lineprinter (see 3.3 of this chapter) as well as passing characters to LIBRI.

Because of the order in which the common programs used
by INTER are called (see Chapter 1, Section 3), it is not possible to edit the
text held on magnetic tape or to list it * on the lineprinter. Installations
requiring these facilities must modify the order in which the source code is

edited, listed and read from magnetic tape.

* The code held on magnetic tape is only listed if a syntatic error is discovered
by A3C, in which case the 31 characters of the ALGOL source code (from
papertape or magnetic tape) following the error are output on the lineprinter.

If the error was in a text on magnetic tape the message

¥ error no. n
is followed by

in mt text.

Error messages

Meuage Condition and action
LIBR1 error STRING An incorrect character has been

met in the library statement
(see Chapter 4.11.1). No
continuation is possible.

LIBR1 error NOTEXT No text associated with the name
given in the library statement has
been found on the library tape.
No continuation is possible.

187
(Issue 2)

2.1,5.7

Message Condition and action
LIBR1] error LIMIT The limit of 30 texts called

directly or indirectly in one
library statement has been
reached. No continuation is
possible.

3.9 Program name LIBR2Z

Function

To prepare a library of texts held in character form on

one magnetic tape for use with the program LIBR1

Configuration - 503 + magnetic tape handlers.

Tape

A tape coded in SAC1 is supplied.

A binary tape should be assembled using SAP1 with keys

35 and 36 depressed to prevent a checksum being formed.

Size - 481 locations, including workspace.

Entry points

All entries are from the keyboard.

Entry point 1

Type
LIBR2.
for the first entry point. The program reads the following information from
reader 1:-
188

(Issue 2)

2.1.5,7

(a) names of library texts

(b) code of each text

(for format of names and texts, on the paper tape, see Chapter 4.11).

Entry point 2

Type
LIBRZ;2.
to prepare a new tape for storing library texts. This entry writes a new

dictionary block onto the magnetic tape.

Entry point 3

Type
LIBR2;3.

to obtain a list of names of all texts present on the library tape (handler 7).
Process

Two handlers and tapes are required. A scratch tape
on handler 4 is used to sort the texts, and the tape on handler 7 permanently

holds the dictionary block and texts.

Form of storage on magnetic tape

The beginning of the magnetic tape on handler 7 contains

a dictionary of the form:-

00 0 3 00 N
Al

Sl

sl 82 83

s4 85 86
A2

S2
etc.

189
(Issue 2)

2.1.5.7

All the blocks written to tape are of 50 words length.

The first word of the first dictionary contains N, the

number of library texts on the tape.

The second word now contains Al, the name of a library

text.

The third word contains the block number S1, of the first
block of the text of Al. The next two words then contain three packed block
numbers each, sl to sb, these being the first block numbers of the auxiliary

texts.

This pattern from the second word is then repeated until
the block has 12 main texts specified. When more texts are added another
dictionary block of 50 words will be written, followed by the new texts and so
on until the limit is reached which is decided by the end of tape marker being

reached when writing a block, or the last block nurmber exceeding 8191.

Following the dictionary there will be blocks containing
the code of the texts. Each text will be packed into 50 word blocks (5 chars/word)

and when the end of a text is reached a@code is written in the final block.

After the last text, a block of less than 50 words is

written, so that this position may be easily detected when adding another text.

The block numbering system is only used with the text
blocks, that is, block number one is the first block of the first library text on
tape. The block number of each block is contained in the F'1 and N1 positions

of the first word, and all the dictionary blocks have zeros in these positions.

(See Chapter 4.11 for format of texts as presented to

LIBRZ for storage on magnetic tape.)

190
(Issue 2)

Effective overwriting of a routine

2,1. 5.7

A text is automatically cancelled from the dictionary when

another text is written having the same name.

This will be done by changing

the block number in the dictionary to point to the latest text instead of the

earlier one and then replacing the block numbers of the auxiliary text in the

dictionary.

no means of reaching it.

tape.

Typed
Step Instruction

2 LIBR2;2.

3 LIBRZ.

4 LIBR2Z;3.

Restrictions

The original text will then remain on the tape but there will be

A maximum of 8191 blocks may be written on the library

Operating instructions

Message output
by Typewriter

END

MAX BLOCKNO=n
END

list of names of the
texts on the library
tape

END

Lape tn

reader 1

names
and texts

Seiaris

Scratch tape on
handler 4.
Library tape on
handler 7.

New library
tape prepared.

n = the number
of blocks now
held on the
library tape.

191
(Issue 2)

2.1.5.7

Error messages

Message

H4MAN

H7TMAN

Condition and Action

Handler 4 is in Manual or has no write
permit ring. The program continues
when the error is corrected.

Handler 7 is in Manual or has no write
permit ring. The program continues
when the error is corrected.

too many names More than six auxiliary texts have been

XNAME

RFP

192
(Issue 2)

OAST

Code

named in one list. The program
continues but the texts associated with
this particular list may be incorrect
and should be replaced.

An incorrect character has been found
in the list of names or code of a text.
Mo continuation is possible.

A parity error has been found on
magnetic tape when the handler was
trying to read. The program tries to
read the same block again.

A parity error has been found on
magnetic tape when the handler was
trying to write. The program tries
to write the same block again.

SACI1

Functions

A.

B
C.
D

QOutputs blocks of owncode to magnetic tape.
Inputs blocks of owncode from magnetic tape.
Outputs segments to magnetic tape.

Inputs segments from magnetic tape.

2.1.5.7

Configuration - 503 + two magnetic tape handlers.

T ape

A tape coded in SAC is supplied; for use in ALGOL3 a
binary tape must be assembled using SAP1 with keys 35 and 36 depressed to

prevent the checksum being formed.

Special Note Two versions of OAST are available: -

(a) AST (FOR 2 HANDLERS)
(b) OAST (FOR 3 HANDLERS).

With version (a) only two handlers need to be used for
the ALGOL3 system. The tape on handler 1 will contain DUMP2Z or DUMPZM
batches at the beginning of the tape, followed by the systems blocks
containing A3C, A3L and A3D with their auxiliary programs (see Chapter 1.2.3)
after which the segments of a segmented program will be placed. The tape on

handler 4 will hold the owncode passed to OAST by A3C.

With version (b) three tape handlers are required.
Handler 1 for the main store batch contains the Executive, ALGOLM,

handler 4 for the owncode and handler 5 for the systems blocks and segments.

Method of use by ALGOL3

A. Entry point 1

The Executive uses this entry point to initialise
OAST for owncode output. It is used immediately before the first pass of

compilation of an ALGOL program begins.

The contents of the accumulator on entry and exit

are undefined.

193
(Issue 2)

2. 1a 8,7

Entry point 2

A3C uses this entry point to pass owncode to OAST.
The owncode is written to magnetic tape in blocks of 65 words. The

accumulator on entry contains 39 bits of owncode and on exit is undefined.

Entry point 3

Since OAST does not know when it has received all
the owncode, this entry point is used by the Executive, ALGOLM, when the
first pass of compilation has been completed. OAST writes its buffer
containing the final owncode to magnetic tape as a 65-word block; on entry the

contents of the accumulator are undefined, but on exit the accumulator holds

00m :n
where m is the number of words containing owncode in this final block and n is

its block number.

B. Entry point 4

ALGOLM uses this entry point to initialise OAST
for owncode input. Itis used immediately before the second pass of

compilation begins. On entry the accumulator holds:-
00 m : n (see entry point 3)

on exit the contents of the accumulator are undefined.

Entry point 5

A3L uses this entry point to obtain owncode which is
read back from magnetic tape. On entry the contents of the accumulator are

undefined: on exit the accumulator contains 39 bits of owncode.

194
(Issue 2)

2.1.5.7

C. Entry point 6

The Executive (ALGOLM) uses this entry point to
initialise OAST for segment input and for segment output. The contents of

the accumulator are undefined on entry and exit.

Entry point 7

This is the entry used by the Executive (ALGOLM)

and the loading program (A3L) to write blocks to magnetic tape. The entry is:-

COMP, OAST, 7

The accumulator on entry contains the parameter 00 a : 00 b where a is the
length of the block and b the main store address of the start of the block. On
exit the least significant 19 bits of the accumulator contain the number of the

block just written away on magnetic tape.

D. Entry point 8

This entry is used by the Executive (ALGOLM) and

the dynamic routines (A3D) to read blocks from magnetic tape. The entry is:-

COMP, OAST, 8
parameter 1) 00 p : q
parameter 2) 000 : 00 r

p is the length of the block to be read
q is the block number on magnetic tape

r is the main store address of the start of the block to be read.

On exit, the accumulator contains the main store

start address of the block.

Entry point 9

This entry is used by the Executive program

(ALGOLM) to set the block numbering for segments on magnetic tape to

195
(Issue 2)

2, 1. 5.7
start from 8. It is used immediately before the start of the second pass of

compilation. Accumulator contents are undefined on entry and exit.

Process

Output of owncode

OAST receives 39 bits of owncode at a time from the

compiler (A3C) and fills a 65-word buffer with the owncode. When full the

buffer is written to magnetic tape (handler 4) using the program GMT

(for ALGOL3).

Input of owncode

The blocks of owncode on magnetic tape (handler 4) are

read down into a buffer using the program GMT (for ALGOL3). The owncode

in the buffer is passed to A3L, commencing with the last 39 bits received
from A3C, since the owncode must be passed to A3L in the opposite order to

which it was received. When the buffer is empty anoth: r block is read from

magnetic tape.

Qutput of segments

Segments or blocks of code are written to magnetic tape

(handler 1 or 5) using the program GMT (for ALGOL3).

Input of segments

Blocks written to magnetic tape by GMT (for ALGOL3)

are read down as specified by the parameters.
Store used

OAST uses 179 locations, including workspace.

196
(Issue 2)

240 5:7

Error messages

Message Cause and Action
OAST error NOMOQC A3L has entered OAST to obtain

owncode when all the owncode sent
up by A3C has been retrieved.
MNon-continuable error.

3.1 OCBS

Code SACI

Functions

QOutputs owncode to backing store
Inputs owncode from backing store

QOutputs segments to backing store

U ow»

Inputs segments from backing store.

Configuration - 503 + core-backing store.

Tape

A tape coded in SAC1 is supplied. For use with ALGOL3
a binary tape must be assembled using SAP with key 36 depressed. The

program is sum-checkable.

Entry points used by ALGOL3

Entry point | - not used.

Entry point 2

The compiler (A3C) enters OCBS with 39 bits of owncode
in the accumulator which are written to the first-free location of backing store.

The accumulator is undefined on exit.

197
(Issue 2)

2.1.5.7

The exit order is
EXITCP, 1.

Entry point 3

A3L enters OCBS to obtain owncode. 39 bits of owncode
are retrieved from backing store and are in the accumulator on exit. The

exit order is

EXITCP, 1.

Entry point 4

A3L enters OCBS to have a segment written to core-

backing store with the following parameter in the accumulator:-
00 segment length : 00 start address of segment in main store.

On exit the start address of the segment on core-backing store is in the

accumulator. The exit order is

EXITCP, 1.

Entry point 5

A3D enters OCBS here to have a segment retrieved from
core-backing store and placed in main store. A3D plants the address of the
location containing its entry instruction to OCBS in the LINK CP of OCBS.
Immediately following this entry instruction are two parameters specifying

the segment required. The format is:-

parameter 1) 00 segment length : start address of segment in CBS

parameter 2) 00 : 0 : start address of segment in main store.
The accumulator is undefined on exit, which is made by

the order

EXITCP, 3.

198
(Issue 2)

2- 1- 5.?

Process

Location 0 and 1 of backing store are used to hold the
address of first-free and last-free location respectively on backing store.
In writing owncode and segments to core-backing store the contents of locations
0 and 1 are checked each time. When first-free is equal to last-free an error

message is displayed.

Owncode is written to backing store starting from the
first-free location and working towards a higher location. On retrieval the
first 39 bits of owncode passed over to A3L are those in the (current first-free -1)
location i.e. the last location filled. As each 39 bits of owncode are read the
backing store first-free location is reduced by 1. Segments are written to
backing store starting from location last-free - n, where n is the length of the
segment - 1. Writing and retrieval of segments is by a block A.D.T. transfer.

Owncode is written and read using single word transfers.

Error message

The message
OCBS error BS full

is displayed when backing store first-free is equal to last-free.

Store used - 74 locations, including workspace.

3.:12 ERINT

Code SACI

Function

This program is used in conjunction with the procedures
"noflo" and "oflo'" available in ALGOL3 ISSUE 2 (see Chapter 5). It enables

the run of an ALGOL program to be continued when a floating-point overflow

199
(Issue 2)

2. 1.5.7

is generated. If the procedure "noflo" is currently active in the ALGOL
program, no message will be displayed. If the procedure ""oflo" is called,
the message

ERINT 1

Dwait
will be displayed, after which, the program may be continued. In both cases
the value (1-2-%9)x 2°%° is taken as the result of the operation which generated

the error interrupt.
Store used - 73 locations, including workspace.

Method of use

ERINT is written as a SAC common program. When
used with ALGOL3 ISS5UE 2, this program need only be in store when the
ALGOL program is running, so that it could be input immediately after the
display of "Dwait" at the end of compilation of the ALGOL program. However,
it may be input with the common programs used by A3D or before the ALGOL?3

Executive (see Chapter 6, Operating Instructions).
There are two entry points: -

Entrv:,r point 1

This is an initialisation entry used by A3D. It modifies
RAP or RAPMT and the program head of ERINT (see PROCESS USED).

Exit is made by the order

EXITCP.

Entry point 2

This is the point at which RAP or RAPMT enters ERINT
when an error interrupt is generated. Unless the interrupt has been caused

by a floating-point overflow ERINT will return control to RAP. 1If there has

200
(Issue 2)

2.1.5.7

beea a floating-point overflow, ERINT will cause the program to continue with

or without an error message (see PROCESS USED).

Process used

Entry point 1

A3D will search main store for the program ERINT as
soon as the run of an ALGOL program is started, and if it finds it, A3D will
enter ERINT at entry point 1. Here ERINT modifies RAP so that RAP will
enter ERINT as soon as an error interrupt is detected. Since this entry has
to be made to the second entry point of ERINT, the main entry instruction in
the program head of ERINT is also modified so that it contains a jump to the

second entry point.

Entry point 2

When an error interrupt is detected, RAP will enter
ERINT at the main entry point (in the program head) which will have been
modified to cause a jump to the second entry point of ERINT. Here the error
interrupt locations are examined (see Sections 1.2.3, 1.2.4 and 1.2.5 of the
Manual) to ensure that the error interrupt was caused by a floating-point
overflow. ERINT also searches through the list of programs in main store

to ensure A3D is in store.

If either of these conditions is not satisfied, ERINT
returns control to RAP which will display the error message (for the format
of the error message see Note below). However, if both are satisfied, ERINT
will examine a marker in A3D which is set when the procedure ''noflo'" is

active. If this marker is not set then the message

ERINTI1
Dwait

is displayed.

201
(Issue 2)

2.1.5.7
The ALGOL program may then be continued if the leftmost

F2 key (key 19) of the word generator is changed.

If the marker is set, i.e. '""noflo" has been called, then

no error message will be displayed and the ALGOL program will be continued.

Exit is made from ERINT using the 66 instruction (see
Section 1.2.4). Upon continuation the overflow register and Auxiliary Register
have the values they had when the floating-point overflow was generated and
(1-2729) x 2°®° (i.e. the largest positive number the 503 can hold), is taken

as the result of the operation that caused the error.

Tapes

A mnemonic tape coded in SAC is supplied. For use
with ALGOL3, a binary tape must be produced using SAFl. The program

is sum-checkable.

Note Once entry point 1 of ERINT has been used, RAP

will remain in the modified form, unless it is
re-input from paper tape. However, unless a
program called ERINT is in store, RAP or
RAPMT may be used in the normal manner, except
that should an error interrupt be generated, the

format of the message displayed will be:-

ERINTm
(where m is the number of the error interrupt)
instead of

ERRINT m

after which RAP will come to a typewriter demand.

The symbol '">'"" (see 2.2.1.4 of the 503 Manual) will
not be displayed by this modified version of RAP or

RAPMT when entry to a program has been made.

202
(Issue 2)

2.1.5. 7,

3.13 CBIT

Code RAP-binary.

Function

To make it possible to read in several binary programs

on the same paper tape, by typing IN. once.

TaEe

A RAP-binary tape is provided.

Method of use

CBIT is in two parts, CBITA and CBITB. To prepare a
set of binary programs for continuous input, copy the following tapes onto a

single reel of paper tape:-

(1) CBITA
(2) All binary programs to be input
(3) CBITB

Any characters on a tape not normally read (e.g. the
final character '80' on a RAP-binary tape) should be removed when the tapes
are connected together. A small section (2 or 3 inches), should be leit

between the separate programs.

Operating instructions

Tape in Reader 1 Typed Instruction Displayed
Message
Combined binary tape IN. *CBITA

NAME of PROGI
NAME of PROG2

etc.
*CBITB

203
(Issue 2)

2.1,5, 7

Errors

(1) If for some reason, a CBIT combined binary tape
is not completely read in (e.g. if the operator
decides it is the wrong tape, or the tape tears),
then an error state is caused in RAP. Instead of
outputting '?' after a Manual interrupt RAP will

output the symbol v

(2) When RAP (or RAPMT) is in the above error state,
and the operator reads in a normal binary program
tape, the program name will be displayed on the
typewriter as usual, but control passes to the RAP
input routine, instead of the RAP typewriter
demand. This will not cause an error, but will be
inconvenient for the operator, because he will need

to press message interrupt to regain control.

(3) To correct the RAP error state either:-

(a) Input another CBIT combined binary tape
completely. (Note that CBITA or CBITB

can be input any number of times).

(b) Input a copy of CBITB attached to the end of
a combined binary tape, or a separate copy

of CBITB.

(b) Re-input RAP.

(4) If any one of the binary tapes fails to read in
correctly, because of a misread, '*' will be
displayed as usual and there will be a RAP demand.
The complete tape should be read in again after the
programs just read in have been cancelled or
'RESET' has been typed.

204
(Issue 2)

2.1.5. 1

(5) If any of the following errors occur, NOROOM,
ERRSUM or NOPROG, then in place of the usual
message, '*' will be displayed. This will be
followed by a RAP demand.

Process used

CBITA and CBITB are made up of RAP action words
which change RAP. CBITA changes RAP to allow continuous input of binary
programs, and CBITB restores RAP to its original form. Neither CBITA

nor CBITB occupies space in store and do not appear on the RAP list.

Versions of RAP

CBIT can be used on RAP (Issue 2) and RAPMT.

205
(Issue 2)

Z.1.5.
Appendix 1: ALGOL3 FOR INSTALLATIONS WITHOUT A LINEPRINTER

1. INTRODUCTION

ALGOL3 is designed to use the lineprinter in three ways:-

(i) To list the compiling ALGOL program if required.
(ii) To list syntactic errors in the ALGOL source program.
(iii) To output the results of the running ALGOL program when

the appropriate device setting procedure is called.

For this reason, the Executive and the auxiliary programs
INTER and CHAROUT contain instructions referring to the lineprinter
programs ALP and ALPL.

Modified versions of ALGOLB, ALGOLM,INTER and

CHAROQOUT are available for installations which do not have a lineprinter.

2 ALGOLB and ALGOLM (No lineprinter)

The difference between these versions and those described in
Chapter 7.2 is that a demand for the listing facility at compile time will be
ignored. The other facilities asked for are executed.
e.g. ALGOLB,CELP. is equivalent to
ALGOLB. CEL.

3. CHAROUT (No lineprinter)

The differences between this version and that described in

Chapter 7.3.5 are: -

(i) If the output device number received at entry point 2 is
greater than 3, tape punch 1 will be used. This means
that a call of "punch(4)" or "lineprinter" in the ALGOL

source program is equivalent to a call of "punch(1)".

Appendix |
1
(Issue 2)

2.1.5

(ii) The initialisation of ALP and the entry to ALP to output
the final contents of the lineprinter buffer have been

removed.

(iii) An immediate exit is made from entry point 4 of CHAROUT.
This means that calls of the procedures "top of form",

"lines(m)", "overprint" and "find(m)'" have no effect.

4. INTER (No lineprinter)

The differences between this version and that described in

Chapter 7.3.8 are:-

(i) ALPL is not initialised and not entered at the end of the

first pass of compilation.

(ii) The entry to ALPL to list the compiling ALGOL source
code has been removed (see Entry point 2 and Entry

point 3 of INTER).

(iii) Syntactic error messages are displayed on the typewriter
not the lineprinter. The message will be followed by 31

characters of the ALGOL source code.

Appendix 1
2
(Issue 2)

