Vi
b i
NG

i

Il B E I v
1 oy r....__P...nT..J_.r...u
" ﬂr1ﬂdv.fﬂﬂ.mxﬁ§_; AP

T

INTRODUCTION

This volume is intended to provide the programmer
with all the information necessary to write programs for
the 503. For a full account of the electronics, registers
and similar facilities, the interested reader is referred
to Volume 4 of the Manual, Certain operating instructions
are included in this Volume, but Volume 3 of the Manual
is intended for the operator of the computer.,

The programmer or systems analyst using the 303
has available to him, in addition to the hardware of the
machine itself, a considerable range of carefully planned
programming systems, including intemationally accepted
problem—oriented programming languages, and at a more
machine—oriented level, such items as macro—instructions

for using peripheral equipment with maximum efficiency,

Such programming systems are made possible
largely by the greatly increased basic speed of the machine
relative to earlier electronic computers, They represent
great advances in the ease of programming and the range
of problems susceptible to data processing.

It is for the user to decide of which, if any, of
these systems he wishes to use. “The basic instructions
of the machine are also described in full detail.

503 TECHNICAL MANUAL

VOLUME 2: PROGRAMMING INFORMATION

CONTENTS LIST

PART 1: PROGRAMMING SYSTEMS

Section

1:

Section 2:

Section

3

Section b:

PART 2: 503 LIBRARY

Section 1l:

Section 2:

Section

Section

PART 3:

Section

PART bL: PROGRAMMING

Section

3:
L

1:

l:

Section 2:

Section

PART 5: PROGRAMMING

Section

Section

3:

l:

Section 3

Section L

Section

Basic Machine Programming
Symbolic Assembly Mark 1
503 Algel Mark 1

503 Autocode

PROGRAMS

Reserved Ares Program

General Information on the Library

Program Specifications (excluding test programs)

Daily Test Program Specifications

THE INTEGRATED SOFTWARE SYSEM FOR THE NON-BASIC 503

Introduction

LANGUAGES FOR THE NON-BASIC 503
Symbolic Assembly Mark 2

503 ALCGOL Mark 2

FORTRAN IV

AND OPERATING AIDS FOR THE NON-BASIC 503
Operational Techniques

The Storage Planning and Allocation System
Peripheral Control Program

The Controlling Programs

Segmented Tape Administrative Routines

(Issue L)

PART 1: PROGRAMMING SYSTEMS
SECTION 1: BASIC MACHINE PROGRAMMING

CONTENTS LIST

CHAPTER 1: THE INSTRUCTION CODE

Page
The Registers s e - 1
Number Representation within the Computer - ;e e i - 1
Group 0 s - o - s - - . i i 2
Groups 1 to 3 - i o s i - o i - 3
Group 4—Jump Instructions - o Wi <5 &% v ‘e 3
Group 5—Multiplication, Division and Shift Functions .. i e i 5

The Accuracy of the Division Process
Group 6—Automatic Floating-point Arithmetic .. . e e . 9
Conversion
Group 7 e i w i i3 it iz ais e i 10
Functions which can cause Fixed-point Overflow .. e & i i 12
B-line Modification .. i i i i 22 i T g 13
Subroutines .. i e 4 L5 = = .. 4 s 14
CHAPTER 2: INTERRUPTS

Interrupt Registers .. i o i i ik 2 = “i 15
Types of Interrupt and the required state of the Registers i i e 16
Procedure taken on acceptance of an Interrupt by the 503 a G i 17
The 72 and 66 Instructions .. it & h o s R . 18
Interrupt facilities implementing RAP o s G i i 7 19

(Issue 2)

2.1L.LL

CHAPTER 1
THE INSTRUCTION CODE

This chapter describes the 64 functions of the 503 Instruction Code. A summary of the instructions
is in 1.2.1.

The examples in this chapter are written in terms of absolute machine locations to give a clearer
idea of the use of the various functions. A program referring to absolute locations should not normally
be used on the 503: S.A.C. (see 2.1.2) should be used instead. The Symbolic Assembly Program
translates identifiers into absolute locations when a program is input under its control, using storage
space available at the time. When programs are being written in S.A.C. the functions may be replaced
by their mnemonic names (i.e. AR may be used instead of 00). In this chapter, the mnemonic name is
given in brackets after each of the functions.

THE REGISTERS
There are seven registers of interest to the programmer:—
An Accumulator of 39 bits.
An Auxiliary Register of 38 bits. This is used with the Accumulator to form a double-length
register.
A Sequence Control Register of 14 bits.
An Overflow Indicator of 1 bit (O.F.R.).
An Interrupt Memory Register of 11 bits.
An Interrupt Permit Register of 1 bit.
An Interrupt Mask Register of 8 bits.

Throughout this volume the digits in any register are numbered sequentially starting from the
least significant digit which is numbered 1.

NUMBER REPRESENTATION WITHIN THE COMPUTER

The fixed-point number representation within the computer is such that numbers are held in the
range —1 = x < +1. The two's complement notation is used for negative numbers, i.e. they are
represented by words beginning with 1, on the basis that the negative number (—Xx) is represented
by (2—I1xI) thus:

1 0101 1000 0000 0000 0000 0000 0000 0000 0000 00
1 1 11

thisisl+%+ﬁ+ﬁ=1§§

o 21 —2]
which is (Z-ﬁ} so the word represents —3

The largest possible fraction is 1 —2—3
If the number is an integer then its binary representation is stored at the least significant end of the
register, but if it is a fraction it is stored at the most significant end unless it is moved down the register
by scaling,
The largest possible integer is 274 877 906 943. To avoid ambiguity, the fixed-point numbers
below will be fractions.

1
(Issue 2)

2.1LLL

The standard floating-point form is x = a.2® such that —1 = a< —fora=0ord=<a < |1
and —256 = b < 255. The mantissa (a) of the number is represented by bits 10 to 39 inclusive of the
word and the exponent (b) is represented by bits 1 to 9 inclusive.

Floating-point round-off is obtained by forcing the last of the 30 digits, representing the mantissa
alter standardization, to be | in all cases except where the number is exactly representable in 30 bits
of signed binary. The maximum error after any operation is therefore less than 1 in the 2-2° position
of the mantissa. This means that a floating-point number can be represented to an accuracy of 8
significant figures.

The instruction code is divided into eight groups. The functions in groups 0 to 3 are termed Basic
Functions and these, together with the Transfer Functions of Group 4, have in common that the N
digits always specify the address of a location. In some cases (functions 00, 01 and 06), the content of
that location does not enter into the operation. The uses of the N digits in the functions of groups 5 to
7 are given in the appropriate sections below. The times taken to perform all functions are given in 1.2.1.

GROUP 0
Mote: None of the functions in this group affects the content of any store location (Register). In
functions 0-4, A is the content of the Accumulator and R the content of the Register.
Function 00 (AR) The contents of A and R are unchanged.
This function is especially useful in conjunction with the B digit (see B-Line Maodification).
Function 01 (MR) A4 is deleted and replaced by Minus A.
Function 02 (IR) A is deleted and replaced by R Incremented by 1.
The existing C(A) is deleted and replaced by a number equivalent 1o C(N) + 2
Function 03 (CR) Collate or logical and.
A new word is formed which has a 1 in each position in which there are 1's in both C(A)
and C(N), and 0's elsewhere. C(A) is then deleted and replaced by this new word.

Example 1

The collate function may be used when it is desired to extract the wanted number from a
location in which two numbers have been packed. If, for example, two positive integers 127
(1111111) and 341 (101010101) have been stored together in location 300, the contents of location
300 will be as follows:

0 0000 0000 0000 1111 1110 0000 0000 0101 0101 Ol
ie. 127 % 2719 4 341 x 2%, 1f the integer 524287 is stored in location 276, then the following
instructions suffice to get the right-hand number into the accumulator on its own:

Address Instructions
FI Nl B F2 N2
740 30 3w 03 276

For the effect is to collate

0 0000 0000 0000 1111 1110 0000 0000 0101 0101 Ol
with the collating constant

0 0000 0000 0000 0000 0001 1111 1100 1t01 1111 11
and thus obtain

0 0000 0000 O0QO00 0000 0000 0000 0000 0101 o101 O
Function 04 (PR) A is deleted and replaced by A Plus R.
C(N) is added to C(A), which is deleted and replaced by this sum.
Function 05 (SR) R is Subtracted from A which is deleted and replaced by this difference.
Function 06 (ZR) A is deleted and replaced by Zero.

Function 07 (DR) A is subtracted from R, A is deleted and replaced by the Difference.
The result is the negative of that produced by function 05.

2
(Issue 2)

GROUPS 1to 3

In groups | to 3 the operations are similar to those described above, but whereas in Group 0
the result is placed in the accumulator and the store remains unaffected, the arrangements in Groups 1 to
3 vary. In Group 1 the result is placed in the accumulator and the original content of the accumulator
is placed in the store. In Group 2 the result is placed in the store and the accumulator remains
unaffected. In Group 3 the result is placed in the store and the original content of the store is placed
in the accumulator (see table below).

The contents of the accumulator and specified location are denoted by a and n.

2:1.1.).

GROUP 0 GROUP 2
Contents after the Contents after the
function has been function has been
performed performed
Code Mnemonic C(A) C(N) Code Mnemonic C(A) C(N}
00 AR a n 20 AA a a
01 MR —a n 21 AM a —a
02 IR nitl n 22 Al a n+1
03 CR a&n n 23 AC a a&n
04 PR a+n n 24 AP a a-n
05 SR a—n n 25 AS a a—n
06 ZR 0 n 26 AZ a 0
a7 DR n—a n 27 AD a n—a
GROUP 1 GROUP 3
Contents after the Contents after the
function has been function has been
performed performed
Code Mnemonic C(A) C(N) Code Mnemonic C(A) C(M)
10 RA n a 30 RE n n
11 MNA —n a 31 RN n —n
12 1A n+1 a 32 RI n n+l
13 CA adfn a 33 RC n a&n
14 PA a--n 4 34 RP n a-+n
15 SA a-—n a 35 RS n a—n
16 ZA 0 a 36 RZ n 0
17 DA n—a a 37 RD n n—a

Arithmetic operations (i.e. 04, 05, OF) only refer to fixed-point operations (see 1.2.1).

GROUP 4—JUMP INSTRUCTIONS

The 503 normally obeys instructions sequentially but this sequence can be changed by the use of
Group 4 instructions. Jump or, as they are sometimes called, transfer instructions, are inserted in a
program wherever it is desired that the computer should obey instructions in a sequence different
from that in which they have been stored. The address of the next instruction to be obeyed is stored in
the Sequence Control Register (5.C.R.).

Function 40 (JUF) Jump Unconditionally, to First instruction

This causes the computer to break normal sequence, carry out the first instruction in location

N, and then continue in normal sequence from that new point until a further transfer instruction
is obeyed.

2111

Function 41 (JNF) Jump if C(A) is Negative to First instruction

IT the sign digit in the computer is a | (content negative) when this instruction is obeyed, the
action is as for function 40. But if the sign digit is 0 (content zero or positive), the instruction is
interpreted as ‘do nothing’.

Example 2

Suppose thal in some iterative process, certain steps of a calculation must be performed
6 times. This could be organised as in the program below in which the entry point is the first
instruction in location 10,
Address Instructions
FI NI B F2 N2

9 5 This is the way in which the number 5x2-% js expressed on
a program sheet.
10 o 9 : 20 8 Place —35 in location 8.
1 .
The instructions to
be obeyed 6 times.
15
16 32 8 : 41 11 Increase the content of location 8 by I, and repeat the set of
instructions if necessary.
17 MNext part of program.

When the instruction 32 8 is obeyed for the first time, the number which comes into the
accumulator is —5. On the second occasion it is —4, then —3, —2, — | and finally after the
sixth iteration it is 0,

In the above program ‘a count is kept in location & or ‘location 8 is used as a count loca-
tion’. The number placed in a count location at the start of such a process is called a ‘count
constant’. The action of placing a count constant in a count location is termed ‘setting the count”.

Function 42 (JZF) Jump if C(A) is Zero, to the First instruction
If the content of the accumulator is zero when the computer obeys this instruction, the action
is as for function 40. But if the content is not zero, the instruction is interpreted as ‘do nothing’.

Function 43 (JOF)Jump, if the Fixed-point Overflow indication is set, and clear the overflow indicator,

The overflow indicator is tested, and if found to be in the set condition, the action is as for
function 40, coupled with the fact that the overflow indicator is cleared. But if the overflow
indicator is found to be in the clear condition, the instruction has the same effect as ‘do nothing’.
(See later for a list of functions which can cause fixed-point overflow.)

If it is desired to use the overflow indicator to test whether some function or group of
functions has caused overflow, it is necessary to ensure that the overflow indicator is clear hefore
they take place. This may require the insertion of an instruction whose only effect is to clear the
overflow indicator (if it is set). The instruction 43 (N +1) placed in the second position of location N
has this effect.

Functions 44, 45, 46 and 47

These functions are identical in operation to 40, 41, 42 and 43 respectively, except that where
a transfer takes place it is to the second instruction in the specified location instead of the first.
Their mnemonic codes are the same as those for 40 to 43 respectively except that the F in the code
is replaced by an §, e.g. 44 (JUS).

2.LLL

GROUP 5—MULTIPLICATION, DIVISION AND SHIFT FUNCTIONS

When two fractions of equal length (e.g. -+ .28 and — .47) are multiplied, the answer, in general,
contains twice as many digits as either (— .1081). The scaling factor is determined in the same way
as the decimal point is determined in a long hand multiplication. Similarly, if two computer words
each of 38 fractional digits and onc sign digit are multiplied, the full product has 76 fractional digits
and one sign digit. Provision is made in the 503 to ‘extend’ the accumulator in this and certain other
cases lo accommaodate one such double-length number. This is held in such a way that the sign digit
and the next 38 digits are in the accumulator itself, while the remaining 38 digits fill the extension,
which is termed the Auxiliary Register (A.R.). Group 5 functions do not affect the store.

In the case of functions 52, 53 and 56 (multiply and divide), the N digits specify the address of a
location in the store. In function 57 (read A.R.), the N digits are not used. In functions 50, 51, 54 and
55 (shifis), the seven right-hand N digits specily a number N: this N has therefore a range of from 0 to

127 inclusive, and if N=145 say then N=17.
Function 50 (DLH) Halve the Double-Length number N times

The digits of the double-length number are shifted N places to the right, the N right-hand

digits of the A.R. being lost. If the original number is positive or zero, N zeros are inserted at the
left-hand end: if it is negative N ones are inserted.

Thus the sign of the number is maintained, and the effect is a true division by 2¥, subject to
any error occurring through the loss of right-hand digits of the A.R.

Example 3
If the double-length numbers 4 and —4

pe: O 1000 0000 . ovmammen e e e R R A 0000 0000
and: A RO 0000 i R S e S I s S 0000 0000
are halved 4 times, the results are

O 0000 L0 L e aeaaaaaaaaas 0000 0000
andl] ML JO00 | camcissiens s S A e R R 0000 0000

. 1 —1 .
which are 3 and 57N respectively.

Function 51 (SLH) Halve Single-Length. Clear A.R.

The digits in the accumulator are shifted N places to the right, the N right-hand digits being
lost, and N zeros are inserted at the left. The A.R. has no part in this process: it is cleared as
a separate operation. ¢ s ancftedd

Function 52 (DLM) Multiply with Double-Length product

The existing C(A) is multiplied by C(N). C(A) and the existing content of the A.R. (which is
not used in the function) are deleted, and replaced by the double-length product. Since the multi-
plier and multiplicand are both single length the result is always exact,

Function 53 (SLM) Multiply with Single-Length rounded product. Clear A.R.

The existing C(A) is multiplied by C(N), C(A) is deleted and the double-length product is
formed, the quantity 2~ is artificially added and the left-hand 39 digits of the result are placed
in the accumulator. The A.R., whose original content is not used in the function, is cleared.

Example 4

If 9x2-2 and 32~ are multiplied using the function 52, the result is 27 x2-%, held as
a double-length number. 27 in binary is 11011, so the result appears thus:

Accumulator AR,
e e 0001 10 [1 0000vniivriirsnresrsins 0000

But if function 53 is used the process is, in detail, as follows:
(a) the double-length product is formed.

5

59

L&)

2.1.1.1.

(b) the quantity 2~ is artificially added.

(c) the lefi-hand 39 digits of the result are placed in the accumulator, the other 38 digits are
lost, and the A.R. is cleared.

The arithmetic may be represented thus:

Accumulator AR.
(@) O e s i 0001 10 11 0000 ... ieiienns 0000
+ 1
(B) O oo aisnanniian 0001 11 01 0000 icsisavvdsvy deaee 0000
() O -winnninim e 0001 11 00 0000vneriirenrnnnnn 0000

which is 7 x2-%, the correct approximation.

Function 54 (DLD) Double the Double-Length number N times

In this function, the digits of the double-length number are moved N places to the left,
N zeros are inserted at the right-hand end of the A.R. and the N left-hand digits are lost. Unless
overflow takes place the effect is multiplication by 2.

Hence if N > 38, the A.R. is clear after this function.

Function 55 (SLD) Clear A.R. Double the Single-Length C(A) N times.

The digits in the accumulator are moved N places to the left, N zeros are inserted at the right-
hand end, and the N lefi-hand digits are lost. Unless overflow takes place, the effect is multiplication
by 2W,

The A.R. has no part in this process: it is cleared as a separate action.

Function 56 (DI1V) Divide. Clear A.R.

Division is the inverse of multiplication, in that as a xb=ab so ab/p—a. Just as it is useful
to have a double-length ‘ab’ product in multiplication, so it is useful to have a double-length
‘ab’ (numerator, or dividend) in division.

Function 56 therefore consists of the division of the double-length number by C(N). C(A) is
deleted and replaced by the single-length, unrounded quotient. The A.R. is cleared by the process.

When the numerator can be adequately expressed by a single-length number in the accumu-
lator, care must be taken to ensure that the A.R. is clear before division takes place.

The accuracy of the division process
This concerns the accuracy of the result produced by the computer when the true quotient

lies within the range —1 to +1 inclusive.

(a) Since the result is not rounded, when the true quotient is not exactly expressible as a 39 digit
computer number, the result may be 2~ less than that which would be obtained by using a
process containing a round-off stage.

(b) Ifa and b are both positive, and b > a, and if the quotient is exactly expressible as a 39-digit
computer word,

then for
a/b, —a/b, 0/b: the computer results are correct
but for
a/—b, —a/—b, 0/—b: the computer results are 27 less than the arithmetically correct
results.

(¢) For the division 4a/+a, a > 0, the effects of (b), combined with the fact that there is no
computer representation of +1, cause the results shown below to be produced. Note also the
result obtained for 0/0, and that the overflow indicator is set for this case, and for both cases
in which the result of 4-a/4-a errs by more than 2—2,

6

Division
afa

—aja
aj—a

—af—a
0/0

Computer Result

2.L1LL

Overflow Indicator
Set
Not Set
Set
Not Set
Set

Example 5

(a) C(149)=2x2-% C(150)=1:x2-%
C(151)=ax 2%, C(152)=bx 2%
To place a/bx 2~ in 153

Address Instructions
. ~ F1_ N1 : F2 N2
387 30 151 : 52 149 Form 2ax2-7
388 56 152 04 150 Divide and form (2a+1) w28
b
359 50 1 : 20 153 Halve and write

This routine computes the correct answer in all cases, rounding towards zero when the answer is
nol an exact integer.
(b) C(251)=ax2~'", known to be positive
C(252)=bx2-"%. To place a/b» 2~ in location 253

Address Instructions
Fl NI B F2 N2
487 30 251 : 51 19 Formax2 % and clear A.R.
488 56 252 20 253 Divide, and write result.

() C(351)=ax2"", sign unknown, C(352)=bx2-1®
State of A.R. is not known. To place a/bx2-'? in location 353

587 51 0 30 351 Clear A.R,, replace ax2-1
588 5D 19 S6 352 Divideax2 ¥ by bx2-1
589 20 353 Write result.

The instructions 51 0 and 55 0 have the sole effect *Clear the A.R.’
Function 57 (RAR) Read Auxiliary Register

The existing C(A) is deleted by a word comprising a zero in the sign digit position and a copy
of the 38 digits of the A.R. content, in the remaining positions.

The A.R. is not affected.

This provides, in effect, a fast double-length left shift of 38 places, subject to the following
provisos:
(i) That the sign digit will be wrong if the number is negative.
(ii) That the A.R. is not cleared.

The second of these points is usually of little consequence: in fact, it may well be found to
be an advantage. How the former is overcome is shown below.
Example 6

The following process is faster than would be the case if 54 38 were used:

a and b are integers of unknown sign, in locations 643 and 644. It is required to place the
integer ab in location 645, where | ab | < 2%,

Address Instructions
__F1 NiL B F2 N2
412 30 643 : 52 644 abx2 76
413 5T 0 : 54 1 Double signless abx2 3
414 50 1 : 16 645 Store signed abx 2~

7
(fssme 2)

2111

Example 7

This emphasises the advantage of multiplying double-length and dividing, successively,
whenever an expression of the form

O e T
—_—— is t0 be evaluated.
bd ..., be evalu

Suppose that a, b and c are stored to scale p (where p may be of the form 2° © or not), in
locations 141 to 143. To evaluate ac/b and place it to scale p in location 144, we need:

Address Instructions
FI NI B F2 N2

614 0 141 52 143 axp:acxp?
615 56 142 20 144 acbxp:
This gives a clue to the method used to rescale after multiplication or before division when

using scales not of the form x2-r. For if we make b=1 the result is ac % p; if c=1 the result is
(a/b) = p.

Example 8
To extract the positive square root of a fraction, x.

If the formula ya.j = 4 (ya + ;)
n

is used to generate a series of numbers y;, it can be shown that successive values of y; converge
monotonically to the square root of x whatever initial value of y; is taken.

In adapting this process to the 503, y—1—2-3 is chosen, as this is the largest positive number
which can be held, and must therefore be greater than or equal to the required root. Thus, until
the best possible approximation to the root is found each new y; is less than the previous one,
and y,+1 —Ya is negative.

Ideally, yoi1 —¥a should eventually reach zero, but rounding errors may bring about a
situation in which it oscillates between 423, The process is therefore repeated until some y, 4,
—Y¥n IS zéro or positive, at which stage the program ‘exits with y, in the accumulator’.

Program
It is assumed that x is in the accumulator, and that the A.R. is clear. The entry point is the
first instruction in location 501,

Address Instructions
Fl1 NI B F2 N2

501 41 501 : 42 507 If negative stop. If zero exit.
502 20 509 : 30 508 Write x
503 20 510 : 30 509 Writey,. Replace x
504 56 510 : 04 510 Form 2y._i=(ya + 5)
505 51 1 : 15 510 Write yo41, form oy —¥a
506 45 503 : 07 510 If negative, repeat: if positive exit with y,
507 40 511 : 00 0 EXIT
508 37 8191 | 77 8191 This gives a pattern of 0 followed by 38 ones which
is 1—2-28
509 X
510 ¥n
511 Next part of program
8

(Fssue 2)

2.LLL

GROUP 6 —AUTOMATIC FLOATING-POINT ARITHMETIC
In functions 60 to 64 inclusive the computer treats both a and n as standard floating-point numbers
and produces a standard floating-point result, which replaces the old content of the accumulator.

In functions 60 to 64 inclusive the content of the auxiliary register is cleared but the store is not
allected.

For the accuracy of floating-point operations see *‘NUMBER REPRESENTATION WITHIN
THE COMPUTER".
Function 60 (FPA) Add in Floating-Point mode. Clear A.R.
C(N) is added to C(A) which is deleted and replaced by the sum. The A.R. is cleared by
the process.

Function 61 (FPS) Subtract in Floating-Point mode. Clear A.R.

C(IN) is subtracted from C(A) which is deleted and replaced by the difference. The A.R. is
cleared by the process.

Function 62 (FPN) Negate and add in Floating-Point mode. Clear A.R.

C(A) is subtracted from C(N), the original C(A) is deleted and replaced by the difference.
The result is the negative of that produced by function 61. The A.R. is cleared by the process.
Function 63 (FPM) Multiply in Floating-Point mode. Clear A.R.

C(A) is multiplied by C(N), the original C(A) is deleted and replaced by the product, The
A.R. is cleared by the process.

Function 64 (FPD) Divide in Floating-Point mode, Clear A.R.

C(A) is divided by C(N), the original C(A) is deleted and replaced by the quotient. The A.R.
is cleared by the process.

Function 65 (SDZ) Standardize. Clear A.R.

The 39-bit integer in the accumulator is converted to standard floating-point mode. The
A.R. is cleared by the process.

Conversion
The only permitted form of the 65 function to convert an integer to floating-point
representation is 65 4096.

In obeying the instruction 65 4096 the computer treats the existing content of the accumulator
as a fixed-point integer to scale 2~ and converts this to standard floating-point form.

Example

0 000000000000000000000000000000000 11 11
which is the fixed-point representation of the integer 15, is converted to

0 11110000000000000000000000000 100000100

in which a = :—z and (b + 256) = 260
5 b_.lj 4
so thata x 2 —]—ﬁxz =15

Function 66 (LOD) Load registers and transfer control
This instruction is used to exit from an interrupt program (see 1.2.3 and 1.2.4).
The effect of the instruction 66 L is as follows:
{a) Set the modifier register from location L and set the modifier indicator.
(b} Restore Acc. from location L1,

9
(Fsxue 2)

2111

{c) Restore A.R. from digit positions | to 38 of location L+2.
(d) Restore the fixed-point overflow register (OFR) from position 39 of location L43,
i.e. if digit 39 of location L+3 is 1 set OFR.
(e) Set S.C.R. to the value contained in positions 1 to 14 of location L+3 (i.e. cause a
transfer of control) and remove the inhibition on interrupts by setting the permit bit
to 1. (For further details see 1.2.4).

Function 67 (MOD) Modify the next instruction by adding to it the least significant 19 digits of n.

The instruction is modified just before it is obeyed, and its stored form is unaltered. (See
B-modification.)

GROUP 7

The instructions in group 7, apart from 73, deal with the control of peripheral equipment. Details
of these instructions are given in the sections of volume | which deal with the peripheral devices. The
PCP (Peripheral Control Program) gives the macro instructions for the peripheral devices.
A general description of the group 7 functions follows:

Function 70 (WGR) Read from the Word Generator to the Accumulator
The existing C(A) is deleted, and replaced by a copy of the word set on the word generator,
(see 3.1.2). The N digits of the instruction are not used.

Function 71 Read one character from a specified input device to the Accundator

Output N to control console for tape reader or typewriter selection; mix 8 bits, some of which
may always be zero, from control console with bits 1 to 8 of the accumulator,
(TR1) For 0 < N = 2047 channel | is the selected input channel.
(TR2) For 2048 = N < 4095 channel 2 is the selected input channel.
(DTR) For 4096 = N channel 3 is the selected input channel.

Unless the reader SELECT button is depressed (see 1.2.2 or 3.1.2), channel 1 is tape reader 1,
channel 2 is tape reader 2 and channel 3 is the control typewriter.

After the character has been read, the tape reader drive mechanism operates, and the tape is
moved forward to bring the next character into the reading position.

Function 72 Transfer a single word from the Accumulator to a specified peripheral device

Output N to peripheral controllers; output a single word from the accumulator to the peri-
pheral device. This function is used to transfer a single word from the accumulator to the
peripheral device. For an example see 1.4.1.

Function 72 has a special application when N = 511. It is then used to select which interrupt
lines may be operative in a particular program (see 1.2.3 and 1.2.4).

Function 73 (SCR) Write the address of this instruction, i.e. store §.C.R.
Write the address of the present instruction in positions 1 to 13 of location N of the store.
The remaining positions of N being zero.

This instruction is generally used in conjunction with the B-digit for entering subroutines
(see later).

Function 74 Qurput one character on a specified output device

QOutput N to the Control Station for selection purposes, then output N to Control Station
as information.

{TP1) For 0 = N = 2047 channel 1 is the selected output channel.
(TP2) For 2048 = N = 4095 channel 2 is the selected output channel.
(DTW) For 4096 = N channel 3 is the selected output channel.

10
(fsxue 2)

2.1.1.L

Unless the punch SELECT button is depressed (see 1.2.2 or 3.1.2), channel 1 is tape punch 1,
channel 2 is tape punch 2 and channel 3 is the output writer.

When the necessary signals have been sent to the punch, the computer is free to proceed
with other activity.

Function 75 Transfer a single word from a specified peripheral device to the Accumulator

Output N to peripheral controllers. Input a single word to Acc. from a peripheral device.
This function is used to transfer a single word from a peripheral device to the accumulator. For
an example see 1.4.1.

Function 76 Qutput N to peripheral controllers

Input a number of control bits from a specified peripheral device to the Acc. Prepare for
autonomous transfer. (See 1.3.1). This instruction is used in conjunction with the 77 instruction
for performing block transfers.

The effect of the instruction 76 N is as follows:
(1) Place the 76 address code in location 8176 to scale 2%,

(2) Input a control word from the specified device to Acc. The control word contains digits
indicating the state of the device. The precise significance of the digits depends on the
type of device. If the specified controller does not exist an error interrupt occurs.

(3) The N digits of the 76 instruction specify the device and the type of transfer required:

m.s. Digits 13 to 10 Digits 9 to 4 Digits 3 to 1 Ls.

Class of device Number of device Operation

(For further details see 1.3.1)

Function 77 Execute the operation specified by the last 76 instruction. If a transfer was specified use
locations N onwards in the store

The effect of the instruction 77 N is as follows:

(1) Read the 76 address code from location 8176. Use this code to select a device and test if
it is busy. If the device is busy then re-read the 76 address code and repeat the testing
process. If a non-existant controller is selected then cause an error interrupt.

(2) Set in the location associated with the peripheral controller a pair of counts, i.e. 77
8192-T : 77 N-1.
(3) Clear location 8176 after having stored its contents internally.

(4) Tag the store area associated with the transfer. If a location is found already tagged wait
until the tag disappears. The A.R. is used in this process and is not clear on exit.

After step 4 the program starts to obey the next instruction. The peripheral device has been
activated by the completion of step 4 and when the device is ready to transfer a word the following
operations take place:

(5) The central processor completes its current instruction.

(6) Both the counts, set in step 2 above, are incremented by 1 and a word is transferred to
or from the location specified by the lower count. At the same time the tag digit is cleared.

(7) The upper count is tested. If the count is non-negative then the transfer has been
completed.

(For further details see 1.3.1).

11

21.1L

FUNCTIONS WHICH CAN CAUSE FIXED-POINT OVERFLOW

Title
Minus or Negate

Increment
Plus
Subtract
Difference
Multiply
Double

Divide

Function
01, 11, 21, 31
02, 12, 22, 32
04, 14, 24, 3§
05, 15, 27, 37)
07,17,25,35 |
52, 53
54, 55

36

Circumstances causing Overflow
In the case where the number to be negated is —1.

When C(N) is 1 —273,

Whenever the sum is outside the range — 1 to 1 —2-* inclusive.
Whenever the difference is outside the range —1 to 1 —2-%
inclusive.

In the case of —1 times —1 only.

Whenever the correct result lies outside the range —1 o
1 —2- inclusive.

Whenever the modulus of the numerator (dividend) is greater
than that of the denominator (divisor) and [or a/a when the
computer result is —1, a/—a when the result is 1 -2~ and
for 0/0 where the result is 0

12

Z1LL

B-LINE MODIFICATION

Instances frequently occur in which the computer is required to carry out, several times, an action
which is much the same at each repetition, but changes in some small detail each time it is performed.
An elementary example is the addition of, say, 100 numbers stored in locations 100 to 199; after clearing
the accumulator the functions to be performed are *add C{100)", *add C(101)’, *add C(102)" add
‘C(199)". The action here is always ‘add’, the change is an increase in the address of the addend.

Since instructions are stored in the computer in 2 numerical code, it is possible to cause a number
to be added to an instruction and thereby change or modify it, before it is obeyed. This could readily
be done by using such a function as 24, specifying the location holding the instruction to be modified.
Better still, in the addition problem considered above, would be function 22; for the addition of 2 %
to the content of a location is tantamount to an increase by 1 of the N in the second instruction therein.

But an automatic facility termed B-line modification which is an improvement on either of the
above is provided, and is as follows:
(i) If the B digit between a pair of instructions is a 0, then no modification takes place, and each
instruction is obeyed as stored.
(i) 1If the B digit between the pair of instructions is a 1, then after the first instruction (F1 N1)
has been obeyed normally, the second instruction (F2 MN2) is modified by the addition of the
19 least significant bits of the (new) content of location N1 before being obeyed.

The modification takes place just before the second instruction is obeved and does not affect the
version of the instruction (F2 N2) held in the store.

IT the first instruction of a pair is a 77 instruction then the presence of a B-line between the two
instructions does not cause modification.

It is conventional to indicate B=1 by placing a [in the B column rather than by writing a 1.

A B-line can only appear between two instructions held in the same word. The instruction 67 N
can be placed anywhere and can therefore be used to modify either the first or second instruction in a
word, The effect of the instruction 67 N is similar to 00 N [ollowed by a B-line.

There are no exceptions to the action of modification so that:

(1) If a transfer control instruction is followed by a B-line the next instruction actually obeyed is
modified.

(2) 1f control is transferred to an instruction which is preceded by a B-line or by a 67 instruction
then no modification will take place (unless the transfer instruction is followed by a B-line
as in (1) above).

(3) The instruction 67 N lollowed by a B-line is obeyed as il only one of these were present,

(4) Sequences of 67 instructions, possibly mixed with B-lines, result in sequences of modification.

Example 10

IT it is desired to have an instruction (F2 N2) modified by the content of location 173 we
could write any of the following:

FI NI B F2 N2

00 173 | F2 N2
67 173 | F2 N2
67 173 : F2 N2
2 173 | F2 N2

In the fourth instance, where C(173) is altered by function 22, the modification is by the new
content.

13

2.1.1.1.

Example 11

The following program adds together 100 items, namely, the contents of locations 100 to 199
inclusive, and exits with the sum in location 238. It is entered at the first instruction of location 240.
(It is assumed that the sum is within capacity.)

Address Instructions
FI NI B F2 N2

238 Count location and total store.
239 —100 Count constant

240 26 238 : 30 239 Set total to zero: replace —100
241 10 238 [04 200 Setcount: add an item

242 12 238 41 241 Count: test for end.

243 Mext part of program.

Note how the powerful ‘exchange’ functions 10 and 12 are used. They enable the total-to-date
and the count to be switched between location 238 and the accumulator. Without such functions
it would be necessary to allocate separate locations for the count and the total, and there would be
more instructions in the loop.

SUBROUTINES

Suppose that during a lengthy calculation, it is necessary to find the square root of several numbers.
The need would then arise for the computer to carry out the instructions of Example 8 several times,
and a considerable saving in storage requirements could be achieved by arranging that the same set of
instructions is used each time, rather than by having several similar sets, each to be used once.

This technique can be applied to any small section of program which is designed to fulfil a standard
requirement, and such sections of program are termed subroutines. Many of the subroutines in the 503
Library are S.A.C. subroutines. The link for these S.A.C. subroutines is described in 2.1.2.

To appreciate the value of this in programming consider again the case in which several square
roots must be found during a calculation. Provided the subroutine sqrt is in the store the S.A.C.
instruction

SUBR, saqrt.
may be written as many times as is necessary, and be regarded as the equivalent of one instruction:
‘form the square root of C(A)".

This technique is employed even when a subroutine is used only once during a calculation. For, by
doing so, the need to have different versions of each subroutine is avoided, and so is the clerical effort of
copying the instructions into the middle of a new program.

14

2.1.1.2,

CHAPTER 2
INTERRUPTS

On any but the basic 503 the interrupt facilities are under the control of PCP. This chapter is
therefore, primarily intended for programmers who wish to use these facilities on the basic machine.

A description of the registers used and the different types of interrupt which can take place is
found in sections 1.2.3, 1.2.4, and 1.2.5 of the Manual.

INTERRUPT REGISTERS

There are three repisters of interest to the programmer associated with interrupts: the Interrupt
Memory register (11 bits), the Interrupt Mask register (8 bits) and the Permit register (1 bit). (See
functional diagram.)

There are two types of interrupt which can take place on the 503, Control interrupts and Normal
interrupts. Three bits of the Interrupt Memory register are associated with Control interrupts and are
set to one whenever a Control interrupt is requested. The other eight bits are associated with Normal
interrupts and are set to one whenever a peripheral device indicates that it is free to accept further
instructions. The Interrupt Memory register cannot be set by program. A one in any position of the
register can only be cleared by an interrupt being accepted on that particular channel, or by the CLEAR
or RESET buttons being pressed on the console. The register is also cleared if the machine is switched
on with the Permit bit equal to one.

The Mask register is set by program to indicate which Normal interrupts are to be allowed and

in what order of priority they are to be executed. Each bit of the register when set to one, allows
interrupts on that channel (subject to the state of the Permit bit), but when set to zero inhibits them.

If the Permit register is set to zero, all interrupts with the exception of two control interrupts, are
inhibited ; if set to one, all interrupts are allowed provided the corresponding bits of the Mask register
are also one.

Both the Mask register and Permit bit are also cleared when the CLEAR or RESET button on
the console is pressed.

Interrupt interrupt
Memory Mask Permit
Register Register Register

p=s

“Control Interrupts -

.

> = L 503

> Ca

Ca -

MNormal Interrupts 4)

W
s

Functional Diagram of Interrupt Registers
15

2.1.1.2.

TYPES OF INTERRUPT AND THE REQUIRED STATE OF THE REGISTERS

Control Interrupts

The three control interrupts occur due to machine or programming errors or due to the action of
the operators. In order of priority they are:

1. Error interrupt
This takes the highest priority of all the interrupts and is not affected by the state of the Permit
bit. It occurs automatically when one of the following error conditions arise: malfunction of the

central processor or of the peripheral devices, faults in programming, or faults in manual
operation, i.e.

(a) impermissible reference to the Reserved Area.
(b) unavailable peripheral device.

(c) main store parity.

(d) floating point overflow.

(e) special device interrupt—optional.

Advance warning of an error interrupt by a peripheral may be obtained by examining the
control word of the device with a 76 instruction. It is then the option of the programmer either to
take action to avoid the interrupt, or to ignore it.

2. Initial Instructions interrupt

This takes place when the INITIAL INSTRUCTIONS button on the control console is
depressed. It occurs irrespective of the state of the Permit bit.

3. Manual interrupt

This takes place when the MESSAGE button on the control console is depressed, provided
that the Permit bit is one. It cannot occur if the Permit bit is zero.

Normal Interrupts

The eight Normal interrupts are under the control of the programmer, to enable him to use the
computer efficiently. The method used within a single program is to make the input and output routines
run concurrently with the calculation part of the program. When there is insufficient calculation in
one program to fill the time taken for input and output (or vice versa), it is more efficient to run two
or more programs together.

The Normal interrupt of second priority is allocated to the paper tape readers; and the third to
the paper tape punches and digital plotter. Non-basic machines with peripheral equipment capable of
performing an A.D.T., have this equipment connected to the fourth position. (The other five channels
can be connected up to other equipment as an optional extra.)

When these devices are free to accept further instructions a one is set in the corresponding positions
of the Interrupt Memory register. The programmer can choose his own priorities for all Normal
interrupts by placing the desired setting in the Mask register and putting a one in the Permit bit.

An interrupt can only be accepted when an instruction is about to be obeyed. This is true even
when a B-modified instruction is about to take place. (i.e. the Interrupt Memory register is examined
in order of priority each time an instruction is about to be obeyed).

A Control interrupt occurs as soon as a one is found in the Interrupt Memory register, with the
exception of a Manual interrupt, when the Permit bit must also be present before the interrupt can
occur, A Normal interrupt takes place as soon as a one is found in the Memory register, provided
that a one is found in the corresponding bit of the Mask register and in the Permit bit.

16

2.1.1.2.

If two interrupts are ready to be accepted at the same time, the one accepted is the interrupt of
highest priority. This is the one with the most significant bit in the Interrupt Memory register.

PROCEDURE TAKEN ON ACCEPTANCE OF AN INTERRUPT BY THE 503

As soon as an interrupt is accepted the Permit bit is set to zero and the appropriate bit in the
Interrupt Memory register is also made zero. The Permit bit is cleared to prevent further Normal or
Manual interrupts before the interrupt in question has been dealt with.

The Permit bit is unaffected in the case of Initial Instructions interrupt in order that it may still
be possible to interrupt manually should the need occur.

Each interrupt channel has associated with it, a single location called the Interrupt Location.
This is examined on acceptance of the interrupt to determine the action to be taken. The Interrupt
Locations are held in the Reserved Area, with the exception of that for the Initial Instructions which
is location 0 and which can be considered to hold zero.

The Interrupt Location must contain:

I B L

(a) In digit positions 1 to 13 an address L which is the address of a block of four consecutive
locations in which the contents of certain registers are to be stored when the interrupt takes
place.

(b) In digit positions 21 to 33 the address J to which control is to be transferred when an interrupt
takes place.

(¢) In digit position 20, B, a bit which indicates whether control is to be transferred to the first
or second instruction in the specified location. If B = 0 control goes to the first instruction of
the location, but if B = 1 then the second.

The interrupt locations are 8166 to 8175 in the Reserved Area. 8166-8173 are associated with
MNormal interrupts, 8174 with Manual interrupt and 8175 with Error interrupt, i.e. the higher the
address of the interrupt location the higher the priority.

Below is a summary table in order of priority of interrupts:

After interrupt accepted

Mask Controlled by Clears Reads

Interrupt Bit Permit Bit Permit Bit interrupt

location
Error none no yes 8175

Initial Instructions none no no 0

Manual none yes yes 8174
MNormal 1 8 ves yes 8173
MNormal 2 7 Ves yes 8172
Normal 3 6 yes yes 8171
MNormal 4 5 yes yes 8170
MNormal 5 + yes yes 8169
Normal 6 3 yes yes 8168
MNormal 7 2 yes yes 8167
MNormal 8 | yes yes B166

17

2.1.1.2

After the computer has examined the interrupt location the following information is stored in
locations L to (L-+3):

L The content of the modifier register.
L+1 The content of the accumulator.
L+2 The content of the A.R. in digit positions 1 to 38. Bit 39 is made zero.

L+3 The content of the S.C.R. is stored in digit positions 1 to 14. The value stored is that associated
with the instruction about to be obeyed. Digit position 39 holds the content of O.F.R. (I if
set, zero if not) and bits 34 to 38 are used for Error interrupt. A presence of a 1 in these bits
indicates which error caused the interrupt.

bit 34. An attempted impermissible reference to the Reserved Area. The instruction contain-
ing the reference is not obeyed.

bit 35. Error due to an unavailable peripheral device (see below). The instruction causing
the interrupt is not obeyed.

bit 36. A parity error in the main store. The instruction or autonomous transfer during
which the error occurs is completed before error interrupt takes place.

bit 37. Spare. This class is provided in case devices requiring immediate interrupt are con-
nected to the 503 at some later date. It is, however, set to 1 whenever the power is
turned off,

bit 38. Floating point overflow. The instruction causing overflow is completed before error
interrupt takes place.

After storing the required information in locations L to L3, the S.C.R. is set to the value (J)
given in bits 20 to 33 of the interrupt location thus transferring control to the required instruction.

In the case of Initial Instructions interrupt, pressure on the INITIAL INSTRUCTIONS button
on the console, results in a transfer of control to location 0 without any actual storage of registers.

THE 72 AND 66 INSTRUCTIONS
The Mask register and Permit bit are set by one instruction 72 N. (where N < 512).
(Mote: if N = 512 the computer acts on the peripherals).

The Permit bit is considered as occupying bit position 9. Thus n = 256 puts one in the Permit bit
and N < 256 puts zero in the Permit bit.

e.g. 72 401
00505 01 1001 0001)

results in a one in the Permit bit and the pattern 1001 0001 in the Mask register with the most significant
bit corresponding to that of highest priority.

i.e. if N << 256 Permit bit = 0, Mask register = N
if N = 256 Permit bit — 1, Mask register = N—256

In order to restore the registers and return to the position in the program before an interrupt
occurred, the instruction
66 L
should be used. (L being the first location of the stored registers).

N.B. The Permit bit is set to one,
The sequence of operations is:
(a) Set the modifier register from location L and set the modifier indicator.
(b) Restore Acc. from location L+1.

18

2.1.1.2.

(c) Restore A.R. from digit positions 1 to 38 of location L+42.

(d) Restore O.F.R. from position 39 of location L4-3.
i.e. if bit 39 = 1 then set O.F.R.

{(e) Set S.C.R. to the value contained in bits I to 14 of location L+3 (i.e. cause a transfer of
control) and remove the overall inhibition by setting the Permit bit equal to one.

INTERRUPT FACILITIES IMPLEMENTING RAP

RAP provides the principal method of manual control for the 503 and assists the operator by
displaying a message when an Error interrupt occurs and also when a Manual interrupt is accepted.
It will then carry out instructions typed by the operator for continuation or otherwise.

RAP assists the programmer on the occurrence of an Error interrupt by making a search for an
error routine to facilitate diagnosis of the error which caused the interrupt. It also provides a method
of directing the course of a program after a Normal interrupt without unprotecting the Reserved
Area. This is done by means of a SWITCH table held in the RAP workspace in which the programmer
can set the destinations to which he requires the program to jump when a particular interrupt occurs.
RAP arranges that the registers stored on interrupt are also placed in this SWITCH table so that
return to the place where the program was interrupted is effected easily while the Reserved Area is
still protected.

When an Error interrupt occurs, RAP displays
ERRINT n
where n is either 1, 2, 3, 4 or 5 corresponding to a bit in position 38, 37, 36, 35 or 34 respectively of
location L4-3.

RAP then searches for a program named ERRINT. If no such program exists, the message
NOPROG. is displayed, otherwise control is transferred to it. This would usually be a short program
to facilitate further diagnosis of the error.

When the MESSAGE button is depressed, a question mark is displayed to indicate a Manual
interrupt is accepted and RAP awaits a message.

Continuing after a Control interrupt

In order to continue a program after an Error interrupt, type the message
CONT ; ERRINT.

The last program to be interrupted is continued from the point of interruption, even if a tape
was being input when the interrupt occurred.

In the case of a Manual interrupt, the program can be continued from the point at which it
was left by typing
CONT.

It is not possible to continue an interrupted program after an Initial Instructions interrupt
since no registers are stored.

Settings of interrupt locations in RAP

Certain standard settings are placed in the interrupt locations in order that the destination of
interrupts from Tape-Readers, Punches and digital plotter, and Peripherals may be controlled
by a main store program when the Reserved Area is protected.

A SWITCH table is provided with 5 locations for each of the three interrupt channels
mentioned above, outside the reserved area, in the RAP workspace.

19

2.1.1.2

The interrupt locations contain the following:
8172) 00 INT TR :00 (INT TR 1) tape readers
8171) 00 INT PUN : 00 (INT PUN-1) tape punches and digital plotter
B170) 00 INT PER : 00 (INT PER +1) peripherals

where the mnemonic names refer to the following absolute locations which must be used
until SAP issue 3 makes provision for them.

name location
INT TR 7887
INT PUN 7892
INT PER 7897

Thus when a tape reader interrupt occurs, the contents of the registers are stored in
(INT TR+1), (INT TR+-2), (INT TR~+3), (INT TR-+4), and control is transferred to the first
instruction in location INT TR.

The programmer should store in INT TR the location to which he wishes to transfer control.
Hence, to cause a reader interrupt to enter a main program block called TAPE the following
SAC instructions are required:

30 <40 TAPE : =
20 INTTR

The standard settings of INT TR, INT PUN, INT PER are such that interrupts occurring
on these devices are ignored. These settings are only preserved if the user resets the appropriate
location as follows:

30 < 00 8172/66 0 >
20 INT TR

IMASK

Since the subroutines of RAP affect the mask register and permit bit and there is no instruction
for reading from the mask register, a copy of the content of the mask register must be kept at all
times. A location is reserved in the workspace of RAP for this purpose and may be referred to
mnenomically as “IMASK", On exit from RAP subroutines the mask register is reset in accordance
with the contents of IMASK.

Whenever RAP is read into the store the contents of IMASK are set to a standard value which
in the case of RAP issue 2 is zero. IMASK and the mask register are reset to this standard value
each time a program is entered.

N.B. IMASK must be referred to by using the absolute value 7886 until SAP issue 3 makes
provision for mnemonic reference to it.

To program interrupts when using RAP (issue 2)

The required jumps must be stored in the location INT TR, INT PUN, INT PER. The mask
and permit registers must be set with a 72 instruction and a copy of the mask placed in IMASK.
If there is a possibility that the program is to be run at the same time as another, care should be

taken to ensure that the setting of the remaining bits of the mask register is preserved and that
IMASK contains a record of this setting.

20

A. To allow a tape reader interrupt the following procedure is recommended:

IMASK Permit bit Mask Register
72 0 cee s 000 XXXX XXXX 0 0000 0000
30 < 4191 >
23 IMASK e ee 000 XOXX XXXX 0 0000 0000
30 < +64 >
24 IMASK/ cea . 000 XIXX XXXX
72 256 1 XIXX XXXX

where X is original bit state.

B. To prevent Peripheral interrupts the following procedure is recommended:

2.1.1.2.

IMASK Permit bit Mask Register
720 cee = 000 XXXX XXXX 0 0000 0000
30 < 4239 >
23 IMASK]/ ... 000 XXX0 XXXX
2.0 0 KXX0 XXXX

The permit bit is automatically cleared when an interrupt is accepted (with the exception of
Initial Instructions interrupt) and exit from the interrupting routine, should normally release the
overall inhibition thus set. To ensure that the main program is re-entered before other interrupts

are permitted the 66 instruction and not the 72 256 instruction must be used, e.z.
67 IMASK
720

66 return

If a case occurs in which another selected interrupt is required during the interrupt routine,

before returning to the main program, the overall inhibition must be released, thus:
67 IMASK
72 256

21

503 TECHNICAL MANUAL
VOLUME 2: PROGRAMMING INFORMATION
PART 1: PROGRAMMING SYSTEMS
SECTION 2: SYMBOLIC ASSEMBLY MARK I

The contents of this section are liable to alteration without notice

January 1965

Issue 3

o)

SCIENTIFIC COMPUTING DIVISION
Elliott Brothers (London) Limited
Elstree Way, Borehamwood, Hertfordshire, England

2.L2,

CONTENTS LIST

Introductory Note Page
1. Function of the System

Introduction 1

2. Identifiers Labels and Control Names

1. Identifiers 2
2. Control Names 2
3, Labels 3
4. Local and Global Identifiers 3
5. Introduction of Global labels and data elements. . . 4
6. Relative identifiers 4
7. Block format . 5
8. SAC Program format 5
3. Instructions and Wholewords

1. Instructions 7
2. Wholewords 7

Integers, fractions and floating point 7

Octal groups 9

Alphanumeric groups 9

Reduced Identifiers e . iale s EF iy 10

Instruction pairs P . - - - 10

Signed identifier wholewords i LR s ik 11
3. Diamond Bracket addresses ... R SR e Wh 11
4. Allocation ... 11
5. Restrictions on addresses siarh P i i e 12

SAP references to unintroduced data items . . - e 12

4. Identifiers which are not Control Names
Example of a Program

1. Subroutines . .. 13
2. Common Programs 14
3. Style of writing SAC programs B-digits, dynamic stops, comments 14
4, Further standard identifiers ... wiil s S chat 15
5. Example of a SAC Program 17

(i)
(Issue 3)

-2
p—
b

5. *'Replace' Siatements

1

Lh s W b

. A general description . . .

. Form in which replacements are specified

. Replacement introductions - different sources
. Replacement Texts. Parameters

. Identifiers which are given more than one meaning

6. Operating and Punching Instructions

. Assembling programs
. Messages displayed during assembly. Typed replacements
. Error output

2
3
4.
5
6
7

Example of assembler output

. Assembly onto tape

. Form in which assembled programs are stored
. Running SAC programs

8.

Punching instructions . . .

Appendices

L.

8-Channel Paper Tape Code

2. SAPTEST

(ii)
(Issue 3)

Page

INTRODUCTORY NOTE

The following chapters assume a knowledge of the 503 machine code instructions. There
are 64 orders and they are represented by pairs of octal numbers. Thus they fall into eight groups.
Briefly groups 0-3 deal with fixed point addition and subtraction processes, group 4 are jump
orders, group 5 perform fixed point multiplication and division, group 6 are floating point arithmetic
functions and group 7 deal with input and output.

It is important that all users of the Symbolic Assembly Code make themselves familiar
with these machine code instructions which are fully described in section 2.1.1.1. of the 503
Manual.

A basic knowledge of the Reserved Area Program is also assumed as this is the most
fundamental program on the 503. See Section 2.2.1.

(iii)
(Issue 3)

2.1.2.1.

CHAPTER 1

FUNCTION OF THE SYSTEM

The Symbolic Assembly System is the normal medium for 503 Machine Code programming.

The 503 interprets each of the 39-bit information words in its store as a pair of instruc-
tions or as an item of data. The form of an instruction pair is:-

B-
FUNCTION ADDRESS DIGIT FUNCTION ADDRESS
[| [1 | | =
3 3 13 1 3 3 15

A SINGLE WORD

Although held in the computer in this form, each instruction is normally written on a
separate line.

When the address part of each jump or data handling instruction is numerical (i.e. it
refers to a fixed location in the store), the addresses are said to be ‘absolute’. A program con-
taining entirely absolute addresses must always use the same part of the store and a small modifi-
cation may make it necessary to change many addresses.

In the Symbolic Assembly Code (SAC), the locations in the core store are referred to by
mnemonic names chosen by the programmer. This has the effect of making the addresses relative,
instead of absolute. Allocation of the absolute addresses is a final operation using information
provided by the Reserved Area Program (RAP). The Symbolic Assembly Program (SAP) can
translate a SAC program and plant it in a free part of the store, or produce an ‘assembled’ tape
for subsequent use. Each assembled program has a name and can be run by typing this on the
typewriter.

Thus, an assembled tape is in relocatable binary form, capable of being input under the
control of RAP. After assembly into the store, or on input of the assembled tape, the program is
held in absolute address form ready for running.

The advantages of SAC are as follows:-
1. Programming is simpler and less laborious.

2. Modifications to existing programs can be made easily.

3, Storage of several programs in the computer at the same time is easily organised, without
causing overwriting etc.

4. The choice of mnemonic names can communicate the object of the program and how it is to be
achieved.

Programming errors may be found at run time using SAPTEST. This can trace the course
run by an assembled program and print out the contents of specified name-locations at specified

stages.
g

(Issue 3)

2.1.2.2.

CHAPTER 2

IDENTIFIERS, LABELS AND CONTROL NAMES

The mnemonic names mentioned in Chapter 1 must be more carefully defined.

2.1 Identifiers are used to distinguish by name each item of data used in a SAC program.
They can take the form of any combination of letters, digits and spaces but must begin with a
letter. The first six non-ignorable characters only are recognised. Thus no distinction would be
made between Block 123, Block 1, Block 16.

An example of 5 identifiers is:-
a, data, a 5th CENTURY manuscript, AD 1962, pj 15 m 3L.

N.B. The characters paperthrow P, tab T, backspace B, runout R, space §, and erase E
are ignored everywhere except in alphanumeric groups. The character newline L

is used as a terminator.

2.2 Certain Control Names are used in SAC to define more closely the purpose for
which each identifier is to be used. These names are composed of lower case letters which are
underlined. Five basic control names are as follows:-

program This introduces the one identifier which distinguishes and names the whole
program. This statement must be the first made in any SAC program.

begin The identifier introduced by this control name, distinguishes a certain section
of program. In SAC all programs are written in easily handled parts called
blocks.
begin marks the start of such a block and instructions follow immediately after
the identifier.

end This control name does not introduce an identifier but merely marks the end
of a block.

block A list of all the identifiers marking each block included in the program must be
defined after this control name. The statement is placed at the head of the
program immediately following the initial statement declaring the program name.
Each element in the list should be separated by a comma: separating new
lines (L) are ignored.

This control name reserves a new storage location for each identifier which
is named in the list following it. Locations reserved in this way are never re-
used in the same program. Data identifiers may be introduced anywhere in a
program provided that the introduction statement occurs before the end of the
block in which they are needed.

=W
=
=

Arrays can be declared under the latter control name, their length being indicated within
round brackets after the selected data identifier, e.g. domino (12). This will cause 13 consecutive
locations to be allocated, which can be referred toin the program as domino, domino+1, ...domino+12.

i
(Issue 3)

2.1.2.2.

2.3 Labels are identifiers used as destinations of jump instructions. Introduction is
effected by prefixing the label, followed by a closed bracket, to the instruction it is intended to
identify. Each instruction may be given up to three labels,

e.g. L1} reallocation) repeat) 30 a

These labels may be used in the address part of any instruction within the blocks in
which they are introduced. They refer only to the instruction which follows them: not the instruc-
tion pair. As the programmer is unlikely to know which location-half any labelled instruction will
occupy when in the computer, SAP has been designed to supervise, and if necessary lo comect,
jump instructions with label identifiers in their address portions. Thus if the instruction labelled
Lty lay in the second half of a location and a SAC program rontained the instruction
‘43 L1°, SAP would make this "47 L1°".

There is no provision for keeping fixed, instructions which are intended for use as para-
meters, and occur in the form of jumps to labelled points.

Labelling is an alternative way of booking dataspace. Although labels only identify single
instructions, the effect of an instruction such as

30 reallocation

15 to pick up the instruction-pair containing the instruction labelled ‘reallocation’.

Thus, the occurrence of
L1}y + 0
L2) +0

in @ SAC program causes two locations to be reserved within the program area, and these may be
referred to as ‘L1" and *L2".

2.4 lLocal and Global Ideatiliers

Labels and data identifiers introduced in the way outlined above have no meaning outside
the blocks in which they are introduced, and are called LOCAL identifiers. GLOBAL identifier s
require introduction between or before program-blocks and thus have the same meaning throughout
a whole program.

The same local identifier can be used in several blocks without confusion, since it will
be assigned a different meaning within each block. Block names are global, but data and label
identifiers can be local, global or both. In blocks within which an identifier has both global and
local references, the local reference is the one taken.

The same identifier can be used globally as a block name and locally as either a data
or label identifier in any block of the program. The same identifier must never be used as both a
data and label name in any one block.

3w
(lssue 3)

2.1.2.2.

2.5 Introduction of Global labels and data elements

Global labels are first introduced with the block identifiers, at the beginning of the
program. Each block-identifier is followed, if necessary, by a list of the global labels which will
be introduced within the block it identifies. The elements of this list are separated by commas,
and the whole list is enclosed in round brackets.

Thus, an introduction of block identifiers might take the form
block silverbirch, fir (needle, cone, fibre), oak (timbers, surge);

so that it would be possible to refer to the labels needle,” cone, fibre, timbers and surge in any
block within the program.

Each global label must of course also appear as a prefix to the required instruction in
the block named.

Block identifiers may be used as if they were labels attached to the first instructions of
their blocks (but see restriction Paragraph 3.5).

Global data identifiers are defined under the control name data between or before the
program blocks.

2.6 Relative identifiers

A relative identifier has the form A * B where ‘B’ is a blockname and ‘A’ is either a
label or data identifier.

For example the instruction 40 A * B causes transfer to be made to that instruction
in block ‘B’ which has been labelled ‘A’. Note that ‘A’ must have been introduced as a global
label at the head of the program.

Global label elements are referred to by their own identifiers, inside their own blocks, in
the same way as local label and data elements. Qutside their own blocks, global label elements
are referred to by means of relative identifiers.

Global data elements may be associated with particular blocks by introducing them
globally, but in relative identifier form.

The introduction
data D, D * B1, A(5), C,D * Bi(4);

for example, causes 14 distinct locations of data space to be reserved at assembly time. Outside
blocks Bl and B3 the identifier ‘D' refers to the data element which has been introduced here as
‘D" but inside block Bl, for example, 'D" identifies the location ‘D * Bl'. The reference of
‘D * BI1'" is the same everywhere in the program. Global data elements introduced in relative
identifier form need not be introduced again in their associated blocks.

Local data and label elements may always be referred to and introduced by relative

identifiers within their own blocks.

-4 -
(lssue 3)

2.1.2.2.

Thus the label
L1 * BS5)

might be fixed onto an instruction in block B5, L1 would not thereby become a global label. To
achieve this, L1 must be incorporated into a global label intreduction; such as

block BI1,B2(L1,L5,L20),B3,B4(L1),B5(L1);

In order to give a clear distinction between the style of reference, relative identifiers,
appropriate to global items and the style, simple identifiers, appropriate to local items, consider
the following cases:-

1. If B is a blockname and B is not in use inside this block as a local identifier, then the
relative identifier B*B is understood everywhere in the program as a reference to block B.

2. If B is a blockname and B is a global label introduced in this block, then B*B is understood
everywhere in the program as a reference to that label.

3. If B is a blockname and B is a local label introduced in this block, then B*B is understood
inside block B as a reference to that label, but outside block B as a reference to block B.

2.7 Block Format

Each of the instructions and words in a SAC program must be contained in a block,
limited by the control names begin and end. Blocks may not intersect or be contained in each
other and every program must be made up of at least one block.

A semicolon must follow the introduction of block identifiers, the introduction of data
identifiers, and the control name end. All characters between end and the next semicolon will be
ignored by the Assembler provided that the first of these characters is not underline U.

There can be reference to labels in instructions before the instruction they prefix.
(Global labels need only have been introduced under the control name block at this time). Similarly,
local data identifiers can be used before they are introduced provided that they are declared
somewhere in the same block. The introduction of global data identifiers must occur outside the
program-blocks, before the block in which they are required.

The contents of a block’s local data locations are not overwritten or destroyed on exit
from the block since data space is not duphleated: oh = ool hroascn Blatks ro- cadmple 1]
r | & o o iy - P g L] § bt

o W Aiw bl iy Y ol wele § Bt _I_'E.a { Ny R \
L

EI.E: SAC Frngmm Format
Three parts may conveniently be recognised in each SAC program.

(a) The program begins with a ‘head’, consisting of the definition of the program identifier,
followed by the introductions of the block names and global labels, and then by global data

introductions.
The global data introductions need only contain those used in the first block, provided the
others are introduced between blocks before the block in which they are required.

{(b) Then follow the blocks, with global data introductions between them, if necessary.

s
{Issue 3)

2.1.2.2.

The program finishes with the control word trigger, followed by a list of the program’s entry
points expressed as relative label identifiers, or as block identifiers. Elements of the list
are separated by commas, and the list is terminated by a semicolon. These entry points must
previously have been introduced as global labels (unless they are blocknames).

An example of a trigger list is:

trigger lift* blockl, stairs* blockl, flats;

SAP causes each SAC program it assembles to be followed by a trigger block of entry points.
This contains ‘4 +n" words, where ‘n' is the number of entry points,

An example of the program format is:

program example;
block A, B(L1);
data P, Q*A, Q*B;

begin A;

{Label and data introductions, instructions and works)

end;

data x;
begin B;

i

(l.abel and data introductions, instructions and words)

end ;

trigger A, L1*B;

-6 -
(Issue 3)

(a)

(b)

(e)
(d)

(e)

2.1.2.3.

CHAPTER 3

INSTRUCTIONS AND WHOLEWORDS

3.1 An instruction is a function followed by the address it refers to.
The addresses may be of 5 different types.

INTEGERS (which can be negative), e.g. 51 5 and 00 A/30 - 1. This type of address should
not appear as a reference to a store location, but as a further specification of the function.

RELATIVE, in which the address is regarded as being expressed relative to the address of
the first location of the block in which it appears. Such addresses have the form of an integer
without a sign followed by a comma.

e.g. 4015,
which means ‘jump to the first half of the 16th location in this block’.
N.B. This method of addressing is not generally used in SAC programs since the position
of instructions in locations is usually not known. It is most commonly used when
803 machine code routines are converted into 503 SAC.
IDENTIFIED, e.g. 30 shovel
COMPOUND
DIAMOND-BRACKETED
Addresses of types (d) and (e) are dealt with in Chapter 3.3,

3.2 Wholewords

The content of a location may be expressed in different ways. Any SAC expression of a

39 bit location content is called a ‘wholeword’.

Wholewords are divided into the following types:

Integers, Fractions and Floating Point Numbers,
Octal and Alphanumeric Groups,

Ocder Pairs,

Signed Identifiers.

3.2.1. Integers, Fractions and Floating Point Numbers

These are composed of the digits 0 to 9 and the characters + - . and subscript .

i
(Issue 3)

L
H

—
I
==

Any whole number between =274 87 7906 944 and +274 877 906 943 inclusive is called an
INTEGER and must contain at least one digit and be preceded by a sign.

e.g. *+5 -304882

A FRACTION consists of the character . (point) followed by no more than 11 digits:
it may be unsigned.

e.g. ~—.11129811392 .5 +.5

Note that signed fractions such as +0.113 will also be accepted by SAP. Unsigned
fractions of the type 0,113 should not be used.

A FLOATING POINT NUMBER is one of the form
a x 100
‘a’ being known as the ‘mantissa’, and ‘b’ as the ‘exponent’.

The form of the mantissa is: an integer, or a fraction, or an integer followed by an un-
signed fraction. It must be such that the number obtained by removing the character ‘point’ (f
present) is an integer as defined here.

The exponentis an integer of no more than 2 digits, and may be without a sign if positive,
or even omitted altogether if zero.

A floating point number is written as
mantissa exponent
and floating point overflow will occur if it is outside the (approximate) range:
$1.73x 1077 10 45.8 x 10"
Examples 13,45 (=300,000)
-7.33192_+60

+.892 -27.

.5
10

+0.739 2

Numbers beginning with the character will also be accepted, and are understood to
have a mantissa of 1.

Zero may expressed as

+0 0.0 .0 +0, +00000

and so on, but *.000000000000" is erroneous, because it is a fraction with more than 11 digits.
*4+' ig also erroneous because it holds no digit.
-8 -
{Issue 3)

2.1.2.3.

3.2.2 (Oetal Groups

A 39 bit location content may be split into 13 equal parts of 3 bits each. If each of the
parts so obtained is expressed as a digit between 00 and 7, and the whole expression is preceded
by the digit 8, the result is known as an “‘octal group'’.

For example, the number 21 may be written as
80 000 000 000 025
in octal form, since 21 may be expressed as the 39 bit location content

=21 is 87 777 777 777 753

3.2.3 Al phunumeric Gruups

It is often useful for a SAC program to be able to output headings, titles, error indications,
etc. on the typewriter at runtime. Such headings have to be stored in some way as constant dala,

The 7-hole character code is punched on tape in an 8-hole form, one of the bits in each
character being used for parity checks. Five characters in the seven bit code can be packed side
by side into one 39 bit location, (leaving 4 bits spare at the top of the location).

Thus the word *ERROR' could be packed as:

(0) R 0 R R E
)) PR T 1 9 S ') PSR) U PR (0 9

The SAC expression for the above location is £ERROR

A heading is expressed in Alphanumeric Group form by splitting it up into groups of 5
characters each, each group being preceded by the character £. The number of characters in a
heading must be made up to a multiple of 5; this could be done by changing the number of charac-
ters in the heading, or by ‘filling up’ the heading with characters, such as ‘run out’ (R), which
have no effect on print-ups.

Thus the expression for
for heating: £96
as a set of alphanumeric groups is
£forShfeatinfg:S£9EL6RRRR

where S denotes the character ‘space’, and R has been used to make up the number of characters
in the last group to five. Note that the character £ may be used as both a control symbol, defining
the beginning of an alphanumeric group of 5 characters, and as one of the characters within an
alphanumeric group.

The small section of SAC program which follows will output an alphanumeric word on
the output writer. {The word ERRUR has been chosen here).

9.
{lssue 3)

2.1.2.3.

data press;

30 ERROR
again) 20 press

42 exit

03 CC127

17 press/

74 4096

51 7

40 again

ERROR) £EERROR
CC127) +127

3.2.4 Reduced Identifiers

An identifier may be packed in reduced form by writing it as a wholeword preceded by the
digit 9. i.e. the first six characters of the identifier are packed in one location, as described in
section 2.2.1 (RAP). For example,

compar) 9beginning

results in the location referred to by the label “‘compar’” holding

b & B i n n

J11,, 11111 1.1 111 1., Ll...

Note (i) Identifiers of less than six characters do not need to be ‘‘made up" to six.
Spaces are automatically inserted at the right hand end.

{ii) Spaces within an identifier are packed, not ignored.
3.2.5 Instruction Pairs

An instruction pair is a pair of instructions separated by a B-line digit. If the value of
this is 1 (indicated by /) the second instruction is modified by the contents of the location speci-
fied by the address in the first instruction; otherwise (indicated by :) the two instructions are
wholly separate.

Example. The number 100 may be expressed in SAC as
+100
80 000 000 000 144
00 0:00 100 b
(Issue 3)

2.1.2.3.

3.2.6 Signed ldentifier Wholewords
The effect of writing
+IDENTIFIER

in a program location is that the storage address allocated by SAP to IDENTIFIER at Assembly
time is placed in that location,

3.3 DIAMOND BRACKET Addresses
COMPOUND Addresses

Whole words may be stored in a SAC program by writing them as part of the program,
normally with a label for identification.

e.g. Pi)+3.14159265

This constant may then be referred to in an instruction such as 30 Pi - the result of
which is to place +3.14159265 _in the accumulator.

An alternative way of doing this is by the instruction
30 < +3.14159265 >
SAP allocates storage space within the program it is assembling to whole words read in
this way. Such wholewords are stored at the ends of the blocks in which they are first read; they
are not duplicated in the program if read again, and are available throughout the program.
The instruction
30 < + count >
has the effect of placing the address of the location allocated to ‘count” in the accumulator, as
opposed to 30 count which puts the contents of the location in the accumulator. This gives the
programmer an opportunity to use indirect addressing.
Another example, is the instruction
J0<9EX 1>
which results in the placing of the packed identifier, in reduced form, in the accumulator.
A COMPOUND address consists of an identifier address followed by a signed integer.
Example: 30 fork +3
means ‘pick up C(fork+3)" and does not mean ‘Pick up Clfork) +3.
3.4 Allocation

The process by which SAP determines the reference of an identifier is called "allocation’.

P -
(Issue 3)

2.1.2.3.

For example, the data location ‘DATA 15 will have been ellocated when SAP has
determined the address of the particular storage location which it is to identify by this name.

Data identifiers are allocated immediately on being introduced. Label identifiers are

allocated at the beginning of the instruction or wholeword following that which they label. This
includes block identifiers, which may be considered to label the first instructions of blocks.

3.5 Restrictions on addresses

Identifiers and Blocknames used as labels, if unallocated, may not be used in COMPOUND
Addresses,

Diamond Bracketed Addresses may not be used within Diamond Bracketed Addresses.

All invented identifiers used in addresses within a block must have been introduced by
the end of that block. It is enough if global labels have been introduced globally by this point.

(See also paragraph 2.8.).
3.5.1 SAP references to unintroduced data items

It is sometimes useful to be able to refer to unintroduced data items by means of com-
pound addresses, as in, for example

data A,B,C(19);

22 A/
26 C-1

Where the location C-1 falls outside the range of data space which has been reserved by
the data introduction, the reference is correctly assembled into store but incorrectly assembled

on to paper tape.

The following action will always be assembled correctly, however, since location C-1
now falls inside the allocated data area :

data A,C(15),B;

22 A/
26 C-1

-12 -
(Issue 3)

2,1.2.4.

CHAPTER 4
IDENTIFIERS WHICH ARE NOT CONTROL NAMES

EXAMPLE OF A PROGRAM

This chapter concludes the description of that part of SAC needed to write a complete
SAC program. It deals chiefly with those identifiers, not control-names, which SAP recognises as
having fixed meanings (standard identifiers). The chapter ends with an example of a complete
SAC program.

4.1 Subroutines (standard identifiers LINK, SUBR and EXIT)

SAP automatically allocates a ‘link-location' for each block it reads, doing so at the
time the block identifier is introduced. Each of these link locations is identified as the location
with the global label

LINK

Thus, within their own blocks, these links may be referred to as LINK , and outside as
LINK * Blockname , where Blockname identifies the block containing the particular LINK
referred to.

Each SAP block may be treated as a subroutine, provided that its exit-instruction is
correctly arranged. The standard subroutine entries, to the first instruction of the block, or to a
labelled instruction within the block, are then

73 LINK * Blockname : 40 Blockname
or 73 LINK * Blockname : 40 LABEL * Blockname

These may be shortened to

SUBR, Blockname
and SUBR, LABEL * Blockname

respectively: SAP deals with the shortened form as if it had read the mstruction pair given above
in the normal form.

The standard subroutine exit instruction, to the nth location after that contaming the
orders causing entry Lo the subroutine, may be shortened from

00 LINK / 40 n
to EXIT, n or simply EXIT ifn=1.

Care should be taken, when using these shortened forms of subroutine entry and exit, to
make sure that the content of LINK*blockname is not overwritten by a ‘recursive use' of the
subroutine within itself, or of a subroutine within a block which 1s itself a subroutine.

- 13 -
(Issue 3)

212

1.2, Common Programs (standard identifiers COoMIP, EXIT CP and LINK CP)

Each SAC program is automatically allocated a link location by SAP, so that SAC pro-
grams may call each other up as if they were subroutines. This is done by the order

COMP,X
where ‘X" identifies the program being called. An entry point 'n’ may also be specified:
COMP, X ,n

This refers to the nth trigger point declared after trigger in program X. COMP,X and COMP,X,1
are the same order.

The programmer must ensure that program X has a subroutine exit. This is done by
exiting from it with the order

EXITCP, n

which causes a jump to the nth location after that containing the entry instructions. The common
program’s link may be referred to as LINK CP ; such references may not be made outside the
the common program itself.

It is important that program X be already in the store when SAP is assembling into store
the program which calls it.

4.3 Style of Writing SAC Programs
B-digits, dynamic stops, comments

Though the assembled program will be stored two instructions to a location, the instruc-
tions are usually written one to a line. Programs written as a series of wholewords will be accepted
by SAP, but, from the programmer’s point of view, they are more difficult to alter than those in
the suggested style.

SAP stores each new order or wholeword in the next available store half-location or
location, assuming B-digits to be zero unless given any other indication.

Each order may be followed by one of the B-Digit characters :(= 0) and / (= 1), or be
preceded by : . As well as specifying their own value in the instruction pair being assembled,

these B-digits also give the position of instructions within computer locations.

Thus 22 wages / indicates that the order 22 wages is to be stored in the next available
first-half location, and that it is to be followed there by a bit in the B-digit position.

The two orders
30<+2 >
24 wages /
30 0

-14 -
{Issue 3)

2.1.2.4.

would be stored in consecutive locations, as
J0<+2>:000
24 wages /300
Instructions preceded by colons are understood to be whole words.
e.g. 30 A:
:20B
is assembled as 30 A : 000
000 : 20B

Mote: an instruction-pair written in the form 30 A : 20 B is always assembled into a
single location.

Instructions with unspecified addresses are taken to have zero addresses.

e.g. L:7IL , LO6L and 03<77:>

mean L:71 OL , LO6 OL and 03 <77 0: >

A zero instruction which forms part of a diamond bracketed instruction pair may be
omitted.

Thus 30 <77 8191 : 00 0> may be written 30 <77 8191 >

Mo SAC program should contain dynamic stops; these are replaced, in the 503 system.
by programmed jumps to the Reserved Area Program.

These are performed by using standard identifiers which are written as
STOP - unconditional transfer to RAP
O STOP - transfer if overflow to RAP

N STOP - transfer if negative accumulator to RAP
Z STOP - transfer if zero accumulator to RAP

SAP will ignore comments punched between round brackets, so that
‘30 A(A = collating const.)’ is read as 30 A,

Comments must not be punched inside any introduction list.

The characters paperthrow P, tab T, backspace B, runout R, space S, and erase E are

ignored everywhere exceptin alphanumeric groups. The character newline Lis usedas a terminator
(any number of these can be used),
4.4 Further standard identifliers
Each of the following identifiers represents a subroutine entry to RAP, and each of the
subroutines exits to the instruction immediately beneath the entry.
= 155
(Issue 3)

2,1.2.4.

Standard
identifier

RAPprint

RAPlprint

RAPread

RAPsearch

Function

the reduced identifier in the accumulator is displayed, on
the same line.

the reduced identifier in the accumulator is displayed, on a
new line.

e.g. the instructions 30< 9EX 1>
RAPlprint
will cause EX 1

to be displayed.

an integer or identifier is read from the typewriter, placed in
location 7914 with the terminator in location 7913 and the
overflow register is set if an identifier was read. Identifiers
are packed in reduced form.

the reduced identifier in the accumulator specifies a4 program
which is to be searched for in the store. On exit the accumulator
holds the address of the program head if the program has been
found, but otherwise the content is zero.

T -
{lssue 3)

2.1.2.4.

4.5 Exnmple of a SAC Frogrnrl

program square root;

(this program computes the roots of single length fractions, and precedes the output
result with a newline and the word ROOT.)

block root, control (L1);

(common programs—read, print, and alphanumeric print.)

data number * root;
begin root;
data number, root;
30 number
41 L1 * control
42 exit
30 <37 8191/77 8191>
20 root
L1) 30 number
56 root (the formula used is:)
04 root (a/wln] +wln] = 2w[n+1])
51 1
15 root
41 L1
07 root

exit) EXIT, 1
end root;
begin control;

COMP, read
Z STOP {return to RAP if end)
20 number * root

30 <f£ ROOT>
COMP, alphanumeric output
SUBR, root
COMP, print, 2
00 0/00 11 (print parameter word)
40 control
L1) 30 <fNEG R>
COMP, alphan
40 control
end;
trigger control;

< P
(Issue 3)

2.1.2.5

CHAPTER 5

“REPLACE" STATEMENTS

5.1 This chapter describes how whole sections of SAC may be replaced by a single
identifier provided that its meaning is properly defined. One of the simplest examples, is the use
of the name EXIT to replace the instruction pair

00 LINK/

40 1

The name EXIT is called the replacement identifier and the instruction pair referred to
is called the replacement text.

Another example is given by the sequence of instructions required to form twice the
content of the accumulator plus one:-

55 1

04 < +1>

If SOCK is made the replacement-identifier for this replacement text, subsequently,
SOCK may be used in place of, and will be replaced by, the above instructions. Thus to place
the sum of 2A + 1 and 2B + 1 in a location specified by C i.e. perform

C:= (2A +1) + 2B + 1) the SAC could be

D A

SOCK

20 C

30 B

SOCK

24 C
5.2 Form in which replacements are specified
Specification is in two stages:

(a) Introduction of the identifier

(b) Specification of the replacement text.

The identifier is introduced by the control name replace. The replacement text must
follow the introduction unless another means of obtaining the required information is given i.e.
a “‘source’ other than the store must be named. SAP recognises certain letters as references to
the following sources
- 18 -
(Issue 3)

2.1.2.5.

Source
5 the store
R the second reader
T the typewriter
Z none

Thus both stages of the specification must be complete when the replacement-identifier
is met during assembly; although stage (b) need not be carried out explicitly if the source is
named, so that the program *‘knows’’ how to obtain the text.

At assembly time the text is inserted and then SAP proceeds with the next instruction,
Identifiers within the text will in general assume meanings current when the replacements are
made.

5.3 Htplucenenl introductions - different sources

If no source is given in the statement it is assumed to be S - the store, and the re-
placement text must follow, enclosed in square brackets. The introduction statement for the
previous example should be:

replace SOCK [; 55 1
04 < +1 >];

A replacement identifier may be associated with a different text by re-introducing it
later in the program. For instance its use as a replacement-identifier may be stopped altogether
by intreducing it as:-

replace SOCK = Z ;

which subsequently has the effect of inserting no text at all whenever the identifier appears, thus
cancelling any previous text that may have existed,

Several identifiers can be introduced in one statement, e.g.

replace PRINT = R, INPUT = R, Med 17 = T ;

Mote that when reference is made to one of the sources, the identifier must be immediately
followed by an equals sign and then the appropriate letter.

In the above replacement statement the text of PRINT and INPUT is searched for on the
tape placed in the second reader, and they are read in correctly regardless of the order in which
they appear on the tape. This provides a convenient method of assembling a program from its
constituent subroutines: the functions tape only requiring a single reading.

Whenever SAP encounters a replacement identifier which has been given the source T
during assembly, a text is requested, e.g. Mod 17

TYPE Mod 17 [

- 19 -
(Issue 3)

2.1.2.5.

is output on the typewriter and SAP waits for a text to be typed, terminated by a closed square
bracket. If the operator types the character '*='" the data identifier which is the same as the
replacement-identifier is taken to be the text (i.e. Mod 17 in this case). Incorrectly typed texts
may be cancelled by typing the non-escaping character vertical bar (V), but the text then has to
be retyped from the beginning.

Certain identifiers are so placed that they can only be interpreted as replacement-
identifiers e.g. identifiers on lines by themselves. These are ignored by SAP if unintroduced
when read.

As with data/label identifiers, replacement identifiers may be made local or global by
introducing them inside or between blocks. Replacements must not be introduced outside SAC
programs.

5.4 Replacement Texts - parameters

Any section of SAC may be used as a text; it can be a single identifier or function, or a
complete section including data-, label- and even replacement-introductions. Each text must
always be enclosed within square brackets and preceded by the appropriate identifier. It is
important that this arrangement is adhered to even when texts are drawn from sources other
than the store,

If the same replacement text is used several times in different parts of a program, it is
often necessary to be able to change the names of certain data and label identifiers appearing
in the text.

The text employs identifiers of three different types:

(A) Label, data and block identifiers

(B) Replacement-identifiers. Replacements may call each other to any depth, although
a replacement cannot call upon itself, as this would lead to an infinite recursion -
see section 5.5,

(C) Parameter identifiers. These may be ‘‘renamed’ when the replacement text is
inserted into a program. They are referred to as *‘formal parameters’ when in the
text, and the renamings and replacements as ‘‘actual parameters’’, using ALGOL
terminology (Vol. 2.1,3). Permitted re-namings (actual parameters) are:

(i) an integer, from which the sign may be omitted.

(ii) a constant enclosed within diamond brackets, which is equivalent to the
address of a location containing this constant.

(iii) another identifier.

Formal parameters, if any, are enclosed in the same square brackets with their text and
need no other introduction. The parameters are listed first and separated from the text by a

semicolon. e.g.

- 20 -
(Issue 3)

2.1.2.5.

replace COPY | reader, writer ;
agamn) 06 0
71 reader
20 work
74 writer
40 again |

In this example, ‘reader’ and ‘writer’ are the formal parameters.,

The separating semicolon must always appear before the replacement-text, even il there
are no Pil.lﬂ!ll.'lt:[ﬂ'[h'.

The actual parameters are given when calling the replacement, and are listed after the
replacement-identifier enclosed in square brackets, in the order set up by the lormal parameter

list.
Hence COPY [2048, 4096 |
results in the following instructions being inserted into the program
again) 06 0
71 2048
20 work
T4 4096
40 again

Care must be taken when the same replacement text 18 used more than once in one block,
to ensure that labels introduced in the replacement text are made parameters. Also when the
replacement is called, the actual parameters for the labels must be different each time the re-
placement is required within that block. If this 15 not done the effect produced is that of having
two identical labels in one block, which will cause an error,

Thus facilities are provided for the sysiematic replacement of sections of SAC programim-
ing by means of a single identifier, possibly with parameters. The effect of a sequence of such
statements can be determined by systematically making the replacements. The expanded text,
thus constructed, must obey the rules of syntactically correct SAC. The system, itself, does not
check the logical effect of each replacement.

5.5 Identifiers which are given more than one meaning

Identifiers can be of the following types within a SAC program, excluding the program
name :
o} I

{{ssue 3)

2.1.2.5.

A. Label, data and block identifiers and actual parameters.

B. Replacement identifiers.

C. Formal parameters.

When the same identifier is used as more than one of the above types, its meaning is
given in the following order of precedence, Type C, before Type B, before Type A providing each
is syntactically allowable. The following examples should clarify this rule:

(i)

(ii)

(iii)

i.e.

given the introductions,
data A, B;
replace A [;B];

the instruction 30 A

becomes i0 B

because the replacement identifier A, takes precedence over the data
identifier A,

given the introduction
replace whichone [; <+1>], thisone [; <+2>],
GET [whichone; 30 whichone];
the instruction GET [thisone]
becomes 0 < 42 >

The identifier whichone is interpreted as a formal parameter, rather than a
replacement identifier, so “"GET [thisone |'* becomes ‘30 thisone" (not
*30 <+1>""). Then thisone is replaced by its text <+1>,

The same identifier can be used as both a formal and an actual parameter,
without producing odd effects.

€.g8.
replace PLANT [SEED, SOIL ;

30 SEED

24 SOIL] ;

the instruction PLANT [SOIL, POT |
becomes 30 SOIL

24 POT
Although the formal parameter SOIL becomes actual parameter POT this does
not affect the actual parameter SOIL.
=27 .
(lssue 3)

2.1.2.5.

(iv) A replacements identifier can be quoted in its own text, either explicitly or
else as part of the text of one of the nested replacements. Since a replacement
cannot call upon itself, the meaning of such an identifier would be taken to be
of Type A or Type C. e.g.

given the introductions

data A

replace A [; 30 A];
the instruction A
is taken as the replacement identifier and becomes
30 A
where A now represents the data identifier.

(v) A formal parameter only operates within its own replacement-text, excluding
any nested replacements inside that text. e.g.

replace SUB [;53A], TEST [A: SUB
41A];

the instructions 30 A

TEST [error]
become 30 A

53 A

41 error

Thus, when determining the effect of a replacement which itself contains a replacement,
the text should be expanded one *‘layer’ at a time, applying the appropriate set of parameters
to it.

e.g. the introduction
replace SUB[B;53B], TEST [A,B, ;
SUB [A]
41 B];
with the instructions 30 A
TEST [<+15>, error |
become 30 A
SUB [<+15> |
41 error

o | A
{Issue 3)

2.1.2.5.

and then 30 A
53 <+15>
41 error

this rule excludes such a case as
replace HOP [A,B;....], SKIP [;HOP];
with a call SKIP [error, <+1>]

since SKIP has been given actual but not formal parameters.

-4 -
(Issue 3)

2.1.2.6.

CHAPTER 6

OPERATING AND PUNCHING INSTRUCTIONS AND

ALLOCATION OF STORE SPACE

6.1 Assembling programs

Programs are assembled and run under the assumption that RAP is in its normal position
in the Reserved Area: this is important because RAP pointers and subroutines are made use of
at assembly-time, and again when the assembled programs are triggered from the typewriter.

All common programs called by the object program must be in the store at assembly time,
unless assembly is being made onto paper tape.

Word generator settings
SAP is read in under RAP, by loading its tape in reader 1 and typing:
IN.
The identifier ‘SAP"* will be output if the tape is read correctly.

To assemble a program, set the word-generator keys in the way described below, load
the program in reader 1 and its replacement tapes, if any, in reader 2 and type

SAP.

The word generator keys which are tested by SAP are as follows:

KEY EFFECT
39 (sign bit) When the setting is changed during a pause, the assembly con-

tinues from the point at which it stopped.

38 When depressed, assembly comes to a pause just inside the
beginning of each block, after printing the blockname. The key is
tested every time the control name begin is encountered.

37 This key is not normally used when assembling with SAP. If it is
depressed, certain information about the identifiers is retained,
(this is made use of in SAPTEST for checks).

36 When depressed, at the time of entry to the assembler, key 37 is
ignored and the program is assembled on to paper tape. (See
section 7 below).

35 When depressed, the program-checksum which is used by RAP, is
not formed. Therefore the key should normally only be down if the
program alters the content of one of its instruction or labelled
{not data) locations at runtime.

34 When depressed, the blocknames are not output during assembly.

- 25 -
(Issue 3)

2.1.2.6.

Note that a temporary pause will also occur whenever the character & or H (halt code)
is read, except when they occur as part of a comment or an alphanumeric group. This allows
programs to be punched in parts.

6.2 Messages displayed during assembly
Typed replacements

All messages are displayed on the typewriter. The program and block identifiers are
output when read, each of them on a new line. The program identifier is followed by the setting
of the free store bounds at the time assembly began, and each blockname is followed by the
letter x, if the block is being output, letter n in the case of normal assembly and letter ¢ if KEY
37 of the word generator is down.

At each temporary pause (see section 1) the word ‘Wait’ is displayed on a new line.
Assembly ends when the trigger list has been input; END and the new free store bounds are
displayed, and RAP then waits for the next message from the typewriter.

The message StFull indicates that the store is full. SAP then continues to input the
program tape to find out how much extra store space would be needed to hold the program. This
number of locations is output as a 4-digit integer when the end of the trigger list is reached, If
there is not even enoughroomto calculate the exura space, the message NOROOM will be displayed,
and RAP will wait for the next typed instruction. The RAP locations FF and LF are not updated
until the whole of a program’s trigger list has been assembled: the extent of the freestore area is
not therefore altered until the program has been completely and, in general, correctly assembled.

SEARCH is output whenever the tape under reader 2 is about to be searched for some
replacement text.

The message

TYPE A [

indicates that the text, including formal parameters, of replacement A is required for immediate
use. This text should be typed in and ternminated with the character | . If a mistake is made
while typing, the whole of the text input so far must be cancelled by typing the non-escaping
character ¥. The identifier A may itself be given as the replacement text, by typing the character =,
(as an example in paragraph 5.3). Typing the character = is therefore equivalent to typing ; A | .

6.3 Error output

If it should happen that SAP detects some error in the SAC which it is inputting, an
error indication will be given, and the assembly will continue. In certain circumstances - these
are outlined below - it is possible to run such a program.

Error indications are made in the form
ERR x y z

where “x’ is a single letter describing the error-type (see table below), 'y' is a four-digit integer,
which gives the number of the line in which the error was discovered, and ‘z' is the identifier or
instruction producing the error, (a maximum of 13 characters are printed).

-
fIssue 3)

2.1.2.6.

‘y" is the print up of a line count which is begun afresh, at zero, whenever the control
name begin is read. This count is advanced by one whenever a control name, or an instruction,

or a wholeword which is not an instruction is read.

%, Displayed MNature of error Action taken by Possibility of
letter SAP before it running
continues ErrONeous
assembling program

a Block missing from program If the trigger list is part
when the trigger list is of a replacement text,
about to be input outputs NORUN and No

RAP waits for the next

message.

Otherwise comes to a

temporary pause (so

that the new block

may be loaded in Yes
Reader 1 and assembly

continued: the trigger

list must be reinput at

the end of the program).

[Erroneous character Assembles a zero

or instruction instruction into the
object program, and No
skips to the next
newline.

Unintroduced block Skips to end of block Yes

i Identifier given Ignores new introduction No
conflicting intro-
ductions, (e.g. an
identifier introduced
twice as a local label).

o Local identifier not Introduces the Yes (with key
introduced by the time identifier as data 37 down)
end is read No (without)

u Unknown trigger-point Assembles an entry Yes, if non-
given in trigger list which causes erroneous

NOPROG to be output, trigger points
if used. used.

(Issue 3)

2,1.2.6.

In all other cases, the assembly of erroneous programs is concluded with the message
NORUN instead of END and the bounds of the free store area are not updated.

6.4 Example of assembler output

(Messages typed by the operator are underlined)

Messages
IN. SAP
SAP, >
GATHER 2791-5532
apples n

TYPE count [=
TYPE count [; count 1]

Wait

truffl ¢

END 2860 - 5432
SAP.

SAMPLE 2860 - 5482
apples n

truffl n

ERR e 0064 leave)/

ERR u 0093 begin * truffle

NORUN
GATHER; > 3.
END

SAMPLE.

NOPROG

Comment
input main assembler under RAP
enter SAP to read
the first program. Store Bounds.

first block - assembled normally.

typed replacements.
temporary pause.
second block - checked.

Assembly completed. Bounds.

Erroneous instruction in 64th line of block ‘truffl’, (viz.

instruction begins with /).

End of assembly.
Enter GATHER via RAP

End of run

Sample not in RAP'S list of programs.

-28 -
(Issue 3)

the

2.1.2.6.

6.5 Assembly onto paper tape

The user may instruct SAP to assemble programs, either into the store, so that they are
ready for immediate use, or else onto paper tape in a form of binary code. The instruction which
causes SAP to assemble the current program onto tape is given by leaving the word generator
I6-key depressed as the assembler is triggered; the program is then assembled into the store by
blocks, each block being output when it is complete. (Note: Common programs called by the object
program do not have to be in store while assembly is being made onto paper tape).

Successive program blocks are assembled into the same store area, so that a program
cannot be outputl to both store and tape in one operation; if the keyboard settings of 36 and 37
are given together, only assembly onto tape will occur,

Output is stopped if any non-ignorable error is detected in the program, or if store space
runs out; but the remainder of the program will be input and checked, and the extra amount of
store space needed will be calculated, if appropriate.

The output tape is headed with a short leader, a copy of a self-triggering program which
will read the assembled program back into store, and then delete itself. (Note: Common programs
called by the object program should be in store at this time). This is done by loading the tape in
Reader 1, gaining control with RAP, and typing IN. The program will be read and stored in the
available freestore area, one of the following messages will be displayed on the typewriter, and
RAP will wait for its next instruction:

programname (indicating that the program has been correctly input).
ERRSUM (failure of tape checksum)

NOROOM (not enough store-space for the program)

identi:
NOPROG {the common program ‘identi’ is missing from store)
NOPROG {this indicates either a software systems error, or that the object

tape has been mispunched or misread)
The stored program is triggered by typing
programname; n
where n specifies the required entrypoint.

programname. may be typed in place of

programname; 1.

RAP will sumcheck the program before accepting this entry-instruction; but this sum-
check will not be made if the program’s binary tape was produced with the 35-key depressed.

P
{Issue 3)

2.1.2.6.

6.6 Form in which assembled programs are stored

Each program is preceded by a 6 location heading and followed by a (4+n) location
trigger block, ‘n' being the number of trigger points specified in the program’s trigger list. The
first word is planted in the current first free location and each data item is allocated to the next
available location at the opposite end of the free store. Block links are treated as data.

Also, information dictionaries are built up in the area to which SAP allocates data,
which extend towards the object program as assembly progresses. Data space is normally allocated
so that it overwrites, the dictionaries at runtime, but programs assembled with checks, as des-
cribed in SAPTEST in Appendix 2, have their data allocated between the dictionary entries, so
that information formed by the assembler is still available to the check program at runtime.

Assembled programs are stored in the following form, starting from the low addressed
end of the freestore (the current first free location) and progressing towards the high addressed
end:

(i) A 5 word program-head (see RAP 2.2.1). The first instruction of the second
word in this head is an absolute jump to the first word of the stored program’s
trigger block.

(ii) A single word, which is used as the program's ‘‘common-program-link"
(LINKCP).

(iii) Then follows the program proper, stored in exactly the form and layout specified
by the programmer; but note -

{a) The first instruction of each block is put in a fresh location; it never
shares a location with the last instruction of the previous block.

(b) After each block there may be stored a number of diamond bracket constants,
(these are constants which have been used in instructions of the form
“FN < >"). Each diamond bracket constant used in a program is
stored at the end of one of the program blocks. If the same diamond
bracket constant appears in more than one block, it is stored at the end of
the block inwhich it is first used;unless the constant quotes an unallocated
identifier, when it is stored at the end of the block in which this identifier
becomes allocated.

(c) STOP, OSTOP, ZSTOP and NSTOP are single jumps and are treated
like any other instruction, COMP, EXITCP, SUBR, EXIT are all wholeword
instruction pairs

COMP, X, n 73 LINKCP of X: 4U}nth entry to X
44

EXITCP, n 00 LINKCP/40 n
SUBR, A*B 73 LINK*B:40 A*B

EXIT, n 00 LINK /40 n

{iv) After the program follows the trigger block, (4+n), words long. This is as follows:

-0 -
(Issue 3)

2.1.2.6.

30 RAPsep : 05 <+31>
42 k

Subroutine entry to RAPread

02 0 : 17 RAPword
k)42 El : 05 RAPword
42 E2 : 05 RAPword
42 En jump to RAP to output ‘NOPROG*
where E1, E2..... En are the trigger points.
RAPsep contains the terminator to the entry instruction typed

in by the operator (; or .)

RAPword holds the word read from the typewriter
(in this case the entry point)

Starting from the high addressed end of the freestore and progressing towards the low
addressed end:

(i) A single location is allocated for each blockname read which serves as the
LINK location for the block. These LINKS are allocated down the store in the
order in which their associated blocks appear in the block introduction.

(i1) A single location for each data item introduced again in the order they appear
in the introduction lists. No data location reserved in this way is ever asso-
ciated with any other data name.

6.7 Running SAC Programs

Load any data tapes which may be needed, and type the program identifier terminated
with a semicolon. If RAP accepts the entry, it will output a diamond closing bracket > and the
operator should then type in the number of the trigger point at which the program is to be entered,
terminated with a full stop. Thus, to enter at the nth of the trigger points specified in the pro-
gram’s trigger list, type the integer followed by a full stop.

n.
Example: a typical entry instruction might be
GATHER; > 5.
When the run is finished, END will be output, and RAP will wait for its next message.
The typed message
GATHER.

will be understood to mean
GATHER; 1.

+31-
(Issue 3)

2.1.2.6.

If the typed message GATHER; causes RAP to display > , an entry is made to the
trigger block of the program GATHER. This block examines the terminator and if a semicolon
causes re-entry to the integer read subroutine of RAP, to read the number of the trigger point.
The trigger block then determines the entry location required.

Entry to programs which are not in the store, or to programs in which irreparable errors
were discovered at assembly time, cause RAP to output

NOPROG

instead of > . If the program is present but the trigger block finds the entry is made to an unknown
trigger point the same message is typed NOPROG.

6.8 Punching instructions
(i) GENERAL'

SAP tapes are punched on the Flexowriter in the Elliott 8-hole code; both tape and
print-up should be retained.

Each tape should begin and end with about a foot of runout (blanks).
The program pages should be punched in the order given; about one inch of runout

should be added when the end of each page is reached, and ten newlines should be
inserted just before punching the underlined word begin.

(ii) TABS

Position the paper so that each newline will begin at about one inch from the edge
of the page.

Set tabs at:

12 spaces from margin (to mark the beginning of the *:' - column)

18 spaces from margin (to mark the beginning of the ‘address’-column),
and 30 spaces from margin (to mark the beginning of the *‘COMMENTS'-column).
(iii) PUNCHING
Ignore all lines which are blank, or which have an X-mark in the ‘LINE'-column.

For all other lines, begin by punching everything in the ‘INSTRUCTION’-column,
tabbing as indicated above.

If the line began with an underlined word, such as program, or if it has the
character (in its *“T*-column, then continue punching into the *COMMENT'-column. Do not
otherwise punch this column.

End each line with a newline.

'see ELLIOTT 503 SAP PROGRAMMING SHEETS

<92
(Issue 3)

2.1.2.6.

Control names in which some of the letters are underlined more than once are read
as if the letter was underlined once only.

(iv) STANDARD NOTATION
Paper tape code abbreviations such as L should be written as the letter L encircled

without underline, thus @. when giving punching instructions to distinguish them from,
for example, 'L underlined’.

o means the letter O

| the letter |
newline
space

tab

SiX spaces

@®O0O®0O

runout

@ halt code

(v) POUND SIGNS

It is important that only the layout characters WRITTEN IN by the programmer be
inserted between any £ sign and the newline at the end of the line.

(vi) MAKING CORRECTIONS
Erroneous characters may be overpunched with the erase character.

Lines containing the character £ may only be corrected by erasing the complete
line including the £, and then repunching the whole line.

T
(Is5ue 3)

00000.000
00010.001
00010.010
00000.011
00010.100
00000.101
0o000.110
00010.111
00011.000
00001.001
00001.010
00011.011
00001.100
00011.101

00011.110
00001.111

00110.000
00100.001
00100.010
00110.011
00100.100
00110.101

00110.110
00100.111

00101.000
00111.001
00111.010
00101.011
00111.100
00101.101

00101.110
00111.111

G0 =3 S n e e b = D

ad el B Bd Bl B Bl Bl B bd B B e e s et e e e e e
L =TT - - - T [S I S T T A Y . T . O O - T i — I -
00 =) oA e W R e D e # Re o B

Abbreviations

I |<lTic

I=

T —

—
-

-

APPENDIN]

8-CHANNEL PAPER TAPE CODE

01010.000
01000.001
01000.010
01010.011
01000.100
01010.101
01010.110
01000.111
01001.000
01011.001
01011.010
01001.011
01011.100
01001.101
01001.110
01011.111
01100.000
01110.001
01110.010
01100.011
01110.100
01100.101
01100.110
0D1110.111
01111.000
01101.001
01101.010
01111.011
01101.100
01111.101
01111.110
01101.111

I Backspace
E Erase

L New line
R Run Out
S Space

T Tabulate

335
33 A
34 B
35C
36D
ITE
38 F
39G
40 H
411
42)
43K
44 L
45 M
46 N
470
a8 p
49 Q
50 R
518
52T
53U
54V
55 W
56 X
57Y
58 Z
59
60
61
62V
63

10010.000
10000.001
10000.010
10010.011
10000.100
10010.101
10010.110
10000.111

L0001,
10011.
010
011
100
101
10
11

10011
10001
10011
10001
10001
10011

000
001

10100.000
10110001
10110.010
10100.011
10110.100
10100.101
10100.110
10110.111

10111
1010
10101
10111

EEelv=iz

o o
Appendix 1

000
.001
010
011
10101,
10111,
10111,
10101,

100
101
110
111

88 [

89 |

90
9] <
92 >
931
94~
95 %

11000.000
11010.001
11010.010
11000.011
11010.100
11000.101
11000.110
11010.111
11011.000
11001.001
11001.010
11011.011
11001.100
11011.101
11011.110
11001.111
11110.000
11100.001
11100.010
11110.011
11100.100
11110.101
11110.110
11100.111
11101.000
11111.001
11111.010
11101.011
11111.100
11101.101
11101.110
11111.111

Friden Programmatic Codes
Stop Code (Halt)

Paper Throw
Underline
Vertical Bar

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

2.1.2

M= = £ <« £ = ®nw " o0 o3 =K== "0 oo o@ . -3

mic

2.1.2,

APPENDIX 2

SAPTEST

FUNCTION

SAPTEST is a version of the SAC translator which includes the following facilities in
addition to all the facilities of SAP. These extra facilities are provided to assist in the testing
of SAC programs.

(1) A trace of labelled instructions (with or without output).

(2) Checks on the intermediate values of data variables on reaching any specified
labelled instructions.

(3) A ‘dump’ of intermediate results, together with the current values, of the accumu-
lator and modifier, auxiliary and overflow registers, in sumchecked binary, at any
specified labelled instructions.

{(4) Entry to the program being tested at any labelled instruction setting the values of
data variables and the registers from a previously obtained ‘dump’ i.e. the ‘load’
facility.

Note: in (2), (3) and (4) the check, dump, or load is carried out before the labelled
instruction is obeyed.

METHOD OF USE
Entry

A test run is controlled by the entry point or points made to SAPTEST. A prepared
‘control tape' is then used to supply the information needed to perform the desired tests.

Entry is made to SAPTEST in the normal RAP manner; by typing the program name,
(SAPTEST); followed by the entry point, (M). Also certain word generator settings are required.

The eight entry points to SAPTEST are tabulated below together with their functions:-

M Functions

Program 1. Entry to the SAC translator within SAPTEST. This has exactly
translation the same effect as an entry to SAP.

-2 Test run with the output of checks as specified on a control tape.
Specification 3. Extra Jdata for a check run (load next control tape).
of type of)
checking 4, Test run with a trace of all the labels, (output being dependent
required. upon the settings of key 37 and key 1 of the word generator) pre-

serving the current last ten labels traced,
L 5. Test run incorporating the facilities of both 2 and 4.
-1-

Appendix 2

M Functions
Operations 6. Output the last ten labels traced.
al run
Lime 7. Transfer control back to the program being tested, to continue
with a normal run.
Begin test run 8. Entry point for start or continuation of run (see Operating Instruc-

tions).

Entry 3 may be used at any time after an entry 2, 4 or 5 has been made to SAPTEST; all
information obtained from previous control tapes will have been preserved, e.g. if after a test run
it is decided that insufficient checks have been made, then further checks may be specified on
another control tape and entry 3 used to input these extra specifications (see Operating Instruc-
tions),

Entry 6 may be used at any time during or after a test run (if necessary, manually
interrupting the run). SAPTEST will subsequently display on the output writer, the last ten labels
traced,

The word generator settings tested by SAPTEST are as follows:

KEY EFFECT

39 (sign bit) same as for SAP (see paragraph 6.1)

38 " L1} Ll L] L L1 (L]

37 When depressed the current block is assembled with checks, (i.e. certain

information is retained which can later be used by SAPTEST) provided that
the key was down when reading the program head and that key 36 is not
depressed.

This key is tested immediately after key 38 so that check-setting may be
altered at the beginning of each block.

If any of the checking facilities of SAPTEST are to be used on a block,
key 37 must be depressed as described during assembly.

During a trace, the output may be permitted or suppressed at any time by
setting or clearing this key.

36 same as for SAP (see paragraph 6.1)

35 11 11 i 1 " [Tl i

34 n n LU Ll n Ll L1}

1 If depressed the only labels output are those to which control is transferred

non-sequentially during the run., If clear, all labels traced are output,

i
Appendix 2

Control '['ape

The following information should be specified on a control tape.

(i)

(ii)

(iii)

(iv)

(v)

The name of the program to be tested, together with the entry point and the output
device to be used.

A list of blocks to be made non-checkable areas, which have not been so specified
during translation. (see word generator settings).

The point at which the test run is to end, if other than the normal point. (Only one
point may be specified).

Specification of any ‘dumps’ or ‘loads’ required.
Specification of any checks required.

MN.B. The entry point of SAPTEST used will over-ride any information specified on
a control tape, e¢.g. if checks are specified on a control tape and entry 4 to
SAPTEST is made, no checks will be output.

Punching Instructions

The control tape 15 made up of these five parts which are punched in the following form.

MN.B. Italics are used to indicate that the appropriate identifiers should be inserted for these items

(i)

(ii)

(iii)

program name ; N; J.
where N and J are unsigned integers.
N is the entry point of the program being tested.
J indicates the output device to be used as follows:
J =1 for output on punch 1
J =2 for output on punch 2
J =3 for output on the output writer.

blockname

blocknume

blockname

t label + blockname

-3-
Appendix 2

(iv) label * blockname : control word ; data ;

data ;

-

data ;

where the control word is either dump or load. Any number of specifications of
this type may occur on a control tape and the last item of data, for a dump or
load list, is terminated by *." (full stop) instead of *;' (semicolon).

(v} label «» blockname ; data ; L.

data ; [.

data ; [.

end

Any number of specifications of this type may occur on a control tape where end terminates
the list of data for a check and I specifies the format in which the value of the data
variable will be output:

[= 1 fractions

I = 2 integers

I = 3 octal

I = 4 pseudo instructions
I = 5 floating-point

If fraction, integer or floating-point format is required a common program PTSPRINT
must be in the store at run time (see below),

N.B. The value of an identifier which has been replaced may be output, but the identifier
in the replacement text and not the original replacement identifier must be speci-
fied on the control tape.

e.g. If it is wished to output the value of the replacement identifier *‘number’* and at
label “*LX'" the identifier **number®® has been replaced, by *“‘zahl®, part (v) of the
control tape should read;

LX * blockname ; zahl : 1.

e i
Appendix 2

Notes
1. A control tape must be terminated by the character .
2. For SAPTEST entries 2, 4 and 5 the control tape will consist of (i) followed directly by

(ii) and then (iii), (iv), (v) in any order. For entry 3, (i) and (ii) should not appear on the
control tape as they have previously been specified.

3. data may be either a data variable, a part or the whole of an array or a label. A data
array may be punched as

data name (n : m)
or in cases of local variables data name » blockname (n : m)
where O < n<m< array max,

4, If 1 is to have the same value as was last specified on the control tape, then data may
be followed by a full stop instead of a semicolon. I is then omitted from the tape.

5. The following characters are ignored by SAPTEST:

space, tab, erase and redundant new lines.

Restrictions

1. The minimum amount of information which must appear on a control tape is part (i)
i.e, For a trace run the control tape need only be:-

program name ; N;J.
%o

The maximum amount of information on a control tape is limited by the amount of free store
avaliable. An approximate indication of the store required for data on a control tape is given
by:-

F - 20+2i+b

where i is the number of identifiers on the control tape (not the number of different
identifiers).

b is the number of blocks in the program being tested.

F is the number of locations required by SAPTEST to store the information from
a control tape.

2. If a label is specified as the end of a test run, then other specifications referring to that
label will be ignored.

3. SAPTEST will not accept on a control tape
label +n as an identifier
or data name +n as a data variable (where n is an integer)

-
Appendix 2

2.1.2.

4. If both a dump and a check are required at the same label, then the specification of the
dump must precede the specification of the check.

Common Program PTSPRINT

For its use within SAPTEST the common program PTSPRINT must conform to the follow-
ing specifications.

Entry will be made via the first trigger point with two parameter words P1, P2 following
the entry instruction. Only the F1 bits of P1 and the N2 bits of P2 need have specific meanings
for the purposes of SAPTEST, but if PTSPRINT assumes meanings for the remaining bits of the
parameter words, it should be noted that in their use within SAPTEST they will always be clear.

The F1 bits of P1 will specify the format to be used:-

F1 = 00 for integers
F1 = 04 for fractions

F1 = 40 for floating point

The N2 bits of P2 will specify the output device to be used:-

N.B.

N2 = 0 for output on Punch 1

N2 = 2048 for output on Punch 2
N2 = 4096 for output on the output writer.

The formats corresponding to I = 1, 2 and 5 need not be as above (i.e., fractions,
integers, floating-point). Any desirable form of output may be obtained by using a
suitable version of PTSPRINT.

A 503 library program PTSPRINT is available which conforms to the above speci-
fications (see 2.2.3.20).

Operating Instructions

(1)
(2)
(3)

(4)

(5)

(6)

Input RAP using the initial instructions (see 3.1.4.1.).
Input SAPTEST by typing IN,
Translate all necessary common programs.

Translate the program with checks on all necessary blocks. (See the word generator
settings).

Load the control tape in reader 1 and any dumped tape required in reader 2.

Enter SAPTEST at the required entry point.

-6 -
Appendix 2

2.1.2.

program name ; N is output on the specified device.

DATA WAIT is output on the output writer.

N.B. If the control tape is one of extra data for checks then only DATA WAIT is output,

{(7) Load any data tapes required by the program being tested and then enter SAPTEST

at entry point 8.

N.B. All SAC programs concerned in a test run must be translated using SAPTEST
even if a standard SAP is in the store at the time of the test run.

Messages displayed during a Test run
() DATA WAIT

(ii) dump AT label » block
data

data

(iii) load AT label = block
data

data

(iv) END OF CHECK RUN program
WAIT

(v). CHECKED TO label « block program
END

is displayed after the control tape
has been read. Control is returned
to RAP.

is displayed during execution of
a dump.

is displayed during execution of
a load,

is displayed when control is re-
turned to RAP by the program
being tested.

is displayed when alabel is reached
which has been specified as the
end of a check run.

After the messages (i), (iv) or (v) have been displayed control is returned to RAP to

await further messages from the input typewriter.

e, 2
Appendix 2

2.1.2.

I'rror Indications

Message Cause of error
During input of During run Subsequent
control tape effect
TAPERR incorrect character none RAP wait.
on the control
tape or sum check
failure when a
dumped tape is
loaded.
IMCERR error connected none RAP wait
with SAP
dictionaries e.g.
a blockname has
been read where a
label was expected.
ERROR unknown identifier dump at a RAP wait,
on control tape label in an
uncheckable
area.
OVERLP insufficient space insufficient RAP wait
in the store to space in the
hold the data store to hold
from the control the current
tape last ten labels.
NOPROG the program none RAP wait
specified on the
control tape is
not in the store.
NOCHECK label =+ block none a label in test run
a non- continues.
checkable
area
specified

for a check.

-8 -
Appendix 2

2.1.2.

FORM OF OUTPUT
Both trace and checks are output on the device specified on the control tape.
Trace
Each label is output on a new line together with its associated blockname unless it is
the same label as was last traced; (i.e. a simple loop is being executed) in this case the block-
name will be followed by an unsigned integer, enclosed in round brackets, indicating the number
of times the label has been consecutively traced.
e.g. begin *blockl
data *blockl (64)
invert *blockl
coMmP
output*block2
title *block2
data *block2 (64)

end *hlock2

COMP indicates that control has been transferred to a point outside the bounds of the
program being tested.

N.I3. With the limited output of trace, (that controlled by key 1 of the word generator)
labels are output on a new line whether they are repeated or not.

Checks
The label at which the check is occurring is output on a new line followed by the data

name required and the current value of the data variable in the required format, each on a new
line, If an array is output each element is output as an individual item of data being punched:-

e.g. datd name +n
actual value

labell*block3
INCREA*block3
+73

DATE
0000104307712

TREND + 1

il
Appendix 2

2.1.2.

00 57:10 193

TREND + 2

00 65:10 199

TREND + 3

00 83:10 221

PROFIT

40 0:03 8162

If fraction, integer, and/or floating-point format is called for and the common program

PTSPRINT is not in the store, then the current value of the data variables concerned will be

output in octal format and the corresponding data names will be followed by the character &.

"Il mp

The binary tape produced during the execution of a dump will be output on Punch 1. The
first non-zero character on the tape will have a binary value of 80. This will be followed first by
the values of the specified data variables, then by a zero word and finally by the current values
of the accumulator and modifier, auxiliary and overflow registers followed by a checksum.

Example of a control tape (with explanatory notes)

EXAMPLE; 3;2. program name; entry; output device
blockl uncheckable block
blockd4 uncheckable block
Tlabel2*block3 test run terminating point
label1*block2 ;dump;COST*block2; output in binary the contents of: local data COST;
PROFIT; global data PROFIT;
COUNT; global data COUNT;
AREA(1:25) global array AREA.
labell*block3;INCREASE*block3;2 output: local data INCREASE as an integer;
DATE;3 global data DATE in octal;
TREND(1:3);4 global array TREND in pseudo orders;
PROFIT global data PROFIT in pseudo orders;
A*block3(1:2):4 local array A in pseudo orders.
end
% terminating character of control tape.
-10 -

Appendix 2

2.1.2.

CONFIGURATION
The basic 503 computer.

SPEED

SAPTEST reduces the speed of the program being tested by a factor of at least 60,
depending upon how much output is made by SAPTEST in the form of traces and checks.

TAPES

A sum checked binary tape is provided suitable for input by RAP.

oL
Appendix 2

EXAMPLE

The following is an example of a program, a suitable control tape and data tape and the
resulting output during a test run using SAPTEST.

program

program EXPONENTIAL; (Computes ¢ T x)
block read,

master (start),

print;

data EXP, DELTA, SUM;
begin read; (input x and maximum)
(permissible error, storing)
(x in EXP and error/2 in DELTA)
end read;

begin master;
data COUNT,LAST;

start) 30 b B
20 SUM
20 COUNT
30 EXP
repeat) 20 LAST
60 SUM
20 SUM
30 LAST
10 COUNT
60 <+1.0,>
10 COUNT
63 EXP
64 COUNT
61 DELTA
41 end
60 DELTA
40 repeat
end) 30 sSUM
40 print
end master;

begin print;

end print;

trigger read;

-]} -
Appendix 2

control tape

data

Uperator action

SAPTEST ; 5
DATA WAIT
SAPTEST ; 8
END OF CHECK RUN EXPONE
WAIT
SAPTEST ; 6.
END

EXPONENTIAL; 1;2.

read
print
repeat*master;COUNT*master;5.
LAST*master.
end
end*master; EXP.
DELTA.
SUM.
end
%

+.04
+.00005

Displayed message

=13 -
Appendix 2

2.1.2.

Output on Punch 2

EXPONE: 1

start *master
repeat*master
COUNT*master
.10000000,,+01
LAST *master
.I]ﬁ[l[]ﬂﬂﬂ[]m+ﬂﬂ

repeat *master
COUNT*master
20000000, +01
LAST *master
40000000, -01

end *master
EXP
AUDI]O[I{)U“-HI
DELTA

.25000000, -04

SUM
.10408000, +01

start “"master
repeat *master(
end *master

2)

2.1.2

APPENDIX 3

ASSEMBLY-TIME EDITING FACILITY

A1l versions of the assembler, from issue 3 onwards,

include & facility which allows the program text to be edited while it

is being assembled into main store. The editing is achieved by means

of an 'edit tape' which contains instructions of the form specified in
the descriptions of EDITALL or EDIT8.

To make use of this facility the following sequence of

operations must be observed:

1.

2

3.

Input the SAP assembler and EDIT8 (in either order).
load the program tape in reader 1.
Load the edit tape in reader 2.

Trigger SAP at its second entry point:
type SAP;Z.

Appendix 3, Page 1

503 TECHNICAL MANUAL
VOLUME 2: PROGRAMMING INFORMATION
PART 1: PROGRAMMING SYSTEMS
SECTION 3: ALGOL MK. 1

The contents of this section are liable to alteration without notice

January 1965
(Issiee 3)

LELLIOTT]
SCIENTIFIC COMPUTING DIVISION
Elliott Brothers (London) Limited
Elstree Way, Borehamwood, Hertfordshire, England

First Printed August 1963
Reprinted October 1963
Issue 2 March 1964

Issue 3 January 1965

Preface

CONTENTS LIST

1. System Specification
1. Elliott 503 ALGOL Representation .

1.1.

1.2,
)3
1.4.
¢ 8
1.6.

Basic Symbols ..

1.1.1. The characters halt and ,/
Punching Instructions ..

MNotes to the Programmer

The Program

The Use of 503 ALGoL ngram Sheets
Correction of ALGOL Programs

2. Restrictions and Programming Notes
Restrictions

2.1

2.2,
2.3,
2.4,
2.5,
2.6.
2.7.
2.8
2.9.
2.10.

2.11.
2,12
2.13.
2.14.

The Dec]arauon of Labels

2.1.1. Unsigned integers as labels
2.1.2, Switches .. i

Type of Arithmetic Expressmns
go to statements

for statements

0WN ATTAYS

Specification of parameters
Recursive Procedures ..

switch parameters

Procedures as Parameters of Prn-cr:durﬁ
Type Procedures

Sequence of Declarations

Length of identifiers

Reserved identifiers

The operator 2

Programming Notes

2.15.
2.16.

217

2.18.
2.19.
2.20.

Range and Accuracy of Numhers

The Standard function abs(E). .

The Standard trigonometrical procedures

Sequence of Gperatinns

Boolean expressions

Correspondence between forma] and ar:tual parameters
2.20.1. Array parameters

2.20.2. Parameters called by name

(fssue &)

2.1.3.

page

Y= - - - - - -] 00 =] =) =) O O Lh Lh

BN W

. Input and Qutput
. Introduction

I.1. print and read statements .
1.2, Structure of read and print lists
1.3. Input Data tape

1.4. Presumed settings

1.5. Output of text

. Setting Procedures

2.1. Device Setting Prmedures
2.2. Prefix Setting Procedures
2.3. Format Setting Procedures
2.4. Scaled and Aligned Formats .
2.5. Additional Format Setting Promdurﬁ
2.5.1. Grouping of Digits
2.5.2, Leading Zeros ..
2.5.3, Specialities
2.5.4. Miscellaneous
2.5.5. Errors ..
2.5.6. Parameters out of Rangc
2.6. Input and Output of Strings ..
2.7. Procedures in read and print lists
2.8. Note

Additional Standard Procedures

Introduction .
Additional Standard me.rmm

. Checking Functions
. Optimization Procedures

4.1. Addressing Facilities
4.2. Machine Code ..
4.2.1. elliott
4.2.2. example ..

. Space Allocation

5.1. The FREE STORE message
5.2, storemax

. Control Procedures

6.1. wait
6.2. restart
6.3. stop
6.4. dump
6.5. precompile

Summary of Standard Procedures

Use of SAC Common Programs within an ALGOL Program

2
(fssue 3)

page
14
14
14
15
15
16

16

17
17
17
18
18
18

19
19
19

3838

_—

Error Indications

. Errors During Running of Program ..

1.1. Owverflow Errors

1.2. Ignorable Errors :
1.3. Machine Detected Ermrs
1.4. Undetectable Errors

Errors During Translation of Program
2.1. Error Table

Operation of the System

Contents

Operating Notes

2.1. Introduction

2.2. Normal Operation
2.3. Error Conditions

2.4, Additional Facilities

2.5. Advanced Operations .
2.6. Marking of Tapes

Operating Instructions. .

3.1. Normal Operating Instructmns
3.2. Error Conditions in Normal Operation
3.3, Additional and Advanced Operations

3.4. Error Conditions in Additional and Advanced Dpﬂmttuns

Summaries i . o e = i

4.1. Waits

4.2. Triggers

4.3. Suggested Tape Tlﬂm
4.4. Displayed Messages

Appendix 1.

The 503 aLGoL System for Machines with a Core Backing Store

Appendix IL

1. Common errors made in program writing
2. Program checking ..

ELLIOTT ALGOL Program Sheet
503 ALGOL Operation Sheet

(Issue 3)

2.1.3.

page

30

30
i
i

il
32

35
35
35
35
37
37
38
39

41
43

49
49
50
50
51

FOLD OUT

2.1.3.

PREFACE

This specification describes how to write programs in Elliott ALGOL MARK I for running on the
Elliott 503 computer,

The name MARK 1 does not imply a new compiler, but is used merely to distinguish it from
the new 503 ALGOL MARK Il compiler developed for use on a configuration which includes
some form of backing store: either core storage or magnetic tapes.

It is assumed that the reader is already familiar with aLGoL 60, For those requiring an intro-
duction to the language the following publications are recommended:

H. BOTTENBRUCH
Structure and Use of ALGOL 60
Journal of the ACM, April 1962

E. W. DUKSTRA
A Primer of ALGOL 60 Programming
Academic Press 1962

D. D. McCRACKEN
A Guide to ALGOL Programming
Wiley 1962

E. W. WooLpripGE and J. F. RACTLIFFE
Introduction to ALGOL 60 Programming
E.U.P. 1963

Appendix III of the latter appears by kind permission
of the authors and publishers.

A basic knowledge of the Reserved Area Program is also assumed as this is the most
fundamental program on the 503. See section 2.2.1.

4
(Issue 3)

2.13.1

SYSTEM SPECIFICATION

1. ELLIOTT 503 ALGOL REPRESENTATION

The reference language of ALGOL requires a set of 89 printable characters; 78 of these characters
are directly available in the 8-channel Elliott telecode and a further 4 can be reproduced by
punching a combination of two characters. This leaves only 7 characters which are not available.

The following section gives the necessary changes which must be made in an ALGOL program
before it can be presented for punching in Elliott 8-channel telecode.

Note. All bold type used in the text indicates that the words should be underlined when used in
an ALGOL program. This does not apply to paragraph headings (e.g. 3.6.1. wait).
Also the word ‘display’ is used to mean ‘print out on the output writer’.

1.1. Basic Symbols

503 representation ALGOL equivalent
and A

or W

not 1

£ i

9 3

div =

* >

To give compatibility with 803 ALGoL, the following alternative representations are acceptable,
but not necessary, in 503 ALGOL.

o
=
&
=
-

representation
less
er

lesseq

greq
noteq

equiv

I AV A

The synonyms boolean for Boolean and goto for go to are also acceptable in 503 ALGor, but
** for 4+ and @ for ,, (subscript ten) are not acceptable.

Note. The symbol O is not allowed (see 2.14. of this chapter).

5
(fssmre 3)

2.1.3.1.

1.1.1. The Characters halt (76) and %,

The characters @ (halt) and 9/ are reserved in Elliott ALGOL for special purposes connected
with tape editing. They should not appear in an ALGOL statement or on a data tape, or in a
comment, unless the corresponding special effect is required. In a string, %, is treated in the
same way as any other character, but @ should not be used (see paragraphs 1.6 and chapter 2
paragraph 1.3).

1.2. Punching Instructions

I. An ALGOL program tape should be punched on an 8-channel Flexowriter. The punched
tape should then be printed up and this print up checked against the original program
script.

2. aLcoL programs should be written either on a pre-printed form (the Elliott ALGoL
Program Sheet - see end of 2.1.3) or on lined paper with some vertical lines added. The
heavy vertical lines represent tabulation and indicate where each line of print should
commence. The tab. stops should be inserted every six character positions from the
left hand margin, which, in turn, should be set approximately #” in from the left hand
margin of the paper. This permits eight stops to be inserted when using a standard paper
roll.

3. Punch exactly what is necessary to produce a print-out like the written program, i.c. all
blank lines, spaces, etc. Consecutive underlined words should be separated by a space.
In general the exact number of spaces, new line characters and tabulate characters is not
critical, but punching the correct number improves the general appearance of the
print-up. However, between the characters £ and ?, the text must be punched exactly
as written.

4. Care must be taken to avoid confusion between the figure 1" and the letter /" and also
between the figure ‘0" and the letter ‘o’. These must be punched correctly and punch
operators should familiarise themselves with the difference in print of these characters.

5. There should be a run out of blank tape at the beginning and end of every tape punched.
Blanks can also be run out at any time.

6. A wrong character may be cancelled by overpunching with ‘Erase’. This may occur
anywhere.

7. Every semicolon should be followed by three or more blanks to simplify future editing
of the tape. (The omission of these blanks is not an error.)

8. A halt code ® should be punched at the end of every program tape, or at the end of
every physical piece of program tape if the program is punched in parts, and also at the
end of every data tape.

9. I it is impossible to punch one line of manuscript on one line of paper, a new line may
be commenced between any two consecutive words, numbers or symbols. A single word
must not be split.

10. To produce an underlined word, punch the underline character before each letter of the
word. Do not punch the underline character after the last letter of the word. To produce
one of the following symbols, punch the pair of characters shown opposite it:

(Issme 3)

2.1.3.1

Symbol Characters Punched
Vertical bar =

= Underline =

= Underline <

= Underline =

Since ‘underline” and ‘vertical bar’ do not move the carriage, this produces the correct
print-up.

11. If goto is punched as two words then the space must also be underlined.

1.3. Notes to the Programmer

1. ALGOL programs may be written on a pre-printed form (503 ALGOL PROGRAM sheet) or on
lined paper (on which a series of vertical tabulation lines have been drawn).

2. Consecutive words (identifiers) or consecutive basic words must be separated by at least
one space and manuscripts must be written with such words clearly separated.

3. The programmer must clearly differentiate between the figure ‘1’ and the letter */” and
also between the figure ‘0" and the letter ‘o’. The use of the continental 1 and 7 and a
script " is strongly recommended.

1.4. The Program

Every ALGOL program written for the 503 must be preceded by a title and followed by a
semicolon,

A title consists of any string of characters not including a semicolon or a halt code, and is
terminated by a semicolon. This title is displayed when the program is run.

The title should be used to give enough information to identify the program and the programmer
uniquely. It may include name and department of the programmer, cost code of the work being
done, and the date on which the program is presented. Each installation is encouraged to establish
its own standard practice for the writing of titles. Since the title is not part of the program, a
comment may not come immediately after the semicolon which ends the title.

1.5. The Use of Elliott ALGOL Program Sheets

Elliott ALGOL program sheets have been designed to enable the programmer to indicate to the
punch operator the exact layout of his program. For this purpose, one and only one character
should be written in each cell; a cell which does not contain a character is treated as a space if it
occurs in the middle of a line; after the last occupied cell of a line a change to a new line is
punched.

The cells are grouped in units of six by means of a firmer line. This is an aid to punch operators
in counting the number of spaces required on a deeply indented line. It is recommended that
indentation should be a multiple of six; this allows room for the tabulation of statements just
to the right of a begin.

For identification purposes, the name of the program should be written at the head of each sheet;
if the sheet contains a recognisable subsection of the program, a subtitle may be used. These
names at the head of the sheets are not reproduced on the punched document. Therefore the first
sheet of the program must contain a copy of the title written as part of the text of the program
as well as at the head of the sheet.

(Issue 3)

2.1.3.1.

1.6. Correction of ALGOL Programs

Any errors in an ALGOL program, whether of a syntactic nature or in the actual formulation of
the problem, must be corrected in the source language. There is no means of making corrections
to the compiled program in the store of the computer.

To insert a statement or group of statements into a program after a given statement, S say,
punch @ (76) on the tape immediately after the semicolon that terminates S. On reading this the
computer comes to a systems wait. Then translate the additional statements (the last one having
@ punched after the terminating semicolon), and finally continue translating the original
program.

To cause the compiler to skip a statement of the program, punch 7} immediately after the
semicolon that terminates the preceding statement. On reading %, the computer ignores all
subsequent input until the next semicolon.

The halt code facility also permits a program to be punched in sections on separate tapes, each
section having @ at the end.

According to the punching instructions, three or more blanks should be left after every semi-
colon of the program. If this has been done, it is an easy matter to insert ® or % by a hand
punch wherever necessary.

Note, In most cases it is easier and more convenient to modify the ALGOL text before translation
by using the 503 Library Program EDITALL (see 2.2.3.21.).

2. RESTRICTIONS AND PROGRAMMING NOTES

This section describes a number of restrictions imposed on the full generality of aLGoL, and
mentions restrictions which are part of ALGoL and whose effects are frequently overlooked.

RESTRICTIONS

2.1. The Declaration of Labels
Any labels used to label a statement in the compound tail of a block must be declared at the

head of that block. The method of declaring a label is to include it in the switch list of a switch
declaration:

switch ss := labell, label2, -

The switch identifier is obligatory, even if it is not used in a statement of the program. Any
identifier different from the other identifiers of the program may be used for a switch; but the
use of a sequence of the letter ‘s’ is recommended as standard practice, except where this would
cause a clash with other identifiers.

Care must be exercised in declaring labels in the blocks to which they are local. It is inadmis-
sible to declare labels of an inner block in an embracing block. The following is a scheme of
correct label declarations:

(Fssue 3)

2.1.3.1

begin
switch s := 11, 12, I3;

I2; begin switch ss 1= I3, 4;

end block /2;

A label may not prefix a statement in a procedure body unless it is declared in the same
procedure body. This may involve turning the statement which forms the procedure body into a
block, by attaching a switch declaration, and, if necessary, a begin and end.

2.1.1. Unsigned Integers as Labels

Unsigned integers may not be used as labels. Where they occur in a program, they should be
turned into identifiers. The recommended practice is to precede each number by a sequence of
one or more ‘I's.

For example, ‘23:" might become “/23:" or */[23:".

2.1.2. Switches

The elements of a switch list may only be labels. These labels must be prefixed to statements
of the block in the head of which the switch declaration occurs. The occurrence of a label in a
switch list serves as a declaration of that label and therefore no label can occur more than once
in the switch declarations of any one block.

If, in a published program, these conditions are not satisfied, the switch declaration must be
replaced by a portion of program which achieves the desired effect. It should seldom be necessary
to do this and no general rules are given.

If a go to statement uses a switch designator, and the subscript of the switch is non-positive, or
greater than the number of labels in the switch list, the computer displays Subscr Offe and no

9
(Issue 3)

2.1.3.1.

further statements of the program are obeyed. If this is expected to occur, the go to statement
should be turned into a suitable conditional statement. For example,
go to ss [i]
where the switch list of ss has three elements, would become:
ifi > 0andi < 4 then go to ss [i] ;
this has the same effect as that specified in the Revised ALGOL report.

2.2. Type of Arithmetic Expressions

If the type of an arithmetic expression depends upon the evaluation of an expression or upon
the type or value of an actual parameter then it is taken to be real, e.g. the result of exponentiation
is always real, even when both arguments are integral. Provided that the result is within the range
—536 870 912 to 536 870 911, no accuracy is lost as a result of this.

If the result of exponentiation appears on either side of div (the integer division sign), the
translator will not accept the program and will display Error no. 31 to indicate an inadmissible
operation. To correct this, the standard function ‘entier’ should be used.

eg n-=-2tm
should be written as
n div entier(2+ m)

2.3. go to statements

go to statements occurring inside a procedure body may not have as their destination a
statement which is outside the procedure body, thereby causing an exit of the procedure; however,
a go to statement may lead to a label which is an actual parameter of the procedure. Label
parameters may not be called by value.

There are two methods of adapting a program to evade this restriction:

(i) adapt the procedure declaration and procedure calls to specify the label as a parameter
(ii) an ‘error exit’ may be turned into an ‘error procedure’ which performs the necessary
printing, and then enters the standard procedure *stop’, which stops the program.

2.4. for statements

The implementation of the for list element is not exactly as described in section 4.6.4.2. of the
Revised ALGoOL Report, in that the address of the controlled variable is computed only once at
the start of the statement, and is not re-computed each time round the loop.

2.5. own arrays
The subscript bounds of an own array must be written as integers. There are two courses of
action which can be taken for the few programs which violate this rule:
(i) the widest feasible bounds should be chosen and the integer values inserted in the
declaration
(ii) the array should be made into a non-own array of a block surrounding the block in
which the original own array declaration was made.

2.6. Specification of Parameters

All formal parameters of a procedure must be specified in the head of the procedure.

10
(fssue 3)

2.1.3.1.

2.7. Recursive Procedures

A recursive procedure may not have any real, integer or Boolean parameters called by name.
However, a procedure may be entered recursively during the evaluation of any of its parameters,
whether called by name or called by value.

2.8. switch parameters

A formal parameter of a procedure may not be specified as a switch; consequently, a switch
identifier may not appear as the actual parameter of a procedure, though a switch element
may do so.

The easiest method of evading this restriction is to use an output name parameter to specify
the subscript of the switch.

2.9. Procedures as Parameters of Procedures

A formal parameter of a procedure may not be specified as a procedure. Consequently no,
procedure identifier, alone without parameters, may appear as an actual parameter, unless it is a
parameterless procedure which stands as an expression.

This restriction may be evaded by use of name parameters.

2.10. Type Procedures

A call of a type procedure can only occur in an expression: it cannot stand alone as a procedure
statement.

2.11. Sequence of Declarations

Any number of declarations may occur in any order in a block head, but other declarations
may not occur after a procedure declaration. All procedure declarations of a block must be
grouped together at the end of the block head.

A procedure body may contain activations of any other procedure declared previously in the
same block head. Any set of procedure declarations may be put into sequence in such a way that
this rule is satisfied, except in the case of mutual recursion.

2.12. Length of Identifiers

Identifiers are distinguished by their first six characters; any subsequent characters are ignored.
If an identifier coincides over its first six characters with any other concurrently used identifier,
its name must be changed. No general recommendation can be made on a method of systematic
alteration; it is advisable to restore uniqueness by making a reasonable abbreviation of the word.
For example, the identifiers ‘condensation’ and ‘condenser’ appearing in the same program might
be abbreviated to ‘condsn’ and *condsr’.

2.13. Reserved Identifiers
The identifiers ‘checkr’, ‘checki’, ‘checkb’, ‘checkB’, ‘checks’, ‘location’, ‘elliott” and

‘precompile’ are reserved for special purposes and may not be used in any other way (see
chapter 3).

2.14. The Operator 3
The Boolean operator 3 (denoting implication) is not allowed in Elliott aALGoL. The Boolean
expression
ADB
may always be replaced by the equivalent expression
B or not A

11
(Issee 3)

2.1.3.1.

PROGRAMMING NOTES

2.15. Range and Accuracy of Numbers

In all cases where an operation is defined as having a result of type integer, this result must
be in the range

—274 877 906 944 to 274 877 906 943
238 to 238 —]

If an integer exceeds these limits, the program stops and the message Int offo is displayed.
In an arithmetic expression a constant is treated as a positive number with an associated sign.
Thus in the example:

begin integer x;
X 1= — 274877906944 :

integer overflow results.
In all cases where an operation is defined as having a result of type real, this result must be
in the range
—35.79 x 1076 to 4-5.79 x 1076 approx.
e, —2255 tg 2255 _ 2216

If a real number exceeds this limit during the running of a program the computer stops and
ERRINT 1 is displayed. During translation, a real constant that is too large is replaced by the
largest possible real constant (=5.79 x 1074),

Where any operation (including reading and printing) is defined as having a result of type
real, this result may be inaccurate by up to two parts in 10°. It is not recommended to expect an
accuracy greater than eight significant decimal digits in testing convergence of a numerical
process.

If a number with exponent greater than 12 is read, a slightly greater inaccuracy may be expected.
In particular, if two such numbers a and b are read, and a is greater than b by an amount which
is too small to be represented, then the machine representation may be such that b is greater
than a.

2.16. The Standard function abs(E)

In accordance with the ALGOL 60 Report, this function operates on an argument of type real.
If I and J are variables of type integer the statement I: = abs(J) involves a double type conver-
sion, and if J lies outside the range —536 870 912 to {536 870 911 rounding occurs. This effect
may be avoided by substituting for ‘abs(J)’

if J less O then —1J else J

2.17. The Standard trigonometrical procedures
The arguments of sin(E), cos(E) and tan(E) are expressed in radians. If, within the limits of the
representation E is an odd multiple of n/2, then tan(E) is assigned the value of the greatest
lrcprcscntablc positive number (=5.79 x 1076),
The inverse functions satisfy
— nf2 < arctan(E) < =2
— nf2 < arcsin(E) < =/2
0<arccos(E) < =n
In extreme cases the results of these operations are indistinguishable from 0, + =/2 and .
As a result of the finite accuracy of the representation both limiting values can occur in each case.

12
{Issue 4)

2.1.3.1.

2.18. Sequence of Operations

The order in which operations are performed within an arithmetic expression is undefined
except insofar as it is determined by the rules of precedence:

(1) exponentiation

(2) multiplication and division

(3) addition and subtraction

Thus in

a:=b+4c4d
the order of evaluation of b,c and d is undefined so that if one of them is a type procedure which
affects the value of one of the others (a ‘sneaky’ procedure), the value of a will be undefined
If it is important that b,c and d are evaluated in that order, they should be converted into
expressions by the use of brackets:

a:=(b)+(c) + (d
Similarly, if it is important that the two additions are performed in the order shown, the
expression should be written:

a:=((b4+c)+d

If a, b, and c are real, and are of widely differing magnitudes, then (a+b)+c may not be equal

to a+(b--c).

2.19. Boolean Expressions
In the evaluation of a Boolean expression, every term is evaluated. Thus, in the expression
A:=BorCorD
even if B is found to be true, and thus the value of the expression determined, C and D are
nevertheless still evaluated. Hence any side effects from C and D always occur.
Remarks analogous to those of 2.17 apply to the order of operations within a Boolean
expression.

2.20. Correspondence between formal and actual parameters

In most cases if the formal and actual parameters of a procedure are of different type, con-
version of the actual parameter automatically takes place. However, in certain cases the
correspondence between formal and actual parameters must be exact. These are as follows:

2.20.1. Array Parameters

If a formal parameter of a procedure is specified to be an array, the corresponding actual
parameter must in all cases be of the same type and have the same number of dimensions.

2.20.2. Parameters called by name

If a formal parameter of a procedure is called by name and within the procedure body has a
value assigned to it, then the corresponding actual parameter must be a variable of the same
type. It must not be a constant or an expression.

No error indication is given during translation or running. Any attempt to assign a value to a
constant or an expression at run time normally results in the loss of the assigned value.

13
(Issue 3)

2.1.3.2.

CHAPTER 2

INPUT AND OUTPUT

1. INTRODUCTION

ALGOL 60 provides no method of programming a computer to input the data for a calculation
or to print out the results. In view of this, each implementor is obliged to adopt a system of his own.

1.1. print and read statements

The system chosen for Elliott ALGOL is based on the introduction of two new types of statement,
the print statement and the rcad statement. The syntax of these statements is very simple, since
they consist only of the underlined words print or read, followed by a list of operands, the items
of the list being separated by commas, e.g.

read x, v, b[i];
print x 1 2, x*y, cos(x/q) — b[j];

The effect of a read statement is to cause one or more numbers to be read from some input
device, and assigned (in the sequence read) to the variables specified in the list. The effect of a
print statement is to cause the values of the arithmetic expressions occurring in the list to be

output (in the order given) on an output device of the computer.

1.2, Structure of read and print lists

The elements of a read or print list may be arithmetic variables or procedures. A print list may
also contain arithmetic expressions and strings. These elements are scanned in the sequence in
which they are written, with the following effect:

item
arithmetic variable

number or arithmetic
expression

non-type procedure

arithmetic procedure
(inside the body of the
procedure)

arithmetic procedure
(not inside its own
body)

Boolean variable or

procedure
string

effect in a read list
A number is read from the cur-
rent input device and its value is
assigned to the named variable
NOT PERMITTED

The procedure body is executed
As for an arithmetic variable

WOT PERMITTED

NOT PERMITTED

NOT PERMITTED

14
{Issue 3)

effect in a print list
The wvalue of the wvariable is

printed on the current output
device.

As for an arithmetic variable.

The procedure body is executed.

This is a recursive call of the
procedure; the value assigned to
the procedure by this call is
printed on the current output
device.

The procedure body is executed
and the value of the procedure is
printed on the current output
device.

NOT PERMITTED.

The string is printed on the
current output device.

2.1.3.2,

1.3. Input Data Tape

Numbers to be read by the computer should conform to the ALGoL definition of number, and
each number must be followed by some character other than a digit, a decimal point or subscript
ten. This terminal character may be followed by any sequence of characters excluding the digits
0 to 9 and the characters . ,, £ + — . The sequence may be of any length; its only function is
to separate the numbers on the data tape, and it is otherwise completely ignored. Note that spaces
may not normally be used in the middle of numbers, since they are classified as terminating
characters (but see 2.5.3. of this chapter).

Blank tape is ignored under all circumstances. The character ‘halt’ in any position on the
input tape causes the computer to wait.

The character £ is not permitted on a data tape, except in connection with the “instring’ facility
(see 2.6. of this chapter).

The example data tape is read as a succession
of numbers:

item 176329 176329

197 ft 7 ins 197
7

g = 1.276,,-11 1.276,,-11

7.392,,4 7.392,,-4

710623 1.49700 710623
1.49700

1.4. Presumed Settings

The print and read statements of the simple type explained above are executed under the
control of the presumed settings; methods of changing the settings and obtaining varied and
more sophisticated effects of format control is described in 2.3. of this chapter.

All numbers read under control of the presumed settings are read from tape reader number one,
and all numbers output on tape punch number one.

MNumbers printed under presumed settings appear on separate lines with up to eight digits.
The values of integer expressions less than 100 000 000 are printed with leading zeros replaced by
spaces and, in the case of a negative number, the sign floated, i.e. the sign is moved along so that
it immediately precedes the most significant digit.

E.g. — 00000252 is printed as
—252
Larger integers are printed in a form similar to that of large real numbers.

The values of real expressions, if less in absolute magnitude than 100 000 000, are printed as
decimal numbers containing eight digits and preceded if necessary by a minus sign. Larger
numbers are printed with an exponent part and only four significant digits.

Examples of printing under presumed settings:

Integers Real Numbers
9 —9.0000000
—127 127.30614
239610 —23961.000
— 14306971 00000000
—2.75,,+11 —1.364,,4+22
15

(Issue 3)

2.13.2.

L5. Output of Text

In order to output headings and other messages, the characters which comprise the message
should be enclosed within the string quotes £ and ?, and included as an item of the list of a print
statement; these items being output in the sequence in which they appear.

Examples:

print £ height weight speed ?;
print F, £ ft?2, i, £ ins 7;

To output lines, spaces, blanks, or the symbols £ and ?, an inner string should be used which
consists of certain special interpreted characters enclosed by two pairs of string quotes (£ and 7).
These characters may appear inside single string quotes amongst text which is itself enclosed in
string quotes. The meanings of the special characters are given in the following table:

Character Interpretation
[new line
5 space
r blank (i.e. runout)
q £(i.e. quote)
u %i.e. unguote)
t tabulate
h stop

All the above characters will be accepted on upper case as well as lower case.

If any of these characters is followed by an unsigned integer, the effect is the same as writing
the character the specified number of times.

Spaces, tabulation symbols and changes to a new line may also occur within a single pair of
string quotes, and they are reproduced in the same way as other characters: care must be taken
to ensure that only those characters required are quoted.

Examples:

print ££/4 Ichapter?, n, ££/2s577;
print ££/Theight £s127 weight £5127? speed?;

Text is output on the same device as a number in the same list. Under presumed settings,
therefore, output will be on punch one. Text is not preceded by a change to a new line, and
therefore is printed on the same line as the last number. A change to a new line may be specified
as part of the text.

2. SETTING PROCEDURES

The presumed settings are adequate for inexperienced programmers, for program testing and
low-volume output. In many applications, however, the programmer may wish to use all available
input and output devices, to tabulate his results, and to exercise control of output format. For
these purposes a number of procedures (setting procedures) are provided.

A setting procedure statement normally occurs in the list of a print or read statement, separated
in the normal way by commas from the other operands. All numbers and text in a list subsequent
to a setting procedure statement will come under the control of the settings specified. Any number
occurring previously in the list or in the lists of other print statements, is totally unaffected. Thus
operations in a list previous to any setting procedure statement are always executed under the
control of the presumed settings (see 1.4. of this chapter).

16
(Issued)

Z1.32,

A setting procedure statement may also occur as a separate statement of the program. In this
case, once it is obeyed it will be effective until it is cancelled by a contradictory setting procedure
statement. Such a cancellation may occur locally inside a print statement, or globally as a separate
statement of the program.

Where a parameter of a setting procedure is of type integer, the actual parameter may be an
expression, allowing the format of results to be determined dynamically.

2.1. Device Setting Procedures
In order to use input and output devices other than the first reader and punch, it is only
necessary to mention the name of the device required in the list, prior to the operands concerned.
The names of the input and output devices are:

reader(l) punch(1)

reader(2) punch(2)

reader(3) punch(3) (i.e. the typewriter)
The print statement

print x, punch(2), sum, £ = sum ?, punch(3), £feed next tape?;
causes the value of x to be printed on the first punch (the presumed setting), the value of sum,
and the message ‘= sum’ to be printed on punch 2, and the message ‘feed next tape’ to be
displayed for the attention of the operator.

2.2. Prefix Setting Procedures
The procedure ‘sameline’ should be used to print numbers on one line; this will suppress
output of the prefix (new line) normally output before each number.
The statement
print t, £tons?, sameline, ¢, £cwt?, [, £1bs?;
causes the value of t to be printed on a new line (the presumed setting), followed by the rest of the
numbers and text on the same line. e.g.

17tons 12cwt 191bs
If all the numbers to be printed on one line are to be preceded by the same character or
characters, the procedure ‘prefix(£. 7) should be used. This causes the text displayed between

£ and ? to be printed (in the place of new ling) before every number. If the procedure “prefix’ is
used, the procedure ‘sameline’ is unnecessary. In fact, ‘sameline’ will cancel the effect of ‘prefix’
if it occurs after it in the list, and vice versa.
For example, to print five numbers on a line separated by a comma and two spaces, write the
statement
print a, prefix(£,£5277), b, ¢, d, ¢;

2.3. Format Setting Procedures

The presumed format settings are satisfactory for numbers up to a hundred million in absolute
size, with an accuracy of eight significant figures. If the range of numbers to be printed would
be greater or less than this, or if a greater or lesser accuracy is required, it may be desirable to
change the number of digits printed. To specify the number of digits in an integer expression,
write ‘digits(n)’ in the list just before the items to be printed with n digits, where 1 < n < 2. I

For example, if i, j, and k are integer variables, the statement

print i, digits(4), i, k;
could produce the output:
—213
—1024
362

17
(Issme 3)

2.1.3.2.

The first integer is printed under control of the presumed setting (8 digits), while the other two
have up to four digits, and therefore take less room in the column.

The procedure “digits’ has no effect on the printing of the values of real numbers or real
variables. To achieve the same effect with real numbers, use the procedure ‘freepoint(n)’, where
I < n < 9; this has no effect on the printing of integers. For example, the statement

print x, freepoint(4), v, z;
could produce the output:
1.9632450
176.1
0032

2.4. Scaled and Aligned Formats

When a column of numbers is to be printed, it is often desirable to position the numbers in
such a way that the decimal points of all the numbers in the column are aligned one beneath the
other. Elliott 503 ALGoL provides two methods of doing this. The scaled format always places
the decimal point after the first digit, and uses an exponent part to indicate the scale of the
number, The aligned format allows the programmer to specify the number of digits to be printed
before and after the point.

To obtain the scaled format with n digits, write ‘scaled(n)’ as a setting procedure, where
| = n = 9; to obtain aligned format with m digits before the point and n digits after, write
‘aligned(m,n)’ as a setting procedure, (m + n = 15); to revert to the freepoint format with n
digits, write “freepoint(n)’ as a setting procedure. Note that more than one setting procedure may
appear in a print statement; if the setting procedures contradict each other, the later ones cancel
the effect of the earlier. Thus the statement

print x, prefix(£, 7), scaled(4), x, aligned(4.,3), x, freepoint(4), x
would cause the following sample output if it were obeyed repeatedly:

—1.2345678, —1.235,,+00, =235, —1.235
123.45678, 1.235,,+02, 123.457, 123.5
00123457, 1.235,,—03, 0.001, 0012

2.5. Additional Format Setting Procedures

2.5.1. Grouping of digits

The special format setting procedure ‘grouping{n)’ should be used to obtain a spacing of digits
in printed numbers. The digits of numbers output under control of this setting procedure are
grouped in sets of n, the sets being separated by a single space. The origin of the grouping is the
decimal point for real numbers, and the least significant digit for integers.

This procedure may be used to improve the legibility of numbers which consist of a long
series of digits. It is not recommended for use with the freepoint format. Tapes produced under
the control of *grouping(n)’ can be reinput only under the control of special(4) (see 2.5.3. of this
chapter).

The following examples illustrate the effect of the procedure statement ‘grouping(3)’ on the
output of integers, and of real numbers in the aligned and scaled formats.

1 076 253 12 073.193 6 1.207 319,,+04

—092 765 — 120965 0 1.209 650,,4+-02

— 142 —24 306.701 4 2.430 670,,+04

12 630 441 12.000 0 1.200 000,,4-01
18

(Issue 3)

2.1.3.2.

2.5.2. Leading Zeros

Integers are normally printed with leading zeros replaced by spaces and the sign floated. The
setting procedure statement ‘leadzero’, allows the programmer to specify any character to replace
these leading zeros. It also suppresses the floating of the sign.

E.z.
normal print format setting procedure statement resulting print format
—9 leadzero (£07) —00000009
176 leadzero (£*7) wERREITO
—9 leadzero (£7) —9
—12345 leadzero (£7) —12345
—12345 leadzero (£ 7) — 12345

Mote that if the actual parameter is a null string, the significant digits and the sign if negative, are
the only characters printed. Also the characters £ ? blank and erase may not appear within the
string (i.e. an inner string is not allowed).

2.5.3. Specialities

The design of output documents sometimes requires certain special effects which may be
obtained by the use of the procedure ‘special(n)’, (1 < n < 4).

special(1) causes the space normally output before positive numbers to be suppressed. It should
not be used when printing negative numbers.

special(2) causes a plus sign to replace the space normally output before a positive number.
It should be used if the numbers are separated by spaces and are to be reinput under special(4). |

special(3) causes any sign output not to be floated.

special(4) affects reading only, and causes spaces, normally treated as terminating characters,
to be ignored. This facility enables tapes with grouped numbers to be reinput.

special(l) cancels special(2) and special(3), and vice versa. special(2) and special(3) can coexist.

2.5.4. Miscellaneous

buffer(n,£a7) is a Boolean function which takes the value true if, and only if, the current
character in the buffer for input device n is the character a, o must be a single character but not
£, 7, blank, or erase. The use of an inner string is not allowed in this case. The tape does not
move in the reader.

advance(n) has the effect of moving the tape in input device n on by one character, overwriting
the character currently held in the buffer for that device.

2.5.5. Errors

If an attempt is made to print a number that is too large for the style of printing called for,
e.g. to print 289.2 in the aligned(2,4) format, or to print 12347 in the digits(4) format, then
‘alarm printing’ occurs in such a way that the layout of the printed page is undisturbed. Provided
that the total number, n, of characters called for is greater than six, the number is printed in
scaled(n—6) format; if n < 6, the letter H and a halt code are printed, preceded by (n—1) spaces. |

An attempt to print a real number that is not in standard floating point form causes the
message Print error to be displayed.

19
(fssue 4)

2,132,

2.5.6. Parameters out of range

If the parameters of a format procedure are out of the permitted range, a return to presumed
settings occurs as follows:

Procedure called Permitted range of parameters Presumed setting oceurring
digits (E) I <E<I2 digits (8)

freepoint (E) l<E<?9 freepoint (8)
scaled (E) 1<E=<9 freepoint (8)
aligned (E,F) 1 << E+F <15 freepoint (8)
grouping (E)! 1<E prefix(££/77), leadzero (£ ?7)

Cancels grouping, special(l),
special(2) and special(3)

special (E) l<<E<4 as for grouping but special(4)
is also cancelled.

reader (E) 1 <E<3 reader (1)

punch (E) l=E<3 punch (1)

advance (E) I<E<?2 advances on reader one

buffer (E, £ 7 |l <E=<4 tests buffer of reader one.

L If, in grouping (E), E is greater than 63 the style of printing is undefined.

2.6. Input and output of strings

Strings may be read in as data, and printed out again, by using the procedures ‘instring(A,m)’
and ‘outstring(A,m)’, where A is a single-dimensional integer array, and m is an integer variable.

The effect of “instring’ is to search on the current input device for a £; if a numeric character is
encountered during this search, the message Read error is displayed. The string that follows
the £ is input and stored in A[m], A[m+1],..... When the 7 which brackets with the original £
is encountered, input stops, and the variable m is set to the index of the next available element
of A, Thus, on repeated execution of the procedure, m is automatically set in such a way that
the strings cannot overwrite each other.

The effect of ‘outstring’ is to output a string which has been previously input by the instring
facility. The integer variable m indicates the index of the first of the elements of A which contain
the string, and the procedure will set m to the index of the first element containing the next string.
Thus, on repeated execution of the procedure, successive strings stored in the array A are output
in succession. Inner strings are interpreted in the same way as that specified for strings occurring
in print statements.

The array A should be sufficiently large to contain all the strings read. A string of n characters
will occupy (n + 4) = 5 locations.

In any call of these procedures the second actual parameter must be an integer variable (which
may be subscripted). It may not be a constant.

2.7. Procedures in read and print lists

The body of a procedure occurring in a read or print list may contain read and print lists and
setting procedures. On entry to each read or print list the current read format or print format
settings respectively are preserved. They are restored on exit. Thus the input and output of
numbers during the execution of a procedure can be controlled externally by putting the pro-
cedure call into an appropriate read or print list.
2.8. Note: input by ‘elliott’ orders (see chapter 3.4.2.) or other means not involving the ALGOL
statements read, ‘instring’, or ‘advance’ will leave the value of the ALGOL internal buffer for the
appropriate device unchanged. To avoid trouble after any such input an ‘advance’ statement
should be obeyed before the next read or ‘instring’ statement for the appropriate device.

(Issue &)

2.1.3.2.

CHAPTER 3

ADDITIONAL STANDARD PROCEDURES

1. INTRODUCTION

In addition to the standard functions described in the ALGOL 60 report, certain other functions
and procedures are available to users of Elliott ALGOL without explicit declaration.

2. ADDITIONAL STANDARD FUNCTIONS

arccos(E) : result in range 0 to =
arcsin(E) - result in range -n/2 to 4-mn/2
tan(E) : the tangent of the value of E

3. CHECKING FUNCTIONS

The standard checking functions provide the programmer with a means of optional printout of
intermediate results during the course of a calculation.

There are three such functions:

checkr for real argument

checki for integer argument

checkB for Boolean argument (the spelling checkb is also accepted)
and they are written in the program as functions with a single parameter, e.g.

A := checkr(B42*C)+1.5; (1

If the B-digit on the keyboard is not depressed during translation, the checking functions are
ignored—that is to say, the statement (1) is treated exactly as if it were

A:=(B+2*C)+ 1.5;

If the B-digit is depressed during translation, then extra orders are compiled so that, if the
B-digit is depressed also during the running of the program, the value of the argument is output
on the current device. Thus (1) would have the effect of assigning to A the value of B42*C+4-1.5,
and of printing out the value of B-42*C,

In the case of Boolean checking, the output is one of the words true or false. In all cases
check output is preceded by a change to a new line and an asterisk.

The checking functions may be nested, so that it is possible to write

A := B -+ checkr(M|[checki(i + 3)]);
in which case the value of (i 4+ 3) would be output before the value of M[i <+ 3].
In addition to the three checking functions, there is a checking procedure

checks
whose parameter is a string. It can conveniently be used to provide a form of ‘trace’ of the
progress of a calculation, or to identify the output of the checking functions. A typical call of
this procedure would be

checks(£ stage 1 complete?).

Groups of checked output can be spaced by using the procedure call checks (£7), which
outputs a newline character and an asterisk only.

21
{Issue 3)

2.1.3.3.

4, OPTIMIZATION PROCEDURES

In certain applications of ALGOL it is considered highly important to produce an efficient pro-
gram. While the ALGoL translator in general produces machine code programs of reasonable
efficiency, there are certain occasions where ALGOL prevents efficient use of the computer. For
this reason, some facilities, similar to those available in machine code, have been introduced in
Elliott ALGOL.

4.1. Addressing Facilities

The addressing of subscripted variables is one of the less efficient aspects of ALGoL. Elliott 503
ALGOL therefore provides facilities which enable the programmer to write his own address
calculation routines in a notation very close to that of ALGoL, without necessitating a knowledge
of the machine code of the 503.

In order to do this effectively, it is necessary to know the method of storing arrays in the
computer. A variation of one in the last (rightmost) subscript of an array variable corresponds
to a variation of one in the address of the variable. A variation of one in the other subscripts
corresponds to a variation in address equal to the product of the ranges of all subsequent
subscripts. Thus, in the case of a matrix, storage may be said to be by rows.

E.g. Given the array All:8, 1:9, 1:10]
and two elements A[3,4,5] and A[3,5,5]
the difference in the addresses of the locations in which they are held = 10.

In order to compute the address of a subscripted element of an array, use may be made of the

following standard functions, which have integer values:

address(A) the address of the first element of the array A;
lowbound(A,I) the declared lower subscript bound for the Ith subscript position
from the left in the array A;

range(A,T) the number of values in the range of the Ith subscript position from
the left in the array A;
size(A) the number of elements in the array A.

The first element of A is the subscripted variable all of whose subscripts take values equal to
their lower bounds. The range of a subscript is computed by subtracting the lower bound from
the upper bound and adding one. The size of an array is equal to the product of the ranges of its
subscripts.

If, in a call of lowbound or range, the value of I lies outside the range

1 = I < number of subscripts of A,
the message Subscript aflo is displayed.

The following table gives the formulae which may be used to calculate the addresses of
subscripted variables:

variable address

A I - lowbound(A,1) + address(A)

A LN (I - lowbound(A,1))*range(A,2) + J - lowbound(A,2) + address(A)
A [L1,K] ((1 - lowbound(A,1))*range(A,2) + J - lowbound(A,2))*range(A,3)

+ K - lowbound(A,3) 4- address(A)

When the required address has been calculated, a method must be available for accessing the
variable corresponding to the address. For this purpose the subscripted variable *location [I]' has
been provided. This variable, which is assumed to be of type real, must have as its subscript an
identifier of an unsubscripted integer variable. Subject to these restrictions, it may appear like
any other variable in an arithmetic expression or in the left hand part of an assignment statement.

(Issue 3)

2.1.3.3.

The facility for explicit address calculation will be most profitable in the following cases:

(i) the same subscripted variable occurs several times in close proximity

(ii) array variables with the same subscript bounds appear with the same subscripts several
times in close proximity

(iii) one or more variables used as subscripts are controlled by nested for clauses, and none

of the relevant subscripts is altered by assignment within the loop. In this case the
necessary increment to the address may be computed outside the loop and there is no
need to resort to a multiplication inside the loop.

4.2, Machine Code

There are certain operations which may be performed very efficiently when expressed in the
machine code of the 503, which cannot be performed efficiently when they are specified in ALGOL,
This is because the ALGOL translator must cater for all possibilities, but the programmer writing
in machine code, need only consider his special case. Therefore a facility is included for writing
machine code instructions in an Elliott ALGOL program.

Machine code is particularly effective in cases where the following operations occur in inner
loops:

(1) multiplication or division of integers known to be positive
(2) multiplication and division of positive integers by a power of 2.

The use of machine code imposes on the programmer the responsibility for testing and clearing
overflow where necessary, and of ensuring that the program itself is not interfered with by a
B-lined instruction. It is strongly recommended that all programs should be written exclusively
in ALGOL during the testing stages, and that when some of the operations are replaced by machine
code, all the tests should be run again to ensure that no coding error has occurred.

4.2.1. elliott

One word of machine code may be introduced into an Elliott ALGOL program by use of the
standard procedure ‘elliott’ which has seven parameters. The first and second parameters represent
the first and second function digits of the first instruction in the word, and the actual parameters
must be unsigned integers in the range 0 to 7. The third parameter represents the address part of
the first instruction, and the actual parameter must be either an unsigned integer, a label, a
variable, or an array identifier. The fourth parameter represents the B-digit and the actual para-
meter must be either 0 or 1 (unsigned). The fifth, sixth, and seventh parameters represent the
second instruction of the word and are subject to the same rules as the first, second, and third
parameters.

The procedure statement ‘elliott’ causes a whole word of machine code to be inserted in the
object program. Those parameters which are unsigned integers are replaced by the corresponding
binary number in the appropriate function, B-digit or address positions. An identifier is replaced
by an address at time of translation.

The following table gives the meanings of the address:

identifier: are replaced by:
simple variable (or formal parameter The address of the location which
called by value) stores the value of the variable.

array (or formal parameter specified as an array) The address of a location which con-
tains the address of the location which
stores the first element of the array.
label The address of a location which con-
tains a jump to the instructions corr-
esponding to the statement which has
been prefixed by the label. This jump
may be in either half of the location
but if it is in the second half, the first
half will contain a do nothing instruc-
tion. Only the functions 40, 41, 42 and
43 may be used.
23
(Issme 3)

2.13.3.

Note. it is not permitted to refer to a formal parameter called by name (other than an array)
or to a procedure or switch.

4.2.2. example

To multiply a by 2*, setting the result to zero if integer overflow occurs (a and b are of type
integer and b is non-negative).

machine code elliott procedure
55)300,3:000 elliott (3,0,2,0,0,0,0) ;
56)001,3/550 elliott (0,0,b,1,5,5,0) ;
57) 47 58, : 20 0,3 elliott (7,3,4,1,4,7,2) ;
58) 40 59, : 26 0,3 elliott (2,0,a,0,4,0.dog) ;
elliott (0,0,0,0,2,6,a) ;
dog: rest of program

Notes

(1) If a label is attached to a call of elliott a jump to that label will always cause transfer to the
first instruction of the instruction pair.

(2) Location 4 is always available for temporary work space in a series of elliott procedures,
since it is similarly used by many of the dynamic routines. Information left in it should be assumed
to be lost if anything other than a label separates two calls of elliott.

(3) The integer overflow indicator is tested at each entry to the dynamic routines. Since these
entries are frequent it is advisable to clear it, if there is any possibility of the overflow indicator
being set by a series of calls of elliott. This can conveniently be done by placing

elliott (7,3,4,1,4,3,1) ;
at the end of the series.

(4) When location 4 is used in this way it is permissible to construct a jump to the second
half of a location, as is done in the above example.

5. SPACE ALLOCATION

The ALGOL system on the 503 is controlled by the Reserved Area Program (RAP).
The exact position in the store taken up by the system on input depends on what other
programs are already in the store.
When a program has been translated and is ready to be run the available store is divided into
three areas:
(i) at the low numbered end is the compiler, occupying approximately 4,800 locations.
(ii) at the high numbered end is the translated program together with all the routines
necessary for its running—e.g. print, read, standard procedures, etc. The space occupied
by these routines is approximately 1,600 locations.
(iii) the space in between is called the Free Store.
The Free Store area is used by the program mainly for arrays, other declared variables having
been allocated space at translation time.
Arrays are allocated space dynamically at the time of entry to the block in which they are
declared—from the high numbered end of the free store backwards. If more space is needed than
is available in this area, the compiler is overwritten.

5.1. The FREE STORE message

The message ‘Free store = n to m’ is displayed at the end of translation; n and m are the
addresses of the beginning and end of the Free Store area. Thus the space available for arrays—
without overwriting the compiler—is approximately m — n locations. If the compiler is over-
written, the space available is approximately m — n + 4800 locations.

(Issue 3)

2.1.3.3.

5.2. storemax

The standard integer procedure ‘storemax’ takes as its value the number of locations of free
store currently available for use by an array of maximum size (overwriting the compiler). The
declaration for this array would be:

begin array A [l : storemax];

If any other arrays are declared in the same block head or in an inner block, or as workspace
of a procedure called in the block, the combined size of these arrays must be subtracted from
storemax; otherwise space overflow may result.

The activation of recursive procedures or procedures in which a local array is declared, is also
likely to cause space overflow in a block whose arrays already occupy most of the available space.

6. CONTROL PROCEDURES

Elliott ALGoL provides a number of standard procedures to assist in the operating of a pro-
gram; most of them do not have any effect on the actual calculations. Where the use of these
procedures requires the co-operation of the computer operator, use should be made of the
Operation Sheet (see Chapter 5.2.2.).

6.1. wait

This procedure causes the operation of the program to be held up until a signal is given by
the operator to continue. It should be used in cases where some action is required from the
operator (e.g. changing paper or magnetic tapes). The operator must be informed what action is
required by an entry under Special Instructions on the Operation Sheet.

6.2. restart

This procedure causes a transfer of control back to the beginning of the program. It should
be used whenever it is expected that the same program will be run several times with different
sets of data.

If the ‘restart’ instruction is omitted from a program, and it is required to run the program
several times, the operator may be asked to make a manual restart at the end of the program
(0S 16).

6.3. stop

This procedure causes an immediate end of the program, thereby freeing the computer for
the next program to be run. However, it is still possible to make a manual restart.

6.4. dump

To avoid the necessity of translating an ALGOL program every time it is run, it is possible
to obtain a version of the program, together with all current workspace (i.e. declared variables
and arrays), on a binary tape. This binary tape can be read into the computer by RAP, and it is
not necessary to have the ALGOL translator in the store at the time.

To obtain the binary tape, write in the program the procedure statement ‘dump’. When
this statement is obeyed, the binary dumped program tape will be produced. When this tape
is reinput, it will start operating at the statement immediately following the dump, and will operate
from then on, just as if no dumping had occurred. Note that if the *dump’ statement in an already
dumped program is obeyed again, it will produce yet another dumped program tape,

Note also that a program that has run to its end cannot be re-entered via RAP at the statement
following the dump. To restart calculation again at this point, an appropriate go to statement
(possibly preceded by a wait) should be written at the end of the program. The program may,
however, be started right from the beginning by a manual restart.

25
(Issue 3)

2.1.3.3.

It is essential that the operator be informed of the presence of a dump instruction in a pro-
gram (OS 13). It is possible to continue running a program after the dumped version has been
produced (OS 14). If the dump instruction has been omitted, a manual dump may be obtained
(OS 11); this is possible only before the running of the program has begun.

The programmer can control the dumping externally by using the keyboard of the computer.
For example, when the following set of statements is obeyed, a dump will take place if and only
if the least significant keyboard digit is depressed.

ii=1;
elliott (7,0,0,0,0,3,i) ;
elliott (4,2,n0,0,0,0,0);
dump ;
no:
6.5. precompile

To avoid translating the whole of an ALGOL program at one time, it is possible to split the
program into two parts, A and B, and to translate A on one occasion and B on another. This
is particularly useful if the first part of the program is a set of procedure declarations, common
to many different programs.

To use this facility, write the procedure statement ‘precompile;” at the end of part A, and
write a title (terminated by a semicolon) at the beginning of part B.

Part A is translated in the usual way. When the statement *precompile;’ is encountered, trans-
lation stops and a precompiled version of A is produced on paper tape. Then, if this tape is
input before B is translated, the effect is as if the complete program (A -+ B) had been translated

When a precompiled package is used, the ALGOL system must be in the same position in the
store as it was when the package was prepared.

‘precompile’ can be used only when translating in the normal (load and go) mode. Therefore,
part A must not be so long that it cannot be translated load and go—although the combined
program(A + B) may be. Only one precompiled segment at a time can be added to a final
segment to make a complete program. However, it is possible to add to a precompiled segment
Al the statements contained in another segment A2 (which ends with ‘precompile;’) by
inputting Al and then translating A2.

In the case where part A is a general piece of program that is used with several second parts
B—for example, a package of procedure declarations—particular care must be taken that each B
contains the necessary end’s to terminate all the blocks and compound statements of A that are
not terminated in A itself.

‘precompile;’ is a statement, and therefore, if part B of the program begins with a declaration,
this must be preceded by a begin, thereby starting a new, inner block.

An example of the form which the two parts A and B may take is given below. D stands fora
declaration, and S for a statement,

Name A A
begin D1; D2; D3;

51; 82; v A
begin D4;

S3; precompile; y
Name B; 3
begin D35,

S4; 55; 56

end block of B

end second block declared in A
end first block declared in A;)

26
(Issue 3)

2,1.3.3.

Whenever possible, parts A and B should be punched on separate pieces of tape, If the two
must come on the same tape, they should be well separated by blank tape, and a note should be
made under Special Instructions on the Operation Sheet.

It is essential to inform the operator of the presence of a precompile statement (OS 5), or if a
precompiled tape is to be input before translation of a final segment (OS 4). It is possible to
continue translation of the final segment and to run the program (OS 6) immediately after the
initial segment has been precompiled.

Note. precompiled tapes prepared using a particular issue of the translator will normally work
with subsequent issues. There may however be occasions when this is not true.

7. SUMMARY OF STANDARD PROCEDURES

abs digits instring address stop

sin freepoint outstring size wait

COS scaled range restart
arctan aligned advance lowbound

entier sameline buffer dump

sign prefix storemax precompile
exp reader

In punch elliott checki

sqrt grouping checkr

tan leadzero checkb checkB
arcsin special checks
arccos

Note. All the standard procedure names except checkr, checki, checkb, checkB, checks, elliott
and precompile can be redeclared by the programmer. Within the scope of such a declaration they
have the meaning given to them by the programmer; outside they have their standard meanings. |

8. USE OF SAP COMMON PROGRAMS WITHIN AN ALGOL PROGRAM

If a SAP common program is read into store before the ALGOL system, then it can be used as
a subroutine by an ALGOL program.
One method of entering the common program is as follows:

I. Include in the declarations of the ALGoOL program, the declaration of the procedure
‘enter CP’.

27
(55w &)

olL (KA. 4,04,

ot 1,0,¢7

2.1.3,3.

2. To achieve the same effect as the portion of SAP code:
COMPF, CPname, n
param 1
param 2

param k.
write in the ALGOL program:
enterCP (CPinteger,n, NOPROG);
elliott (param 1)
elliott (param 2)

elliott (param k)
the parameters being in pseudo-order form.
CPinteger is the integer representation of CPname (note that only the first six characters of the
name are significant and that the name is left justified so that the binary representation contains
36 bits). NOPROG is a label to which a jump is made if the program CPname is not in store.
procedure enter CP(CPinteger,n, NOPROG);
value CPinteger,n;integer CPinteger,n; label NOPROG;

elliott(0,0,0,0,3,0,CPinteger);
: elliott(7,3,7932,0,4,4,8082); comment RAPsearch;
9/; WW comment get address of head;
210,920 elliott(7,3,4,1,2,7,8189):
elliott(2,0,4,1,7,7,8191); comment get procedure link;
elliott(0,0,CPinteger,1,2,0,5); comment plant in LINK*CP;
elliott(3,0,n,0,2,0,7914);
elliott(0,0,CPinteger,1,3,0,1);
elliott(5,1,20,0,2,0, CPinteger);
elliott(0,0,CPinteger,1,0,0,3); comment jump into trigger block of CPname;
goto NOPROG
end enterCP;

NOTES

(1) enterCP cannot be used if CPname expects to find its data in the accumulator. However,
CPname can be modified to pick up this data from a workspace location whose address
is given as the first parameter word. The call of CPname then takes the form

plant data in A;
enterCP (CPinteger, n, NOPROG);
elliott (0,0,0,0,0,0,A);

(Issue 3)

2,1.3.3.

(2) If NOPROG labels the statement “eclliott (4,4,8064,0,0,0,0)", then the RAP message
“NOPROG" is output if CPname is not in store.

(3) If CPname sets the overflow register, then the statement “elliott (7.3,4,1.4,3,1)" must be
written immediately after the last parameter of CPname, so that overflow is cleared as soon
as CPname is exited. Otherwise a spurious fnr Offo message occurs.

(4) CPname must be a proper SAP common program. That is to say, it must expect to find its
link in LINKCP and exit must be made by an instruction EXITCP,n. CPname will then
be stored in the manner described in chapter 2.1.2.6. of the 503 manual.

{5) There is not sufficient room in the store for SAP and ALGoL together. Therefore, CPname
must be read in as a binary tape by the RAP instruction IN.

(6) More than one common program can be used by the same ALGOL program. All the
common programs that are required must be read in before the ALGOL systems tapes.

Example

This example uses the library program PTSREAD as a common program. Its function is to
read numbers from the typewriter, alternately real and integer, and to print each one out after
it is read. If PTSREAD is not in store, the message Try Again is displayed.

When the program is entered, it uses the RAPread subroutine to obtain the integer equivalent
of “PTSREAD” and assigns this to the integer variable PTSREAD. This is just a way of making
the computer do the work of converting the alphanumeric into an integer.

Since both RAPread and PTSREAD can set the overflow, the “clear overflow™ instruction
appears after each entry.

Test enter CP;
begin integer PTSREAD,i; real A :switch S:=error,L;
comment insert enter CP here;
elliott(7,3,7932,0,4,0,8020);
clliott(7,3,4,1,4,3,1);
elliott(3,0,7914,0,2,0,PTSREAD);
comment enter RAP to read the name PTSREAD from the typewriter, and assign
its integer representation to the variable PTSREAD;
punch(3);
L: enterCP(PTSREAD,1 error);
elliott(0,0,0,0,0,0,4096);
elliott(7,3,4,1,4,3,1);
elliott(2,0,A,0,0,0,0); comment read real;
print A;
enterCP(PTSREAD,l,error);
elliott(2,0,0,0,0,0,4096);
elliott(7,3,4,1,4,3,1);
elliott(2,0,1,0,0,0,0); comment read integer;
print i;
goto L; error:print ££/7Try again?

{fssue 3)

2134

CHAPTER 4

ERROR INDICATIONS

1. ERRORS DURING RUNNING OF PROGRAM

1.1. Overflow Errors

These errors prevent continuation of the program and are followed by a systems wait. The
program is intact in the store, and can be re-run (see Chapter 5.2.4.).

Displayed Message Error

Int oflo The result of some integer operation (e.g. division
by zero) is outside the range —23% to 238 — |,

Subscr oflo A subscript of a subscripted variable is outside the
range declared for the corresponding array or
switch.

Space oflo The program requires more space than is avail-

able in the computer.

1.2. Ignorable Errors

After one of these errors, the program can be continued by changing the leftmost F2 digit
on the word generator.,

x stands for the argument of the function; on continuation the value of the function is taken
as zero,

Displayed Message Error

Exp error x > 255 loge2 (=176.75)

Sine error =230 (=10%)

(also for cos)

Log error (a) x<0
(b) attempted evaluation of ptq with p<X0, and

q real and <0

Sqrt error x<0

Arcsin error P >1

(also for arccos)

Tan error |%|=>230 (== 109)

String error The string being printed contains an inadmissible
character. On continuation, the rest of the string is
ignored.

Read error (a) error found in the number being input (in

particular, if a number expected to be an integer
contains a decimal point or a subscript ten or is
too large), or £ read at the start of a number. On
continuation, the read subroutine is re-entered.
(b) ‘instring’ has read either a numeric character
before reading a £, or a £ within an inner string.
On continuation, the program continues with the
statement following the call of ‘instring’.

30
(Issue 3)

2.1.34.

Buffer error The siring parameter in a call of *buffer’ is an
empty string. On continuation, the function is
assigned the value false.

Print error The real number to be printed is not in standardised
floating-point form. On continuation, the printing
of the number is omitted.

1.3. Machine Detected Errors
If the machine detects an error while the program is being run, the error indication “ERRINT n’
will be displayed. The significance of the values of n are given below:

ERRINT 1 Floating point overflow. Continuation is possible
at programmer’s discretion.

ERRINT 2 Oceurs on a control shut-down due to a power failure,
but there is insufficient time to display the message.

ERRINT 3 Parity error in the main store. Continuation not
possible.

ERRINT 4 Error on peripheral equipment. Continuation not
possible.

ERRINT 35 Impermissible reference to reserved area. Con-

tinuation not possible.

1.4. Undetectable errors

The following errors are not detected by the present compiler:

1. A formal parameter that is called by name has a value assigned to it in the procedure body,
and the corresponding actual parameter is not a variable of the same declared type. In this case a
dummy assignment is made.

2. An actual array parameter has a different number of dimensions or is of a different type
from the corresponding formal parameter. The program is corrupt.

3. A label which has been placed twice in the same block. The first one only is recognised.

4. A label which has been declared but not placed. This may cause a jump to a wrong label
or go completely wrong.

2. ERRORS DURING TRANSLATION OF PROGRAM

If an error is detected during translation, a message is displayed and a systems wait occurs.
Translation cannot be continued but the remainder of the program can be checked for further
syntactic errors.

The message has a heading of the form Error no. n where n is an integer giving a reference to
the table in 2.1. of this chapter.

This is followed by a copy of the ALGOL text up to and including the next end or semicolon, and
a systems wait occurs. If a begin is copied, then so is the corresponding end. If the error has
occurred in the heading of a procedure declaration, then the whole body of the procedure is
copied. In all cases the copied text is in no way checked for errors.

Error 20 (undeclared identifier) is treated specially. The name of the offending identifier is
displayed, and translation continues, although no more owncode is produced. There is no copying
of the text and no systems wait. The identifier is treated as if it had been declared in the head of
the innermost current block to be of type integer, or, if the symbol immediately following it is
an open bracket, of type integer array. If this declaration is incompatible with the use of the identi-
fier—for example, if it is used as a label—then further, spurious, error indications will occur.

When the sign digit is changed after the systems wait, translation continues, although no more
owncode is produced. At the end of translation, the name of the program is displayed and a
dynamic stop occurs.

31
{Issue 3)

2.1.3.4.

The rame (Find ALcoL Mnemonic Errors) routine, which forms part of Tape 1, can also be used
purely to check an ALGOL program for syntactic errors, without assembling any machine code.
Such a check is quicker than a full translation, particularly if the program is so long that the own-
code would have to be output onto paper tape.

To use this facility the following instructions should be obeyed:

(a) IF the first part of the program is a precompiled tape, read this in by typing m.

Then, or otherwise

(b) Load the ALGOL program tape in the reader and type FAME.

At the beginning and end of the checking a few characters will be output on Punch 1. These
should be ignored. Error messages and the name of the program appear on the output writer.

If the statement precompile is read after an error has been found in a program or after typing
FAME,, the message Error no. 53 is output. If the sign of the word generator is changed, checking
continues, Spurious error messages are produced by the title of the second part of the program.

The explanations given by the error table will normally be correct. There are, however, some
cases when the translation will detect that there is an error in the program, but will attribute it to
a cause apparently totally unrelated to what has been written. When this happens, the actual
error will usually be found in a statement near the point where translation has stopped.

The FaME system cannot be foolproof. Although it is unlikely that an actual error will pass
undetected (except in text being copied), it is possible for one actual error to lead to several spur-
ious error indications, and even to complete breakdown. If the error indications begin to come
in nearly every statement, the operator would be advised to remove the ALGOL program from the
machine and to carry on with the next one.

Errors in declarations are bound to cause spurious error indications later since part of the
declaration will be skipped: but if all the errors in a program occur in statements, there is a good
probability that all of them will be detected correctly. However, the first error found is a real one.

It is important to mark the tape on the right of the central perspex strip when an error occurs,
because the amount of text copied may be insufficient to identify the position of the error.

2.1. Error Table

n Error

1(a) Number of impermissible form,
(b} Error in an underlined word.

2 (a) Impermissible beginning to a statement.
(b) Symbol following own not real, integer, Boolean or array.
(c) Procedure declaration not terminated by semicolon.
(d) MName in declaration not followed by comma or semicolon.
(e) Declaration following procedure declaration not a procedure declaration.

3 MName declared twice in same block head.

4 Item after a comma in a declaration not a name.

5} First identifier in switch declaration not followed by *:=".
6

7 In a procedure declaration:
(a) Item following procedure name not semicolon or open bracket.
(b) Mo semicolon or close bracket after formal parameter part.
N.B. If the item following the close bracket is not a semicolon, the compiler will
ignore a letter string until 3",
(c) List in value or specification part has impermissible form.
(d) Specification part occurs before value part.
8 (a) Parameter of non-allowable type.

32
(Issue 3)

(b)
(c)

10
11 (a)
(b)

13
(a)
(b)
(c)

14

15

16

17 (a)
(b)
(c)

18

19

20

21

22

24

25

26

27

28

29

30

31 (a)
(b)
(c)

33 (a)
(b)

34

35

36

37

38

39

41
(a)
(b)
42
43

Error
Too many parameters (> 1023).
Parameter not specified.

Recursive procedure with real, integer or Boolean name parameter.

MName in value part not a formal parameter.

Name in specification part not a formal parameter.
Parameter specified twice,

go to statement leading out of a procedure body.
In array declaration:

No comma or open bracket after identifier.

No colon between upper and lower bounds.

No comma or close bracket after bound pair,
MNegative own array size.

own array with variable bounds.

array with more than 31 dimensions.

No end or semicolon after statement in compound tail.
No colon after a label.

Impermissible beginning to a statement.

Left part variable in assignment statement not followed by “:=".
Value assigned to a procedure identifier outside procedure body.

Identifier not declared, or used outside scope of declaration.
‘location’ not followed by *[integer identifier]’.

Inadmissible complex primary in arithmetic expression.

Empty arithmetic expression.

Missing operand in arithmetic expression.

No close bracket after subscript list.

Missing bracket.

Wrong number of subscripts in subscripted variable.

Missing else.

Missing then.

Conditional statement or expression after then.

Missing or inadmissible operator in arithmetic expression.
Boolean operand in arithmetic expression.

Missing open bracket after name of procedure with parameters.
MNon-identifier or Boolean variable in a read list.

Inadmissible identifier as left part element.

Inadmissible identifier as controlled variable in for statement.
Empty Boolean expression.

Missing relational operator.

Missing operand in Boolean expression.

Inadmissible complex Boolean primary.

Inadmissible operator in Boolean expression.

Type procedure name in read list, but not within its own body.
Inadmissible symbol at start of an expression.

During procedure call:

No open bracket following name of procedure with parameters.

Actual parameter not followed by comma or close bracket (cf. error 7 (b)).

Error in parameter delimiter of form °) letter string:(".

Mo actual array or string parameter where one expected in a procedure call.

33
(fzsue 3)

2.1.3.4.

2.1.3.4.

n Error
+44 Non-allowable parameter in a procedure call.
45 (a) Controlled variable in for statement not followed by “:=".
(b) For list element not followed by a comma or do.
46 Incorrect designational expression.
47 Arithmetic expression in for list element not followed by step, while, do or a comma.
48 Missing until.
49 Program too large or complex to be compiled at all.
50 Label not declared in innermost possible block.
51 Error in a call of procedure ‘elliott’.
52 Issue number of compiler current when program was precompiled, not same as one
now being used.
53(a) ‘precompile’ not followed by semicolon.
(b) Occurrence of ‘precompile’, in program being translated to paper tape.
(c) Attempt to produce or use a precompiled tape when the ALGOL system is not in the
same position in the store as it was when the tape was prepared.
54 (a) Occurrence of a £ within an inner string (possibly caused by omission of 7 at end of a
previous string).
(b) comment occurs otherwise than after a semicolon or a begin.

N.B. The following errors will cause an ALGOL program tape to shoot through the reader,
instead of stopping at the end:

(i) No ‘halt’ sign at the end of a tape which is not the last tape of the program.
(ii) Insufficient end’s to match all the begin’s in the program.
(iii) No semicolon after the final end.
(iv) Missing ? at the end of a string, causing the program statements that follow to be treated
as part of the string. (This error will be detected (Error 54) if an inner string occurs in
any subsequent statement.)

See Appendix II for notes on program checking and common errors made in program writing.

34
(fssue)

2.1.3.5.

CHAPTER 5

OPERATION OF THE ALGOL SYSTEM

1. Contents page
2. Operating Notes
2.1. Introduction .. 2 P e G i i 25 &5 .. 35
2.2. Normal Operation e i i . A i o s v 35
2.3. Error Conditions - - 3
2.4, Additional Facilities .. i o i i i s i 3
2.5. Advanced Operations .. i i s i =N v % .. 38
2.6. Marking of Tapes i ai e i i A o e .. 39
3. Operating Instructions
3.1. Normal Operating Instructions 5% i T & e i .. 40
3.2. Error Conditions in Normal Operation o o i e i 4
3.3. Additional and Advanced Operations - .. 43
3.4. Error Conditions in Additional and Advanced Dperatmns - o .. 48
4. Summaries
4.1. Waits - .. - so 49
42, Triggers .. - - - i " i o i .. 50
4.3. Suggested Tape TllIes i e o o - % 5 i gar 350
4.4. Displayed Messages .. . ; i P 1 |

Appendix I. The 503 ALGoL System for Machines Wl.lh a Cnre Backmg Stnre

Appendix II. 1. Common errors made in program writing
2. Program checking

OPERATING NOTES
2.1. Introduction

This chapter describes the operation of the Elliott ALGOL system on the 503,

The description falls into two parts:

The first is a general introduction to the Normal Operating System, Additional Facilities and
the use of the Operation Sheet. It will not teach the reader how to operate the system, but merely
give him a general idea of how it behaves.

The second part contains the actual operating instructions., These are intended for reference
when operating the system on a machine, and are set out in tabular form, with the operator's
actions separated from the description of what happens.

2.2. Normal Operation

The aLcGoL system on the 503 is used under the control of RAP i.e. RAP must be in the
store before an ALGOL program can be either translated or run.

In Normal Operation of the ALGoL System on the 503, ALGOL programs are run one after
the other (‘load and go'). First the aLGoL tapes 1 and 2 (the ALGOL systems tapes) are input and
then each program is translated into the store of the computer, and is run immediately after
translation is complete. As soon as the running of one program has finished, the translation
of the next program takes place.

35
([ssue 3)

2,1.3.5.

The ALcoL System normally remains in the computer throughout the translation and running
of a whole batch of short programs. If, however, one of the programs requires a large amount
of space, the ALGOL system is overwritten in store, and has to be reinput before translation of the
next program can begin.

The messages, such as ALGOL or owniN, which the operator types in order to control the
system, are read by RAP and so must always be terminated by a full stop.

Systems and Data Waits

When the computer waits for action from the operator, two types of situation are distinguished.

In a systems wait, the ALGOL translator has control, and in general the operator is expected to
place an ALGOL program tape in the reader. Translation will continue when the setting of the
word generator sign digit is changed.

In a data wait, the aALGOL program currently in the store has control, and in general the operator
is expected to place a data tape in one of the readers. Calculation will continue when the operator
changes the setting of the leftmost F2 digit.

To achieve any other effect during a systems or a data wait, an entry has Lo be made via RAP.

When a systems or data wait occurs, an appropriate Dwait or Swait message is displayed.

The Translation Stage

The translation of an ALGOL program into the store of the computer takes place in two stages.
During the first stage, the complete ALGOL program is read in, and at the end the title of the
program is displayed.

The second stage is purely internal, and may last a few seconds. Finally a Free store message
is displayed, and the program is in the store, ready to be obeyed (see Chapter 3.5.1.).

Normal Input Channel

The arcor tapes 1 and 2, and ALGOL program tapes, are input by the reader connected to
channel 1. In operating instructions such as *place tape 1 in reader’, it is this reader that is meant.
An operator can save time by putting tapes in both readers, and manipulating the reader select
button.

More detailed information on Normal Operation may be found on page 40.

The Operation Sheet

Whenever an operator is to run an ALGOL program, he should be given clear and detailed
instructions concerning what is to be done. These can conveniently be set out on an Operation
Sheet of the form illustrated (see fold-out sheet at the end of this section).

If no departure from Normal Operation is required, only the first section of the sheet (above
the double line) need be filled in. If any Additional Operations are required, these are indicated
by placing a tick or a number in the appropriate box. If there are any further instructions to the
operator, not covered by the entries provided on the Operation Sheet, then these should be
written in the space marked ‘speciaL mnsTRUCTIONS'. If any of these further instructions relate to
a particular item of the Operation Sheet, this item should be marked with an asterisk.

The Operation Sheet should also be used by the operator to convey information to the pro-
grammer in cases where some kind of error condition arises. The space on the right hand side of
the sheet is provided for this purpose.

In what follows, OS n refers to item n of the Operation Sheet.

36
(f5sue 3)

2.1.3.5.

2.3. Error Conditions in Normal Operation
During Translation

If an error is found during the translation stage, a message headed Error no. n is displayed,
followed by a systems wait.

The operator should preserve the error message, and begin translation of the next program

by changing the sign digit; or mark the tape and change the sign of the word generator to check
for further errors.

During Running

If an ALGOL program contains an error not detected during translation, or if it makes
demands beyond the capacity of the computer, an error condition arises which, in general,
prevents continuation of the program. In such a case the operator is expected to make the
appropriate comment on the Operation Sheet, and to proceed to the next program. However,
in certain circumstances the programmer can ask for continuation, and should tick the appropriate
box of OS5 15, If OS 15 is not marked, it is assumed that the program is not to be continued.

In cases during the running of a program where continuation is never possible, an Offo message
is displayed followed by a systems wait: viz. Inr offo, Subscr offo, Space offo. To start translation
of the next program, change the sign digit.

In the case of Space oflo, the ALGOL system is overwritten in the store and must be reinput before
translation can start.

In cases during the running of a program where continuation is permitted, an Error message
is displayed followed by a data wait: e.g. Sine error, Exp error. To continue running the same
program, change the leftmost F2 digit. If continuation is not required, translation of the next
program can be started only by pressing the MESSAGE button and then typing ALGOL.

More detailed information on Normal Operation and on Error Conditions may be found on
pages 40 and 41.

2.4. Additional Facilities
Checks
The ‘checking’ facility (OS 2 and 9) provides optional output during the running of the program.
If these items are marked, the B-digit must be depressed throughout translation and/or running.
N.B. Make sure that the B-digit is raised in all cases where checking is not required.

Program and Data on More than One Tape

When a program is punched on more than one tape, the computer will come to a systems
wait at the end of each tape, and the operator is expected to put the next tape in the reader.
When data is punched on more than one tape, it is up to the programmer to specify how these
tapes are to be used (SPECIAL INSTRUCTIONS).

When more than one tape is used, the programmer must mark OS 3 or 10, and the operator
should check that the required number of tapes is ready, and that their sequence is known, before
starting to run the program. If the number of data tapes is marked as zero, this means either
that no data is required or that the data has been punched at the end of the program tape.
In this latter case the program tape will not be read to the end at the translation stage, and
should be left in the reader when the running of the program is started.

Use of Equipment
If a second reader or punch is required during the running of the program, OS 8 should

be marked. This will warn the operator not to attempt to run the program on a computer
on which the relevant equipment is missing or out of order.

37
(Issue 3)

2.1.3.5,

Wait

When the program itself contains an instruction to cause the computer to wait, a data wait
will occur. The programmer must indicate whether this kind of wait is to be expected (OS5 12)
and what action is required (SPECIAL INSTRUCTIONS).

Manuoal Restart

If the programmer wishes to indicate that the program is to be rerun (for example, with a
different set of data), he must tick OS 16, and also note under SPECIAL NSTRUCTIONS which data
tape is to be input. Before continuing with the next program, the operator should always make
sure that the current program is not to be run again via a manual restart.

A manual restart may also be used to begin the program again after a false start.

2.5. Advanced Operations

Advanced Operations are concerned with methods of using ALGoL which differ from the *load
and go’ system described in the previous sections. Instead of translating the program into the
store, a version of the program is produced on paper tape for subsequent input and use, or the
text is checked for errors but is not translated.

There are three different ways of producing and using these paper tape versions of the
program:

1. The Precompiled Package.
2. The Owncode Program.
3. The Dumped Program.

Precompiled Package

A precompiled package is a portion of ALGOL program which is processed in advance so that
it may be used as the first part of some other program. It can be used only when the ALGoL
system is in the same position in the store as it was when the package was produced.

Such a package will generally represent a set of one or more commonly used procedures, which
can be used again and again by different programs without the need to retranslate them each
time.

A precompiled package is produced as a result of writing the appropriate instruction in the
program being translated. It is a by-product of the translation, and the translation and running
of the program which produced it may continue afterwards in the normal way (OS 6).

The package is used at the translation stage as the first tape of an ALGOL program; second and
subsequent program tapes must be normal ALGOL tapes, and are translated immediately after
the input of the package.

Owncode Programs

The two stages of the translation of an ALGOL program can be separated. An intermediate
version of the program—called owncode—is produced on paper tape for reinput later, possibly
on another computer (503 or 803). Translation to owncode is limited by the speed of the output
punch and is much slower than normal translation.

If an ALGOL program is too long to fit into the store together with the translator, an owncode
version is produced automatically; this should be run in the same way as a program which has
been deliberately translated to owncode. An owncode program can be produced, either
deliberately or automatically, at any time without affecting Normal Operation of the system,

Note: Owncode program tapes must be wound up backwards; this means that the end firsr
output is placed on the winding spool first.

38
(fssue 3)

2.1.3.5.

An owncode program cannot be run during Normal Operation. The operator should save
all owncode programs to be run later—both those produced at the current Normal Session
and those given in for running only (OS Tb).

When owncode programs are to be run, tape 2 (but not tape 1) must first be input. Owncode
programs can then be input and obeyed one after the other. Only if a program has required
the whole store is it necessary to reinput tape 2 before running the next program. In this case,
the message ‘Reinput tape 2’ will be displayed.

Dumped Programs

A dumped tape is a binary version of a complete program, suitable for input by RAP. It
contains all the parts of the ALGOL system that are necessary for its running.

A dumped version may be produced during the running of a program by an instruction in
the program itself (OS 13). Alternatively it may be produced manually by the operator
immediately before the program is run (OS 11). Dumped programs may be run at any time
without previously reading in either of the ALGOL system tapes; they are reinput into the same
area of the store from which they were coded out. If the dumped program uses any programs
external to the ALGOL system, these will not have been coded out and must be input before the
dumped program tape.

Producing Precompiled Packages and Dumped Programs

Precompiled packages and dumped programs are binary tapes which are produced and checked
on a time-shared basis by the following procedure:

(1) Output of the binary tape begins on punch 1.

(2) When the tape produced is long enough to reach the tape reader, the leading end is
placed in reader 1 and the keyboard sign digit is changed. This causes checking
character by character to be carried out simultaneously with the remaining output,

(3) When output has finished, the tape is run out and torn off and the sign digit is changed.
This causes the final section of the tape to be checked.

The display of sSTART CHECK during stage 1 means that the store available for holding the tape
words to be checked is now full, and the operator must take one of the following actions:

(1) If the tape is long enough, proceed as in (2) and (3) above.
(2) If the tape produced so far will not reach the reader:
(a) change the B-digit of the word generator, (This causes the output to continue.)

(b) When output has finished, run out the tape and tear off. To check the tape, load
the tape reader and change the sign digit. The tape will then be read and a sum
check carried out.

In either case, the display of PUNCH ERROR means that the whole process must be restarted
by another message through RAP.

2.6. Marking of Tapes
It is suggested that the following conventions be used in marking tapes:

Tape Marking
(i) The Programmer’s Responsibility
Program tapes PR1, PR2, etc.
Data tapes for reader 1 DTI1/R1, DT2/R1, etc.
Data Tapes for reader 2 DT1/R2, DT2/R2, etc.
39

(fssue 3)

2.1.3.5.

(ii) The Operator's Responsibility

Results tapes from punch 1
Results tapes from punch 2

RTI/P1, RT2/PI, etc.
RT1/P2, RT2/P2, etc.

An owncode program ocC
A precompiled package PP
A dumped program DP

In addition, all tapes must be labelled with the title of the program.

3. OPERATING INSTRUCTIONS

3.1. Normal Operating Instructions

Stage |

Stage 2

Stage 3
(translation)

Stage 4
(running)

Action
Place systems tape | in reader;
press the MESSAGE button and

type IN.

Place systems tape 2 in reader;
change sign digit.

Place ALGOL program in
reader; change sign digit.

Place data tapes in readers as
specified by programmer (OS
10); change leftmost F2 digit.

If any further ALGOL programs
remain to be processed, go
back to Stage 3.

(Issue 3)

Result

The tape is read in and stops
at the end in a systems wait.

The tape is read in and stops
at the end in a systems wait.

The tape is read at variable
speed to the end, The title of
the program is displayed,
followed by a Free store
message and a dafa wait.
Check that the title is the
same as that on the Operation
Sheet.

The program is now run,
At the end, the message End
of program is displayed and a
Systems wait occurs.

3.2. Error Conditions in Normal Operation

During Stage 1
During Stage 2

During Stage 3
(translation)

Condition

1. ERRSUM is displayed.
2. ERRSUM is displayed.

3, The ALGOL program is par-

tially read; a message headed
Error no. n is displayed; a
systems wall occurs.

4, During translation of a long

program, a sudden stream
of output occurs on punch 1,
lasting for several minutes,
followed by alternating input
and output, and ending in a
systems wail.

5. Continuous output of binary 1

or 2 after the title of the pro-
gram and before the Free
store message has been dis-
played, indicating a machine
error.

4]
(Issue 3)

2.1.3.5.

Action

Repeat Stage 1.
Replace tape 2 in reader,
type REIN 2.

Remove offending program,
save displayed message, and
go on to next program, Or
mark the tape see (3.1.4.2)
and change the sign of the
word generator to find fur-
ther errors.

The tape just output (which
is an owncode version of the
program) should be wound
up backwards and run later—
in the same way as other own-
code programs (p. 45).
To continue normal transla-
tion of next program, change
sign digit.

Retranslate the program by
pressing the MESSAGE button
and typing ALGOL.

2.1.3.5.

Condition

During Stage 4 6. An overflow message Int
(running) oflo or Subscr oflo is dis-
played, followed by a systems

wait.

7. An overflow message
Space oflo
Reinput tapes 1 and 2
is displayed.

8. ErRINT 1 is displayed.

9. An error message is displayed
followed by a data wait (e.g.
Sine error).

10. The program exceeds the
maximum time declared by
the programmer.

11. Reinput tapes I and 2
is displayed
(i) after the message End of
program has been dis-
played or,
(ii) after typing ALGOL.

42
(fssue 3)

Action

Go on to next program at
Stage 3.

Clear main store by typing
either

RESET. O CANCEL; ALGOL 1.
and then go on to next pro-
gram at stage 1.

Floating point overflow has
occurred, Note this under
operator’s comments on the
Operation Sheet. If OS 15a is
ticked, type CONT; ERRINT.
Otherwise go on to next pro-
gram by pressing the MESSAGE
button and typing ALGOL.

If OS 15b is ticked, change
leftmost F2 digit; otherwise go
on to mnext program by
pressing the MESSAGE button
and typing ALGOL.,

Go on to next program by
pressing the MESSAGE button
and typing ALGOL.

To continue with next pro-
gram, clear main store by
typing either

RESET. Or CANCEL; ALGOL 1.
and then go on to next pro-
gram at stage 1.

2.1.3.5.

3.3. Operating Instructions for Additional and Advanced Procedures
(a) During Translation

Condition Action Result
0Ss 1b* — (i) To start transla- An owncode tape of
translation tion place program the program is
to owncode tape in reader; produced on punch 1.
press the MESSAGE At the end the com-
button and type puter waits for a
OWNOUT. further message. For

errors see Error Con-
ditions in Normal

Operation (Stage 3).
(ii) Wind the tape up
backwards, and mark
it with the title of the
program.
(iii) (@) To continue
normal translation of
next program, type
ALGOL.
(k) To continue trans-
lation to owncode,
repeat from (i) above.
0S 1e No translation See instructions for —
required RUNNING.
O0Ss 1d To start checking, place The program is check-
syntactic check — the program tape in the ed for syntactic
reader, press the errors.
MESSAGE button and At the end the com-
type FAME. puter waits for a
further message. For
errors see Error Con-
ditions in Normal
Operation (Stage 3).
0s2 — Before starting trans- —

lation, depress the
word generator
B-digit.

* N.B. If at a given session it is required only to translate programs to owncode, then

Stage 2 of the Normal Operating Instructions may be omitted (i.., tape 2 need not be input).

43
(fss0e 3)

2.1.3.5.

0S4

0S5

Condition

At the end of each
program tape but
the last, input stops
and a systems wait
oceurs.

The first program
tape is a precompiled
package.

At the end of input
of a program tape,
output of the precom-
piled package starts on
punch 1.

Action

Place next program
tape in reader;
change sign digit.

(i) Place precompiled
tape in reader; type .

(ii) Place next tape of
the same program

in reader; change

sign digit, or if
syntactic checking only
is required type FAME.

(i) When enough tape
has been output to
reach comfortably to
the reader, depress the
MANUAL button on the

control panel. Place the

end of the precom-

piled tape in the reader,

change the sign digit,

and release the MANUAL

button.

(ii) When output stops,

run-out tape and tear
off. Then change the

sign digit.

(iii) If OS 6 is ticked,
continue translation of
the same program

by placing next pro-
gram tape in reader,
and typing PRE 2;
otherwise, to go on to
normal translation of
next program, type
ALGOL.

(Issue 3)

Result

Translation continues
as before.

The tape is read in
and stops at the end
in a systems wait.
For errors see p. 48.

Translation or check-
ing continues; at the
end the title of the
pre-compiled pack-
age is displayed to-
gether with the title
of the main program.

(i) Simultaneous out-
put and checking of
the precompiled pack-
age takes place. For
errors see p. 48.

(ii) The final section of
the tape is checked,
and the computer
waits for a further
message.

2.1.3.5.

Operating Instructions for Additional and Advanced Procedures
(b) During Running

Condition Action Resuli

0S7b (i) Place systems tape 2 The tape is input and
Running in reader; press the stops at the end in a
owncode MESSAGE button and systems wait. For errors
programs. type M. see p. 48,

(ii) Place the owncode The title of the pro-

program in reader;
change sign digit.

gram is displayed,

and the tape is input.
The Free store

message is displayed,
followed by a data

waif. For errors see p 48.

(iii) Place data tapes The program is now
in readers as specified run, At the end, the
by programmer (OS message End of

10); change leftmost
F2 digit.

(iv) If any other
owncode programs

remain to be run, go
back to (ii) above.

45
(f5sue 3)

program is displayed,
followed by a systems
wait. For errors, see
Error Conditions in
MNormal Operation,
Stage 4.

2.1.3.5.

Condition

0S 7c —

Running

dumped

programs.

058 The specified devices
are required by the
program.

0s9 i

0S 10 The specified number
of data tapes are used
by the program.

os1 —

Action
(i) Place the pro-
gram tape in reader;
press the MESSAGE
button and type IN.
(ii) Place data tapes in
readers as specified
by programmer
{OS 10); change
leftmost F2 digit.

Check that these
devices are available
and supplied with tape,
paper, ribbon, ete.
Before starting to run
the program,

depress the B-digit.
Check that all the data
tapes are available,
and that their order

of input is known.

(i) Before starting to
run the program,

press the MESSAGE

button and type

pump 1,

(ii) As soon as enough
tape has been output
to reach comfortably to
the reader, depress the
MANUAL button on the
control panel, place the
end of the dumped tape
in the reader, change
the sign digit and
release the MANUAL
button.

(iii) When output stops,
run-out tape and tear
off. Then change the
sign digit.

(iv) If OS 14 is ticked
see below; otherwise
£0 on to next pro-
gram by typing ALGOL.

(Issue 3)

Result
The tape is input and
stops at theend in a
data wait. For errors
see p. 48,
The program is now
run. At the end End
of program is dis-
played. For errors see
Error Conditions in
MNormal Operation,
Stage 4.

Checks are output.

(i) Output of the

dumped program
starts on punch 1.

(ii) Simultaneous out-
put and checking of
the dumped tape takes
place. For errors see
p. 48.

(iii) The final section
of the tape is checked,
and the computer
waits for a further
message,

0s12

0s 13

0S 14

0s 15

05 16

Condition

The program stops
in a data wait.

QOutput of a dumped
tape begins on punch
1.

The program stops
having displayed an
Oflo, Error, or ERRINT
message,

Action

See OS SPECIAL
INSTRUCTIONS.

(i) Proceed as for (ii),
(iii), (iv) of OS 11

Place data tapes in
readers as specified
by programmer; type
DUMP 2.

See Error Conditions
in Normal Operation

(items 6, 7, 8,9) p. 42.

Place data tapes in
readers as specified

b}" Programmer; press

the MESSAGE button
and type REPEAT.

47
{Issue 3)

2.1.3.5.

Result

The dumped program
is output and checked
(for errors see p. 48).

The program
continues running.

The program is
run again.

2.1.3.5.

3.4. Error Conditions during Additional and Advanced Procedures

(a) During Translation

054
Input of
precompiled

package.
055
Precompiled

package output.

(b) During Running

0S 7b (i)
Running owncode
programs.

(ii)

(iii)

0S 7e
Running dumped
programs.

Condition
(i) ErrsUM is displayed indi-
cating a sumcheck error.
(ii) Error no. 53 is displayed.

(i) PUNCH ERROR is displayed.

(ii) START CHECK is displayed.

(iii) Error no 53 is displayed.

Condition
ERRSUM is displayed indicating
checksum error.

Continuous output of binary
1 or 2 indicating a wrong
character or a sumcheck error.

Display of the message Space
ofle indicating the program
is too large to fit in the store.
Error conditions are as for
Normal Operation, except that
Reinput tape 2 is output in
place of Reinput tapes I and
2.
ERRSUM is displayed indicating
a sumcheck error.

48
(Issue 3)

Action
(i) Re-input precompiled
package by typing N,
(ii) Carry on with next pro-
gram,
(i) Re-output precompiled
package by typing PRE 3.
(ii) (a) If the tape is long
enough to reach the tape
reader, load the reader and
change the sign digit.
(&) If the tape is not long
enough to reach the reader,
depress the B-digit, causing
output to continue.
When the punch has finished
its output, check the tape by
loading it in the reader if
necessary and changing the
sign digit.
(iii) Carry on with the next
program or mark the tape and
change the sign of the word
generator to find further
errors.

Action
Re-input systems tape 2 by
typing IN.

Replace owncode program
tape in reader, press the
MESSAGE button and type
ownIN. If it still fails the
ALGOL program will have to be
translated again at another
session.

MNothing can be done.

As for Normal Operation,
except that ‘go on to next
program by typing ALGOL’ is
replaced by ‘input next pro-
gram by typing owNIN,’
Re-input dumped program
tape by typing 1.

2.1.3.5.

0S8 11 (ii) PUNCH ERROR is displayed. Re-output dumped program
0S 13 () by typing pume 3.
4. SUMMARIES
4.1. Summary of Waits
Systems Wait
Condition Action
1. After input of systems tape 1 in Normal Place systems tape 2 in reader.

Operation.
2. After input of systems tape 2.

3. If an ALcoL program is punched on
several tapes, a systems wait will occur at
the end of each tape except the last.

4. After end of execution of an ALGOL pro-

gram; or after an irretrievable error during
running or a syntactic error during transla-
tion.

Data Wait
1. After the input of an ALGOL program,

2. During running of ALGOL program, due
to WAIT in program or “stop’ on data tape.

3. Retrievable error stop, e.g. Read error.

Error Wait
Floating point overflow.

RAP Wait

1. After display
Reinput tapes 1 and 2
Reinput tape 2

2. After outputting and checking precompiled
package.

3. After outputting and checking a dumped
program.

49

Place ALGOL program tape in reader.
Place next tape of the program in reader.

Place next ALGOL program in reader; or,
during translation, change the sign of the
word generator to check for further errors.

Place data tape(s) in readers as specified by
programmer (OS 10).

Generally, place next data tape in reader as
specified by programmer (OS 10, 12, sPECIAL
INSTRUCTIONS).

Continue only if OS 15b ticked.

Continue only if OS 15a ticked.

Reinput tapes 1 and 2.
Reinput tape 2.

Either continue translation by typing PRE 2
(OS 6), or translate next program by typing
ALGOL.

Either continue running program by typing
pumr 2 (OS 14), or translate next program
by typing ALGOL.

(Issue 3)

2.1.3.5.

4.2, Summary of Input Messages

1. During Normal Running

IN. (a) To input systems tape 1.
{(b) To input precompiled program.
ownNouT. To translate an ALGOL program to owncode (OS 1b).
REPEAT. To restart manuvally the program currently in the store (OS 16).
ALGOL. To translate an ALGOL program normally.
pump 1. To dump manually the program just input (OS 11).
DUMP 2. To continue running a program after it has been dumped (OS 14).
DUMP 3. To re-output a dumped program after a punch error.

PRE 2, To continue translating a program after the first part has been precompiled (OS 6).
PRE 3. To re-output a precompiled program after a punch error.

REIN 2. To input systems tape 2 after sumcheck failure,

FAME. To check for syntactic errors without assembling the program.

2. During Running of an Owncode Program

N, Input systems tape 2.

OWNIN. Input an owncode program.

REPEAT; DUMP 1; DUMP 2; DUMP 3—as during normal running,

4.3. Summary of Suggested Tape Titles

Identification on tape Meaning

DP title dumped program

DTn/R1 title nth data tape for reader 1
DTn/R2 title nth data tape for reader 2

PP title precompiled package

PRn title nth program tape

RTn/P1 title nth results tape from punch 1
RTn/P2 title nth results tape from punch 2
OC title owncode program

50
(Fssue 3)

4.4. Summary of Displayed Messages

During Translation

Error no. n program can be checked for further errors.

Title of program

Free store =ntom program ready to run

During running

Exp error R
Sine error

Log error

Sqrt error

Arcsin error

2 1:3:5.

Tan error >-continuation at programmer’s discretion (OS 15a, b)

String error
Print error
Read error
Buffer error
ERRINT |

Int oflo

Subscr oflo

Space oflo

ERRINT (2—5)

End of program
Reinput tapes | and 2
Reinput tape 2

PUNCH ERROR
START CHECK
ERRSUM

Swait
Dwait

C. A. R. Hoare, J. 8. Hillmore, R. Grover, 5. Gilbert

51
(Fssue 3)

continuation not possible

January 1965

The 503 ALGOL System for Machines with a Core Backing Store

APPENDIX 1

1. The systems tapes 1 and 2 can be kept on core backing store, and can be read down into the
main store ready for normal translation and running of ALGOL programs, by just inputting a

leader tape.

MN.B. Owncode programs cannot be run using the ALGOL system from the backing store.

2. When an ALGOL program is too large to be translated normally in the store, instead of an
owncode version being output on paper tape, the owncode is written onto the backing store.
This allows the large program still to be run load and go, although the translator is overwritten

in the store.

3. OPERATING INSTRUCTIONS to write the ALGOL system to CORE BACKING STORE

3.1. Normal Operating Instructions

Stage |

Stage 2

Stage 3

Stage 4

Action

Place systems tape 1 in reader;
press the MESSAGE button and
type IN.

Place systems tape 3 (ALGOL to
backing store) in reader; press
the MESSAGE button and type IN,

Type STORE.

Place systems tape 2 in the reader
and change the sign digit.

Press the MESSAGE button and
type ALGOL 3. followed by TAPE 2.

To check the leader tape for pun-
ching errors, run out some
blanks, tear off the output, place
the leading end in the tape reader

and change the sign digit.

i
(Issue 3) APPENDIX 1

Result

The tape is read in and stops at
the end in a systems wait.

The tape is read in and EnD
is displayed.

Tape 1 is written on the core
backing store and REmN 2 is
displayed.

Tape 2 is read into the store and
ALGOL 2 is displayed.

Tape 2 is written onto the core
backing store and the leader
tape is output on punch 1.

If the leader tape is correct
END is displayed.

3.2. Error Conditions in Normal Operation

During Stage 1
During Stage 2
At the end of
Stage 3

At the end of
Stage 4

Condition
ERRSUM is displayed.
ERRSUM is displayed.
ERRSUM is displayed.

errsum is displayed

3.3. Bringing Down the Systems Tapes into the Main Store

Stage |

Stage 2

3.4. The Position of the ALGOL System on the Backing Store

Action

Place the leader tape in the read-
er and type IN.

To translate an ALGOL pro-
gram place the tape in the reader
and change the sign of the word
generator.

The leader tape remains in the
store all the time so that provid-
ed the systems tapes have been
read down correctly once, they
can be read down again by
typing LEADER.

To bring tape 2 into the same
position as before type

CANCEL: &app-2.. | 01 7,
before typing LEADER.

2.1.3.

Aetion

Repeat Stage 1.

Repeat Stage 2.

Replace tape 2 in the reader and
type REIN 2.

Discard the leader tape and
type CODE. to output another
leader tape. This can be checked
as in Stage 4.

Result

LEADERUNCHEK is displayed and
then END and Swair. Until this
happens, no other tapes must be
input.

Tape 1 is read into the same
position as before, but tape 2 is
read into a new position depend-
ing on the value of the RAP
L.F. pointer.

The normal operating procedure causes the ALGOL system to be written into location 0 and
upwards of the core backing store. If it is desired to store the system elsewhere, say from location
N upwards, then insert the following step between Stages 2 and 3 of Normal Operating:—

Punch on a data tape the integer
N terminated by a newline. Put
the data tape in the reader and
type ADDR.

The data tape is read in, and
END is displayed. If error is
displayed, there is a mistake on
the data tape; put a corrected
tape in the reader and type
ADDR. again.

Note. During the process of writing tape 2 onto the backing store, tape 1 in the main store is
overwritten and is removed from the RAP list. Therefore, to rewrite systems tapes 1 and 2
onto core backing store, the whole process must be repeated from the beginning,

i.e. type RESET. to clear the main store and reset the RAP pointers, and then proceed from

stage 1.

ii
{Issue 3) APPENDIX I

2.1.3.

3.5. Summary of Error Indications

(a) During writing up
Message Meaning and Action
ERRSUM The tape checksum has failed. Reinput the tape.
error (i) Incorrect entry message. e.g., an integer, impermissible
word or a terminating digit other than *. (full stop).
Type the message again.

(ii) Incorrect address on ADDR. data tape e.g., the number
contains an impermissible character or the number is
out of range, i.e., the address does not exist on the units
of core backing store present. Place a corrected data tape
in the tape reader and type ADDR. again.

Fa Impermissible character in the message, type the word again.

P Backing store parity occurred when reading a block for
checking. The incorrect block is rewritten and rechecked.
if it is then correct, C is displayed; otherwise P is displayed
again.

E A check block’s checksum has failed. Further action is as
for P, except that if the checksum fails again E is displayed.

C An incorrect block has now been written correctly. The
program continues.

A string of P's or E's The same block is failing all this time which probably means
there is something wrong with the backing store.

A string of C's This could mean that ALGOL tape 3 has been overwritten.

Repeat the whole process from the beginning,

NOROOM The free store is not large enough to hold tapes 1, 2 and 3.

Cancel some programs and start again.

errsum The leader tape is incorrect. Type copE and a new copy
of the leader tape is output.
(b) During reading down
Message Meaning and Action
wrong leader The issue numbers on the leader tape do not correspond

with the issue numbers of the systems tapes on the core
backing store. Start again with the correct leader tape.
bspar Backing store parity has occurred during the reading down
process and the ALGOL system is probably corrupt. A marker
is set on the backing store and any attempt to read down the
corrupted ALGOL system causes NOPROG to be displayed.

NOPROG The ALGOL system has been corrupted and must be rewritten
onto the backing store.
ERRSUM Either the leader tape’s checksum or the ALGOL system’s

checksum has failed. If the former, reinput the leader tape;
otherwise rewrite the systems tapes onto the backing store.

MNOROOM The free store is not large enough to hold the leader tape
and the ALGoL system. Type RESET. and reinput the leader
tape.

iii
(Issue 3) APPENDIXI

Control is transferred to RAP after all these error indications.

3.6. The Program is too Large for Normal Operating

(i) If a program is too large to be translated normally into the store then it is written onto the
backing store automatically. Before the transfer of owncode to the backing store begins, a
message SET UP BSLIMS is displayed, followed by Swait. If there are parts of the backing
store which may not be written into, then set up the limits of the free area of the backing
store on the word generator before continuing. The lower limit should be set on the F1 N1
buttons and the upper limit on the F2 N2 buitons. The assumed free area of the backing
store is locations 8192 to 16,383 inclusive (i.e., allowing for the ALGOL system in the standard
position). If this area is free, then clear the word generator buttons before continuing.
In other respects the operation of the program is exactly the same as if it were being run
normally.

If error is displayed, followed by Swait, then either
(2) the lower limit =~ the upper limit —64
or (b) the address defined by the upper limit is non-existent.
Set the limits up correctly and continue by clearing the systems wait.

(ii) When the free area of the backing store is full a message bsfull is displayed followed by a
systems wait. Translation of the current program cannot be continued. To start translating
the next program, change the sign of the word generator.

(iii) If bspar is displayed, followed by a systems wait, then backing store parity error has occurred
and translation cannot continue. Change the sign of the word generator to translate the next
program.

Note

When a program is too large to be translated normally, the owncode is written into the backing
store only if the ALGoL system has been read from backing store. If ALGOL has been input from
paper tape, the backing store is not used.

iv
(Izsue 3) APPENDIX 1

2.1.3,

APPENDIX 11

COMMON ERRORS MADE IN PROGRAM WRITING;
PROGRAM CHECKING

A program, whether in ALGOL or any other programming language, can be a fairly intricate
composition, and it is recommended that a systematic check be made for errors and slips before
first running it. The computer does not ignore slips; an apparently trifling error in punctuation
may well make a program unacceptable, or what is worse, lead to incorrect results, The following
list of checks will indicate the type of mistakes most commonly made.

1. General Program Checks

(1) Check that the multiplication symbol * has not been omitted—a common and simple
mistake to make and to overlook.

(2) Make sure that no division by zero, no determination of the logarithm of zero or of a
negative quantity, no determination of the square root of a negative quantity, and no evaluation
ofat b(a < 0, b non-integral) or any other undefined operation can occur.

(3) Check that all numbers are written in the accepted forms.
(4) Check that two arithmetic operators do not appear next to one another.

(5) Check that when testing the magnitudes of quantities the absolute values of these quantities
are used.

(6) Check that cycles are nested correctly and that each cycle terminates.

2. Special Checks for ALGOL
(7) Check throughout the program that all basic words used (begin, end, for, etc.) are underlined.

(8) Check throughout for the correct spelling of basic words.
(9) Check for correct punctuation; in particular, check for the correct placing of semicolons.

Remember that the first symbol following any statement must either be

; or else or end
and that end must be followed by a semicolon, else or another end (intervening words are treated
as comment). Failure to put a semicolon after end will result in the next statement being treated
as comment and not translated and consequently not executed. Check also that the word
comment occurs only after a semicolon or begin, and that the comment material is terminated
by a semicolon.

(10) Check that for every if there is a corresponding then. Check also that an if never follows
a then. Remember that a conditional expression must always have an else part, although a
conditional statement need not. Thus the statement

if A < Othen A := —A;
is equivalent to
A =i A < 0then —A else A;
and it is incorrect to write
A:=if A < 0then —A;

(11) Check that all the variables on the left-hand side of an assignment statement are of the

same declared type (e.g. a := b := ¢ * d is incorrect if a is real and b is integer).

i
(Issie 3) APPENDIX 1T

2.1.3,

(12) Check the correct use of brackets; in particular, check that there are corresponding
opening and closing brackets in arithmetic expressions, that the argument for a standard function
is enclosed in brackets (c.g. sin (x) not sin x) and that squarc brackets are used in arrays and
around suffixes. Remember the natural order of precedence of the operators in arithmetic or
Boolean expressions, and check that brackets have been used to change the order of execution
of operations where required.

(13) Check that each begin has a corresponding end.

(14) Check that each compound statement (i.e. a sequence of statements to be executed
together as one unit) is bracketed between begin and end. This check is particularly necessary in the
case of a compound statement following a for clause or a compound statement constituting a
branch of a conditional statement.

(15) Check that all variables are declared and are not used outside the block in whose head
they are declared, and that variables are not introduced into expressions before values have been
assigned to them. Check also that identifiers differ in their first six symbols. Check that all labels
are declared in a switch declaration at the head of the innermost block in which the statement to
which they are attached occurs. Check that declarations occur only at the head of a block, and
that the procedure declarations, if any, come last.

{16) Check that the operator — (or its equivalent form div) is used only when both operands
are of type integer. In particular, note that the result of exponentiation i ¢ j is real even when
i and j arc of type integer, so that (it j = 2) is incorrect.

(17) Check the correct use of labels in go to statements. No ge to statement may lead from
outside into a block or from outside a for statement to a statement within the for statement.
No go to statement may lead out of the body of a procedure, except through the medium of a
label parameter.

(18) For every conditional statement or expression establish two tests, one which makes the
arithmetic comparison true and one which makes it false. By following the action of the program
for both these cases check that the program always behaves correctly.

(19) When using a for clause, such as for V:= L do, remember that when the list of values of
Y is exhausted, the variable ¥V cannot be used again in the subsequent program until it has been
assigned a value. V retains its current value only when a go to statement brings about a jump out
of the for statement before the list of values of V is exhausted.

(20) NMumbers of type real cannot in general be held absolutely accurately in the computer.
The error is only of the order of two parts in 1079, but it must be borne in mind when the equality
of two real numbers is tested for. Thus the relation A = B may have the value false at a certain
point in a calculation even though A and B are theoretically equal. To avoid errors of this sort,
write the relation instead as abs{A — B) < epsilon, where epsilon is a suitably small positive
constant. This inaccuracy in the computer representation must also be taken into account in
for statements. Thus

for A := 1 step 1/3 until 2 do §;
could result in the statement 5 being executed for A = 1, 14, 1%, but not for A = 2. On the
other hand,
for A := | step 1/3 until 2 4 epsilon do §;
is safe.

The list given here is not exhaustive.

It is good practice to work through the program with a set of test data, to make sure that it
behaves correctly at every stage. This is often the best way of locating errors.

ii
(fssme 3) APPENDIX I

2,

4.

5.

INTRODUCTION

APFENDIX 3
ALGOL 1 EXTENSIONS

CONTENTS

SPECIFICATION OF FACILITIES

2,1 Arrays on Core Backing Store (MOD 2)

2.2 Lineprinter facility (MOD 3)

2,3 Editing facility

2.4 Segmentation — using Core Backing Store (MOD 8)
2.5 Segmentation — using Magnetic Tape (MOD 9)

2.6 ALGOL/STAR (MOD 10)

2.7 Improvement of machine code facilities (MOD 11)
2.8 Standard procedure improvements (MOD 12)

METHOD OF USE OF THE MODS

DESCRIPTIONS

4.1 ALGOL 1
4,2 ALGOL 1
4.3 ALGOL 1
4.4 ALGOL 1
4,5 ALGOL 1
4,6 ALGOL 1
4.7 ALGOL 1

SAC PROGRAMS

5«1 INSERT

OF MODS

MOD 2 - Arrays on core backing store

MOD 3 = Lineprinter Pacility

MOD 5 = EDITING FACILITY

MOD 8 - Segmentation facility

MOD 9 = Segmentation Using Magnetic Tape

MOD 11 = Improvement of Machine Ctde Facilities
MOD 12 = Standard Procedures Modification

5.2 ERINT (FOR MOD 12)

Appendix 3
sl

2‘ 1!

| % D % TR N TR S Yy W A — —h

@D o W Wom

e L "
-1 =1

ra
s

[I %
I —

2. 1. 3.

1. INTRODUCTION

For each of the new facilities listed in section 2 and described in more
detail in section 4, a modification tape is available.

An ALGOL system incorporating one or more of the new facilities may be
produced by using these tapes, and tapes 1 and 2 of ALGOL 1 (Issue 1)

The MODS must hot be used with ALGOL 1 (Issue 2).
2, SPECIFICATION OF FACILITIES

2.1 Arrays on Core Backing Store (MOD 2)

All arrasy elements are held on a dynamic stack on core backing store .
No special text is required; array declaration and accessing are written as for
ALGOL 1 (Issue 1).

2.2 Lineprinter facility (MOD 3)

The facilities made available by this modification are based on those
of LPRALG (see MANUAL section 2.2.3. 24).

The procedure calls added by MOD 3 to ALGOL 1 (ISSUE 1) aret
lineprinter

top of form

punch (4)

The LPRALG procedures overwrite, lines (i), find (1) are not available.

2,3 Editing facility .

The object text supplied to the compiler may be modified by a suitable
edit tape in reader 2. This tape is written in the same manner as for EDIT 8.

entation == usi Core Backl Store (MOD 8

This is to allow programs normally too large for ALBOL 1 (ISSUE 1), to
compile and run by using core backing store. The program may be divided into
segments which are held on core backing store and brought to main store only when
required.

2,5 Segmentation — using Magnetic Tape (MOD 9)

This modification provides the same facility as MOD 8 but uses Magnetic
Tape instead of Core Backing Store.

Appendix 3

R, i

2.1.3

2.6 ALGOL/STAR (MOD 10)

This modification makes possible the running of ALGOL programs within
the STAR system. (see section 2.5.5 of the MANUAL).

2.7 Improvement of machine code facilities (MOD 11)

This modification gives a machine code facility based on that in Elliott
Autocode. It dispenses with repeated use of the word elliott (as in "elliott"
orders) and use of commas as geparators. Helative addressing with reaspect to
the start of a unit of code is allowed.

The restrictions on the use of identlfiers in machine code are as in

elliott. Ellioti instructions as presently written will,however,still be accepted.

2.8 Stundard procedure improvements (MGD 12)

Thir modifieation enables boolean expressions to stand in print state-
ments and introduces two procedures, one affecting character handling, the other

causing a return to the presumed sebtings for read and print statements. It

also modifies the continuation values used after certain errors have been detected

in the standard procedures "sqrt", "exp" and "ln".
3. METIOD OF USE OF THE MODS

Each MOD should be input by typing IN. after ALGOL 1 (ISSUE 1) systems

tapes have been input (nr are already in store). Operating instructions are as

followa:
Step Tapes Instruction to Indication on
machine machine
1 RAP or RAPNMT depresa no protection
press reset button
press clear store
press initial instruc-
tions RAP or RAFNT
2 ALGOL 1 tape 1 release no protection
press reset button
press message 7
IN. ALGOL 1
Swait
3 ALGOL 1 tape 2 change key 39 ALGOL 2
Swait

Appendix 3
o

Step Tapes Instruction to Indication on
machine machine
4 MOD tape(s) press message button ?
IN. ALGOL 1 UNCHEE=-

ALGOL 2 UNCHEK

5 Object program ALGOL, as usual.

If two or more MOD tapes are to be input this must be done in the order
given in the table below. MODS with numbers to the left must be input before
MODS with numbers to the right.

MOD ORDER 5 10 3 12 8 9 2

MOD11 can not be used with any other MOD.
MOD9 can not be used with MOD2.

MOD12 can only be used with MOD3 and/or MODS.
MOD8 can not be used with MOD9.

4, DESCRIPTIONS OF MODS

4,1 ALGOL 1 MOD 2 - Arrays on core backing store

FUNCTION

MOD 2 changes ALGOL 1 so that all arrays declared by the programmer are
held on core backing store. No special form of text is required for declaration
or accessing of arrays. Subscript bounds are checked as in ALGOL 1. The
optimising standard functions lowbound (A,I), range (A,I) and size (A) have the
same values as in ALGOL 1. The integer procedure address (A) gives the core
backing store address of the first element of the array. The variable location

I has the (raal) value of the contents of backing store location I,

STORE USED
The total mainstore space occupied by MOD 3, MOD 8 and MOD 2 together is:

compile time 501 locations

run time 249 locations
Because of the way MODS are coded, no space may be saved, if MOD 2 is used, by
not using MGD 3 or MOD 8. At run time, MOD 2 places the own arrays at the high
addressed end of core backing store, and the others at the low addressed end. If
MOD 8 is used, the program segments are at the low addressed end and the non-own
arrnys follow them, MOD 8 and MOD 2 automatically determine the size of core
backing store, and use all of it. Appendix 3

e —

Access time for array eldments held on core backing store is approximately
25% greater than for mainstore. The time increase for a given program will,
however, vary with the nature of the program.

ERROR INDICATMIONS

The run-time error indications of ALGOL 1 are extended as follows:=-
Subscript oflo
When a subscript is out of range, the following are displayed, each on
a new line, on the typewriter.
(a) the subseript position at which the error ocourred.
(b) the value of the erronsous subscript.
(a) the current upper and lower bounds of each subscript position of the array
concerned, subscript position 1 first.
(d) the message Subseript oflo
Swait

The print format is digits (6). If the erroneous subseript is very large
(<1 000 000) it will as usual, appear in the format scaled (2).

Space oflo

When an array declaration or value array copy finds that there is not
enough space in core backing store, the message
CBS Space oflo
Swait
is displayed on the typewriter.

OTHER MODS

For use with other MODS see section 3.
TAPE

The tape supplied is in RAP binary code,
METHOD USED

All array elements are held on a dynamic stack on core backing store.
A system of pointers is held as a tree structure on the dynamic stack in main
store, Accessing of elements is done by a single word transfers.

Appendix 3
—4=

2,16 3

KNOWN ERRORS IN ALGOL 1 MOD 2 ISSUE 1

(1) In the subscript overflow diagnostics, the value given for the subscript
position at which the error occurred is 1 less than the true subscript position
if the value of the erroneous subscript is less than the lower bound of its
subscript pogition.

(11) The standard procedure "location"should not be used.

{iii) If a running program is interrupted and
REPEAT.
is typed, then any space which had been claimed on backing store for arrays by
the program wil not be given back to the dynamic routines.
If however, the program is allowed to run to its conelusion before
REPEAT.
is typed, then all the array space will be made available to the dynamic routines.

(1v) The control variable in a "for" statement should not be a name parameter
or a subscripted variable.

(v) The first term in an arithmetic expression on the RHS of an assignment
statement should not be a name parameter when the corresponding actual parameter
is a subseripted variable.

(- - begin integer a ;

integer array A[1 : 10];
procedure F(x) ; integer x ;
begin

a: =xdiv 3 ;

print a j

end 3

F(afiol) ;
end ;

This would give an incorrect result. However, if the assignment statement in
the body of the procedure were changed to

a:=1%(xdiv 3) ;

then the correct result would be obtained.

Appendix 3

‘e 143

(vi) When an arithmetio expreosion le used for a name parameter in a
procedure call, the expression should not begin with a subsoripted variable or
A name parameter.

(- Y- 38 begin integer array A.[1 H 10];
procedure F(x); integer x ;
begin
print (x) j

s
end

FHD@H};

end ;
This would give an incorrect result. If, however, the call of the procedure
were changed to

F(1 + af1q]),

then the ecorreect result would be obtained.

(vii) If an array bound is a constant greater than 8191 (or less than = 8191)

then the bound is not interpreted correctly,
L] LLJ

(viii) The error message Int oflo is displayed instead of 'CBS space oflo',

442 ALGOL 1 MOD 3 - Lineprinter Facility

FUNCTION

Provides two additional procedure calls (i.e. those made available in
UPRALG) 1=
(n) lineprinter
(b) top of form

3TORE USED
MOD 3 extends the dynamic routines by 61 locations.

ALDITIONAL I'ROCEDURES

Lineprinter
A call of lineprinter has the same scope as other device setting

procedures, Thus its effect within a print statement is local to that statement,

>therwise global,
Appendix 3
=

o

Lineprinter causes characters output by print statements & oustring, to
appear on the lineprinter. The first such character appears at the beginning of
a line. A line is printed only when, on paper tape, a newline character would be
output, or when there is no room in the buffer, for the character sent. In this
case, the character appears at the beginning of the next line.

All lower case characters appear in upper case, and other characters
not in the lineprinter character set appear as the triangle character (AJ. An
underlined character appears as an underline followed by the character i.e. as
two separate characters. Similarly for vertical bar.

top of form

This has the effect that 'top of form' is done before printing the
next line, i.e. paper is fed until the next top of form character on the control

loop is found., If there is no control loop in the lineprinter, top of form has
no effect.

PROCEDURES NOT AVAILAKLE

The LPRALG procedures overwrite, lines (i), find (i) are not available.

The effect of the procedure lines (i) can be obtained by declaring at the
beginning of a program

procedure lines(i}; value i; integer i;

begin integer i;
ends for 1:= 1 step 1 until 1 do print lineprinter, ££877;

The procedure call

punch(i); when i=4,
has precisely the effect of
lineprinter;
ERROR INDICATIONS
LPerr is displayed when an error condition arises in the line-

printer when it is in use .

(lineprinter in manual, paper low etc.).

When the error condition is rectified the program continues
automatically.

Appendix 3
o

2.1.3

ERRINT4 is displayed if an attempt is made to use a lineprinter
which is disconnected or switched off.

NOTE
1. For use with other mods see section 3.

2e The first call of lineprinter (or punch (4)) sets up a 121 word buffer
at the low addressed end of the free store area, overwriting part of the
compiler, It remains there for the rest of the program and may not be
overwritten by dynamic arrays. As a consequence, the system must be

reinput after the lineprinter has been used, before the next program
may be translated,

TAPE
The tape supplied is in RAP binary code

4,3 ALGOL 1 MOD 5 - EDITING FACILITY

FUNCTION
This modification enables the compller to use the library program EDIT 8
AS A COmMmMOn program. oource programs may then be edited directly into store.

STORE USED
MOD 5 extends the dynamic routines by 27 locations.

METHOD OF USE

EDIT 8, the systems tapes and the MOD 5 tape are input to store. The
edit commands to modify the program text are punched on paper tape and loaded
in reader 2, The tape to be edited is loaded in reader 1.

The entry to ALGOL to read characters from readerl only is
ALGOL.
Entry for editing into store is
ALGOL; EDITS.
The edit tape and the tape to be edited are read by EDIT 8 and the edited
characters are presented one at a time to the ALGOL compiler. An edited tape

is not produced.

Al ternative Common Programs.

Any binary common program symbol read routine written in SAP 1, having
the characteristics listed below, can be used in place of EDIT 8, The entry to
ALGOL for symbol read by common program N is

Appendix 3 .8-. ALGOL ; 'N',

2,1:, 3

Initial entry from the ALGOL compiler to the symbol read routine is at

A + 1, where A 1s the address of the first trigger point. This is to initialise
workspace of the routine. Thereafter, at entry point A + 2, a single character
of the source program is brought into the accumulator, the overflow register
remaining undisturbed. In each case, exit is by EXITCP instruction.

Thus, part of the symbol read routine has the form:

18t trigger point 40 ordinary entry:

common program entry 1 40 initialise w/s:

common program entry 2 40 get character @
NOTES

(1)

(11)

(111)

(iv)

The address of the first trigger point of the symbol read routine is
used only to generate the addresses of the common program entries.

If a source program is compiled using the symbol read facility and
then successfully run so that

Swalt
1s output, on changing key 39 the subsequent compilation will again
use the symbol read facility.
Should the run be unsuccessful then press the message button and type
elther

ALGOL ; 'N' .,
where N is the symbol read routine, to restart compilation, or
ALGOL.

to compile a fresh program which requires no modification.

ALGOL programs small enough to fit in main store, but large enough to
overwrite Algol tape 1, can be compiled and run and the message Swait
output.
The message

Reinput tapes 1 and 2

is outputy when key 39 is changed.

The editing facility can be used when outputting owncode to paper tape.
The entimy to edit and assemble is

OWNOUT ; EDIT 8.
The normal entry remains

OWNOUT.
Other common program symbol read routines having the form given above
can also be used. Appendix 3

2,1.3

OPERATING INSTRUCTIONS

INSTRUCTION
TO MACHINE

depress no protection
press reset button
press clear store

press initial instructions

release no protection

press reset button

press message button
IN,

IN.

change key 39

press message button
IN.

ALGUL ; N,

ALGOL,

For use with other MODS see section 3.

STEP TAPES
1. HAP
or RAPMT
2. Symbol read
Routing '
S ALGOL 1 tape 1
4. ALGOL 1 tape £
Se MOD 5 (edit)
6. Either
Source program
in reader 1
and edit tape
in reader 2:
Or
Source program
in reader 1 :
OTHER MODS
TAPE

The tape supplied is in RAP binary code,.

Appendix 3
=10=

INDICATION
ON MACHINE

RAP or RAPMT

7
Nt

ALGOL 1
Swalt

ALGOL 2
Swait

?

ALGOL 1 UNCHEK

2.1.3

4.4 ALGOL 1 MOD 8 - Segmentation facility

FUNCTION.

This modification allows the user to run programs too large for the
available main core store by making use of core backing store.

The program may be divided into segments (these can be numbered) which
are held on core backing store and only brought to main store when obeyed. The
programmer has complete control over the way in which the program 1s segmented
(see METHOD OF USE).

"Owncode! produced by the compiler is automatically written to core
backing store.

STORE USED

MOD 8 extends the dynamic routines by 121 locations, and the compiler
by 167 locations.

METHOD OF USE

The programmer may specify that a block is a segment by placing a
sighnificant comment immediately after the begin of the block concerned. In
addition, a segment area number may be specified, It is not necessary to
specify consecutive numbers for segment areas. The areas may be numbered from
1 to 16 inclusive; If a particular number is not used, that area has zero size.

begin rcomment segment [E] non-significant comment;

real a, b ;

Etﬂ.

LA RN]

The part of the comment which follows the character close square bracket

is not simnificant and may be used for the ordinary purposes of comment.

A block which is specified as a segment may not contain another block
gpecified 25 a segment; ie. segments may not be nested. (See ERROR INDICATIONS

for further infnrmatiﬂn).

Appendix 3
~11m

2,1.3

At compile time, for each segment area number, an area of the main store,
which is known as the segment area, is set asidg this area is big enough to
contain the largest segment with that number. The main program (i.e. all the
text not contained in the aegments] remains in main core store throughout; only
one segment may be in main store at one time, and it must be held in the segment
area., A copy of the code of each segment is kept on core backing store, always
in the same position. No modification of lnstructins is required when the
segments are brought to main store and, thus advantage is taken of the ADT 'tag!
protection on the peripheral transfer inasmuch as the segment may be obeyed as
gsoon as the first words of the segment are transferred to main dore,

When a segment block is entered, if it is not already in main store, it
is copled into the segment area corresponding to its 'segment area number: Thus

segments with the same number may not be in main store together,

If a segment 1s brought to main store and re-entered several times
before another segment is entered it is not re-copied from core backing store

each time.

The programmer may include in a segment a call of a procedure whose
body is also a segment. In general, provided the rules for the inclusion of the
significant comments are obeyed, no programming restrictions are imposed.

If segment area numbering is not used
€efle
berin comment segment :j;
real ab; etc,

this is taken to mean
begin comment segment [1];

real ab; etc,

Appendix 3
-] P

2.1, 3

After compilation, the main store picture is:

0 8000

I

]

'

Ll

' main program segment area

[é

)

|

)

K t el A F
owncode dynamic constants own simple RAP
input stack workspace variables
routine (array pointers) dynamic

routines
and core backing store picture is:
0 high

1 A y: 8 I A
dynamic stack g$ l 1
(array elements) seghent sopies——foo | —

ERROR INDICATIONS

B0 new compile-time indications are introduced. The details are as

follows:
Indication. Interpretation
Error No. 55 (a) Nesting of segments has been attempted.

(b) The significant comment has been placed illegally,
e.e an attenpt has been made to segment a

compound statement.

Appendix 3
1%

g, 1.3

Indication Interpetation
BSOFLO The program is too large to be compiled. This

indicatea that the gpace taken by the ovncode at compile
time is greater than that available or that, when the
owncode is converted to program, the program segments thus
created in backing store plus the remaining owncode fill
the space available.

In this case the solution is to use MOD 9 provided
that magnetic tape is available.

TAPE
The tape supplied is in RAP binary code

SPECIAL FEATURE

To assist the programmer in the decisions taken as to where the program
may best be segmented a facility is provided whereby the size of each segment
created is displayed on the typewriter at compile-time. This faecility is invoked
by depressing key 38 on the number generator. As each segment is completed the
size of each segment is printed as a 4-diglt integer with no suppression of

leading zeros.
OTHER HMODS
For use with other mods see section 3.

4,5 ALGOL 1 MOD 9 = Segmentation Using Magnetic Tape

FUNCTION

Th.s modification allows the user to run programs too large for the

available main core store by making use of magnetic tapes (handlers 4 and 5).

The program may be divided into segments which are held on magnetic tape
and only brought to main store when obeyed. The programmer has complete control

over which blocks in his program are segmented.

Very large programs may be run using this modification. In the case
where a program is too large for a machine with core backlng store, or boecause

the core backing store is required for arrays, this modification may be used.
All segments will be held on magnetic tape. No facility will be provided on a

machine with both core backing store and magnetic tapes for placing some sesments

on magnetic tape and some on core backing store.

Appendix 3
—14=

2.1.3

'Owncode' produced by the compiler is automatically written to handler 4.
STORE USED

MOD 9 adds 174 locations to the dynamic roulines and 167 locations to
the compilers.

METHOD OF USE

The programmer may specify that a block is a segmént by placing a
significant comment immediately after the begin of the block concerned. In
order that the tape movement may be minimised, each segment may be categorised
so that segments which make repeated calls on each other, or which are repeatedly
called by the main program, may be in main store at the same time. Thus,

begin comment segment [T] non significant comment;
real a, b ;

etc.

specifies that the segment will occupy segment area number 7. It is not
necessary to specify consecutive numbers for segment areas. The areas may be
numbered from 1 to 16 inclusive. If a particular number is not used, that area

has zero size.
An alternative style of segment specification is accepted:

begin comment segment : non significant comment ;

real a, b }

etc.

This is taken to specify segment area 1.

In all cases, the part of the comment which follows the colon or close
square bracket is not significant and may be used for the ordinary purposes of

comment.

A block which is specified as a segment may not contain another block
specified as a segment; i.e. Segments may not be nested. (see ERROR INDICATIONS

for further information).

Appendix 3
o 1

The programmer may include in a segment a call of a procedure whose body
ig also a semment. In general, provided the rules for the inelusion of the

significant comments are obeyed, no prosramming restrictions are imposed.

ERROR _INDICATIONS

A new compile-time indication is introduced. The details are as follows:

Indication Interpretation

Error no. %% Ei ther

(a) Heating of segments has been attempted,

Or
(b) The significant comment has been placed
illegally, e.g. an attempt has been made
to segment a compound statement.

HeBs The user is recommended to add this detail to

the list of error numbers on page 34 (2.1.3).

The following error indications may occur either at compile or run

time, when reading from magnetic tapes;

ERR X Systems error which concerns the numbering of

magnetic tape blocks.
ERR LS A required block is found to be long or short.

ERR P After 64 re-reads, a required block still gives a
parity error.

In each of the above situations no continuation is possible.

SPECIAL FEATURE

To assistthe programmer in the decisions taken as to where the
program may best be segmented a faecllity is provided whereby the size of each
segment created is displayed on the typewriter at compile time. This facility
is invoked by depressing key 38 on the number generator. As each segment is
completed Lhe slze of the sepment and its segment area number are displayed as

two 4-diglt integers with no suppression of leading zeros.

Appendix 3
-16=

METHOD USED

At compile time, for each segment area nunber used, a segment area is
allocated which is large enough to hold the largest segment with that number.
The main program (i.e. all the text not contained in the segmenta] remains in
main core store throughout.

A copy of the code of each segment is held on magnetic tape and is
automatically brought to main -t rc when the segment is entered. If that segment
i{s then re-entered several times before another segment of the same numerical

category is entered then it is not re-copied from magnetic tape each time.
TAPE

The tape is coded in the normal RAP binary form.
OTHER MODS

For use with other MOD3 see section 3.

4.6 ALGOL 1 MOD 11 - Improvement of Machine Code Facilities

This modification is included in the ALGOL 3 compiler and the facility
is as described in section 241,5.4.7.1 of the MANUAL,

4,7 ALGOL 1 MOD 12 - Standard Procedures Modification

FUNCTION
(a) To permit boolean expressions to stand in print statements.

(b) To modify the continuation values used after errors arising in the
procedures, "sqrt" "exp" and"ln;.and to enable the run of an ALGOL program to be
continued after the generation of a floating point overflow. Two new standard
procedures, "noflo" and "oflo" have been introduced in conncction with these

changes,
{c} To introduce the format setting procedure "presume”.

(d) To introduce the character handling standard procedure "character'.

Appendix 3
-17=

2. 143

GENERAL DESCRIPIION

(a)

BOOLEAN EXPRESSIONS 10 PRINT STATENENTS

doolean variables, procedures and expressions may stand in print state-

ments., The string '"tirue' or '"false! will be output to the current device,

(b) CONTINUATION VALUES

The following changes have been made to the continuntion values, after

an error has been detected in the standard procedures "1n", "sqrt", and "exp".

The new error message "log zero" has been introduced. In the description below,

x stands for argument of the function which caused the error and ev the value which

the function will assume if the program is continued,

(1)

Messape

2xXp error

log zero

log error

sqrt error

[‘-Iea.ning;
x 255 log, 2 (&176.75)
ev = (1 - 2-29] x 2255(1.9. largest positive number
the computer can hold).
x=20
eV = —2255(1argest negative number the computer
can hold } .

This is caused by:-

(i) 1n {x):
where x<0. The continuation value
is 1n{|x|)

(11) attempted evaluation of pth

with p{0 and q real and{0.
The continuation value of the funetion

is zero.

x(O-
cv = gqrt {le).

Suppression of certain error messages

Two standard procedures, "noflo" and "oflo" have been introduced, which

can be used to suppress some of the error messages and modify the values given

to certain of the standard functions with particular arguments. Used in

conjunciiun with the SAC program ERINT (KOR MUD 12), "noflo" can also be used

to suppress the error message BEHRINT 1.

Appendix 3
-18=

(ii) noflo

This is a procedure without p:rameters which, when called, affects the

standard functions "In", "sqrt", and "exp" in the manner described below.

(i) 1n(o) The message "lopr zero" and the "Dwait" are not displayed.

] ol
' . § a (A0 by |
The continuation value is as before, i.e. =277,

(ii} Ekp{x} where x)255 lUg“ 2 {551Tb-733

The messaze "exp error" and the "Dwait" are not displuyed.
: : 2 ; ; & -29 255
Tue continuation value is as beforey i.e. [1—2] x 2 .

i Ll
(iii) sqrt (x) where x = (1-2 49) x 9222

This expression tukes the value {1-2_29}x2255. Since
sqrt (x] when x#»€0 is evaluated as sart {‘xl) then, when
X = - []—Ebzg}x 2255, this expression will ail.o be
given the value {1—2‘29] x 2255. The error message
*aqrt errorywill still be displayed, however, when x is

negative.
(iv) 1n (x) where x = (1-2_29)x 2299

255

_29}x 2. Since

This expression takes the value {1—2

ln{x) witere x{0 is evaluated as 1ln (lxl} then, when x =
- (1=27)x 2°°

value (1=2

thiz ecxpression will also be given the
. = . "
29}x EEJﬁ. The error message log error will

still be displayed, however, when x is negative.
(iii) oflo
This is a procedure without parameters and is used to cancel the

procedure "noflo". The action talen in the ecascs listed under (1i) noflo then

reverts to that deseribed above under CONTLAUATICH VALUES.

The procedure which is ecalled last in the dynamic sense is the one

that is operative. The presumed state corresponds to a call of "oflo",

Appendix 3
~19=

2.1.3

(1v) Continuntion after floating point overflow, 1.e. ERRINT 1,

A SAC program ERINT (FOR MOD 12) - described in section 5.2 - has been
provided to enable the run of an ALGOL program to be continued after the detection

of a lonting point overflow.

If ERINT (FOR MOD 12) is in store when the error interrupt occurs, RAP
or RAFMT will enter ERINT (FOR MOD 12) which, unless the procedure "noflo" is
currently active in the ALGOL program , will display

"ERINT 1

Dwai t"
When the leftmost F2 digit (key 19) of the word generator is changed, the ALGOL
Hzg]x 2255 taken as the result of the
vperation which generated the floating point overflow.

program continues with the value (1-2

If the procedure "noflo" is active in the ALGOL program then the run
will be continued without an error message and with the continuation value
—ls
(1-2"%%)x 2255, (see RRINT (FOR MOD 12) description, section 5.2)

(e) PRESUME

A new standard proucedure "presume" has been introduced. It has no

pnrameters and may be used to restore all the setting procedures to their

presumed valuea,

i.e. reader(1)
punch (1)
digits(8)
freepoint(8)
prefix (££177)
leadzero (£7)

"grouping (n)" and "special (n)" are cancelled.

It may be used globally (i.e4 affecting all read and print Btatements)

when placed outside a read or print statement,

When placed ineide n read statement the procedures affecting input are
changed locally {i.e. only within the read statement) and procedures affecting

output are changed globally.
When placed inside a print statement the proceduren affecting output are
chanped locally and those affeeting input are changed globally.

Appendix 3
=20~

2,1.3

(d) CHARACTER

A new otandard integer procedure "character (n)" has been introduced.
This procedure is used in conjunction with the standard procedure "advance (n)",
"character (n)" takes the 503 paper tape code value of the character currently
in the buffer for input device n. No character is actually input when '"char-

acter (u)" is obeyed.

If n does not satisfy
1€ n$3
then "character" takes the value of the character currently in the buffer for

reader 1.
TAPE

A tape coded in RAP binary form is supplied.
STORE USED

MOD 12 adds 58 locations to the compiler and 109 locations to the

dynamic routineg.
OTHER LIODS

For use with other MODS see section 3 of this appendix.
5. SAC PROGRAMS

There are two programs that may be required when using the MOD tapes,
INSERT and ERINT (FOR MOD 12)., They are described below,

5.1 INSERT

CODE
INSERT S

FUNCTION
To enable the user to make new ALGOL systems tapes which ineclude the
modifications contained on one or more relocatable binary 10D tapes thus

simplifying operating, especially for installations with no mapnetic tape.
STORE USED

Program 234 loentions - workspace 24 locations.

Appendix 3
- P

2.1:3

METHOD OF USE

A MOD tape contains two separate modifications, one to tape 1 of the
sompiler and one to tape 2. The modification to tape 1 ends in a trigger to
read in the modification to tape 2, and a short section of blank tape separates
the two. As INSERT places the modification to tape 1 in tape 1 and the modi-
fication to tape 2 in tape 2, the MOD tape, for convenience should be cut at

this point.

The MOD tapes must be inserted in a particular sequance. A table 18

provided below which specifies the sequence where necessary.

Operating Instructions.

Stage 1 Load I1ISERT tape (binary version) in reader 1 and type IN.

Stage 2 Load ALGOL tape 1 or ALGOL tape 2 as appropriate in Reader 1 and the
first MOD to be inserted in Reader 2.

Stage 3 For ALGOL tape 1:=
Action Result
type ALGOL tape 1 will be read in almost to the end,
INSERT. followed by the first MOD to tape 1 in Reader 2.
The new tape will be produced on punch 1.
For ALGOL tape 2:=
Action Result
(1) Type The message
INSERT;2. LAST MOD NO =
will be displayed.
(i1) Type the number of ALGOL tape 2 will be read in almost to the end,

the final MOD to be
inserted {aea table

followed by the first MOD to tape 2 in Reader 2.
The new tape will be produced on punch 1.

below) and terminate

with a full stop.

When the necessary code has been copieu from the MOD, the message
MORE MODS ?
will be displayed.

Appendix 3
— 2=

Zs 1.3

Stage 4 Load the next MOD When the MOD has been copied, the message
in Reader 2 and MORE MODS 7
Ly pe will ve dicplayed., Repeat stage 4 for each MOD.
YES.

When there are no more mods to be inserted:-

Stage 5 Type The final hub must be left in rcader 2. The rest
NO. of the systems tape in Reader 1 will be read and

the program will come to a loop.

To check the output tape for punching errors, place the leading blanks
in Reader 1 and change the sign key (key39). When the tape has been input the
message

Tape Correct

or Incorrect
will be displayed as appropriate. If the 'Tncorrect' message is displayed, to
cater for the possibility of a mis-read on checking, the checking process may
be repeated by again loading the tape in Reader 1 and typing:-

INSERT;3.
ERROR MESSAGES

NOT 80 This will be displayed if the first non-blank
character of a tape in Reader 1 or Reader 2 does
not have the value 80. (A1l RAP binary tapes
begin with this character). Rectify the fault
and continue by changing the keyboard sign key
(Key 39).

WRONG LAST MCD NO The number used to answer the question
LAST MOD NO =
was not acceptable.
To continue, change the keyboard sign key (Key 39).
The question will be asked again.

Appendix 3
23~

2ei¥te 3

QHDLE OF LODS

This table ¢ives the order in which [MODS must be inserted into the
systema tapes. MOUS with numbers to Lhe left must be inserted hefore NODS with

numbers Lo Lhe right.

Tape 1

Y 10 3 12 i 9 2

Do not insert WODS into aystems tapes which contain previously inserted

ons,. Instead insert all the required mods into the original systems tapes.

Certain of the mods are not compatible and so may not be inserted to-

rether, See section 3 of the appendix for the list of restrictions.
Note NMOD 11 may not be used with INSERT.

TAPE The tape is coded in SAC and it is recommended that a binary tape is

produced, entering SAP with keys 35 and 36 of the word generator depressed.

5.2 ERINT (FOR MOD 12)

CODnE
KRINT S

FUNCTLON

This prorram is used in conjunction with the procedures "noflo" and "oflo"
available in ALGOL 1 MOD 12 {see section #.T). 11 enables the run of an ALGOL
progsram to be continued when a floating-point overflow is gencrated. If the
procedure "noflo" is currently active in the ALGOL program, no message will be

displayed. If the procedure "oflo" is called, the message

ERINT 1
Dwait
will be displayed, after which, the program may be continued. In both cases

29}x 2255

the value (1-27 is taken as ihe result of the operation which generated

the error interrupt.
STORE USED

Tl 1locations, including workspace.

Appendix 3
P

2.1.3

METHOD OF USE

ERINT (FOR MOD 12) 1s written as a SAC common program., It should be
placed in store before ALGOL 1 (ISSUE 1).

There are two entry points:-

Entry point 1

This is an initialisation entry used by the dynamic routines. It
modifies RAP or RAPWT and the program head of ERINT (see PROCESS USED).
Exit is made by the order

EXITCP,2.

Entry point 2

This is the point at which RAP or RAPMT enters ERINT when an error
interrupt 1s generated. Unless the interrupt has been caused by a floating-point
overflow ERINT will return control to HAP. If there has been a floating-point
overflow; ERINT will cause the program to continue with or without an error
message (see PROCESS USED).

PROCESS USED

Entry point 1

The Dynamic Routines will search main store for the program ERINT as
soon as the run of an ALGOL program is started, and if it finds,it, the Dynamic
Routines will enter ERINT at the 1st location after the LINKCP, Here ERINT
modifies RAP so that RAP will enter ERINT as soon as an error interrupt is
detected, Since this entry has to be made to the second entry point of ERINT,
the main entry instruction in the program head of ERINT is also modified so

that it contains a jump to the seconaentry point,

Entry point 2

When an error interrupt is detected, RAP will enier ERINT at the main
entry point (in the program head) which will have been modified to cause a jump
to the second entry point of ERINT. Here the error interrupt locations are
examined (see Sections 1e2.3y 1.2.4 and 1,2.5 of the Manual) to ensure that the

error interrupt was caused by a floating-point overflow,

Appendix 3
D

I1f this condition is not satisfied, ERINT returns control to RAP which
will display tue error message (for the format of the error message see lNote
below). However, if a floating-point overflow has occurred, ERINT will examine
n marker in .the dynamic routines which is set when the procedure "noflo" is active.
If this marker 1s not set then tne megssage

ERINT
Dwait
is displayed.

The ALGOL program may then be continued if the leftmost F2 key (key 19)

of the word generator is changed.

If the marker is set, 1.e., "noflo" has been called, then no error

message will be displayed and the ALGOL program will be continued.

Exit is made from ERLUT using the 66 instruction(see Section 1.2.4).
Upon continuation the overflow register has the value it had when the floating-

point overflow was generated and {1-2-29]x 2255 (

i.es the largest positive
nunber the 503 can hold}, is taken as the result of the operation that caused

the error.

TAPE
A mnemonic tape coded in SAC is supplied. For use with ALGOL 1, (ISSUE 1)

a binary tape must be produced using SAP1. The program is sum-checkable,

Note Once entry point 1 of ERINT has been used, HAP will remain in the
modified form, unless it is re-input from paper tape. However, unless a program
called ERINT is in store, RAP or RAPMT may be used in the normal manner, except
that should an error interrupt be generated, the format of the message displayed
will be:
ER1HNTm

(where m is the number of the error interrupt) instead of
ERRINTm

after which RAP will come to a typewriter demand.

The symbol "3" (see 2.2.1.4 of the 503 Manual) will not be displayed
by this modified version of RAP or RAYMT when entry to a program has been made.

Appendix 3
-26=

2.1.3

APPENDIX 4

ALGOL 1 ISSUE 2

1. Enown Errors in ALGOL 1 ISSUE 1 Removed in ISSUE 2

1.1 Arithmetic Exprescions

(1) String, label and switch identifiers in Arithmetic Expressions are

not rejected.
(1i) Unary "+" is not accepted.

(111) Assignment of a Boolean type procedure to an Arithmetie variable is
not rejected.

1.2 Arrays

(i} Integer Array bounds greater in modulus than 8191 are incorrectly
compiled,

(11) An integer procedure used as an array subscript on RHS of an assign-
ment statement 1s incorrectly compiled.

1.5 HNumbers

(i) During compilation a number of the form “a1ﬂb" where "a" has "b"

digits after the decimal point gives Error No. 1.
(11) Upper case 10 end 11 are accepted.

{iii] Integer conversion of a real number greater than 23T but less than
{239-1} leads to "INT OFLO",

1.4 Identifiers

Identifiers beginning with A, B or C are differentiated by the first
7 characters instead of the first 6.

1.5 "for" Statement

Control variables in "for" astatements which are not identifiers or
array elements of type real or integer are not rejected.

1.6 Errcor Messares

(1) An ampersand leads to a non-continuable error.
{ii] Error No. 49 occurs prematurely during FAME checking of some programs.
(iii) In certain circumstances a missing second bracket in an array identi-

fier leads to a non-continuable error with a possible corruption of

the system,
Appendix 4

1

« 1.3

1.7 Comment Facilities

If the comment after the word end contains an underlined word
immediately before the semi-colon, Error No. 17 1is displayed, and if the comment

is terminated by an end containing a double underline, this end is ignored.

1.8 Errcors When Compiler is Overwrlitten

[a) During compilation of a program,
This leads to various errors dependent on the amount of the compiler

which 1s overwritten. Some of the more common symptoms displayed are:=

(1) 1Incorrect Free Store Message.
(11) No Free Store Message.
(111) ERRINT 5.

(b) During Running of a Program.

(1) The display of "SPACE OFLO" automatically leads to the display

of the Reinput tapes message whether or not the compiler has
been overwritten.

(11) "Reinput tape 2" is displayed instead of "Reinput tapes 1 and 2"
and vice-versa.

(e) On typing "ALGOL",
Instead of the reinput tapes message, "INT OFLO" is displayed.

1.9 Standard Procedurea

(1) The standard procedure "checkb" is not available, though the equivalent
"checkB" is available.
(11) If "storemax" 15 used the cnmpilef enters a loop.
(141) "aresin (=1)" is given as lgins‘tead of - P,_
"arccos(1)" is given asTinstead of 0.
(iv) "checkB" displays "true" instead of "false" and vice-versa.
(v) If the standard procedure "reader(n) is called and n does not satisfy
14n¢3 , "special(4)" is cancelled.

(vi) In an elliott order a jump to a label in an outer block is not rejected.

Appendix 4
2

2.1.3

1.10 Halt Codes

(1) A halt code which occurs in a string or a title does not cause an
"Swalt" and is also packed.
(41) When using "instring" a "Dwait" does not occur if a halt code is
*ound before the leading £ of the string.

2., HRestrietions in ALGOL 1 ISSUE 2

(1) Multiple placings of labels will not be detected.
(11) The following obscure case of recursion will produce incorrect results:-

A procedure A which gontains a procedure B which calls A must not have any
declarations (other than procedure declarations) preceding a call of B.

example procedure Aj

begin procedure B;

begin 7
Ay body
of
e -] -
end L
begin real p,q,r; of
A

by

1]
u

Tl

=71

ern

The contents of p,a,r would be lost on entry to }3.-Il
Provided B is not a type-procedure, this may be avoided by making all

declarations before declaring B.

If B is a type procedure used in a complex arithmetic expression, incorrect

results may also be produced even though there are no declarations after

the body of B and before 1ts use.

Appendix 4
3

2.1.3

(111) A procedure may not contain a "for" statement having a recursive call of

the procedure within the body of the statement if there is more than one
"for" list element.

e.g. procedure wrong(n)

for i:= 1, 2, 3, 4 do wrong (1)
In this case, this could be overcome by:-
procedure right(n};

for 1:= 1 step 1 until 4 do right(i)

Note

(1) +tapes precompiled by ALGOL 1 (issue 1) will not be accepted by ALGOL 1
(1ssue 2).

(2) the present MOD tapes cannot be used with this issue.

Appendix 4
4

&l
81
£l
el
sl
¥l
£l
Tl
i
ol

= Wi 8 = @ O

51491 ‘poomureydiog *p1] (uopuod) sisy3olg 33013

133HS WVYO0Hd 1097V L1OIT13

:.:::::::::::.:_...:::::::.:......:::::::::..:::.::::::::U_u_.—..

S 09 ¥5 Bt [4 4 9L 0E ¥ 81 (4} 9
g :
u
-
1
09 ¥s g [44 9E 0t ¥ 8l Tl 9

¥
14
[44

&l
8l
£l
91

151

i

£l

(4

I
al

N.B. Suppliers of Elliott Algol Program Sheets are Cresta Press Ltd, Holywell Industrial Estate, Watford, Herts.

2.1.3.

503 ALGOL OPERATION SHEET

DESCRIPTION

Title . Operator

Programmer Tel. No.......... -

Date submitted Date run e
Expected time......ooe Max, time.............. Actual time

TRANSLATION Operator’s comments

1. Type of translation
(a) Normal [] (b) owncode [] (c) omitted []
(d) check for syntactic errors only []

2. Checks required (B-digit)

3. MNumber of program tapes

4. Input precompiled package with title

5. Program contains ‘precompile’
6. Continue translation after ‘precompile’

OEE Oe

RUNNING
7. Program is
(@) Normal (] (b) own code [] (c) dumped
B. Use of equipment (a) reader 2
(b) punch 2
9. Checks required (B-digit)
10. Number of data tapes (a) reader 1
(b) reader 2
11. Manual ‘dump’
12. Program contains ‘wait’
13. Program contains ‘dump’
14. Continue running after ‘dump’
15. Continue running after errors
(a) Floating point
overflow
(b) Others

O00000040aoo

16. Manual restart

OO0

SPECIAL INSTRUCTIONS

{Issue 3)

503 TECHNICAL MANUAL

VOLUME 2: PROGRAMMING INFORMATION
PART 1: PROGRAMMING SYSTEMS
SECTION 4: AUTOCODE

The contents of this section are liable to alteration without notice

March 1964

Reprinted with minor alterations
First printed January 1964

(E[io)
SCIENTIFIC COMPUTING DIVISION
Elliott Brothers (London) Limited
Elstree Way, Borehamwood, Hertfordshire, England

2.14

CONTENTS LIST

page

1. INTRODUCTION .. 5
I.1. General 5

1.2. Method 5 o 5

1.3. Compatibility with 803 Aum-cude o 5

1.4, Running 803 Autocode programs on the 503 5

1.5. Program Sheets : ain K 5

2, OPERANDS i
2.1. General 6
2.2. Variables 6

2.3. Constants 6

2.4, Conventional allocam::—n of Lctters in 1h15 Text 6

2.5, Suffices 7
2.6. Brackets T
2.7. Functions 7

3. STYLE OF WRITING 7
4, ARITHMETIC INSTRUCTIONS . i oy - - oy o e B
5. FUNCTION INSTRUCTIONS ‘e - .. 9
6. REFERENCE NUMEBERS Iy 9
7. SETTING INSTRUCTIONS AND START .. i aa i i’ A > 10
7.1. General w2 i F “ s v i 10

7.2. Details of the Setting and START mstructmns i e ri Ar e 1o 10

7.3. Positioning of Setting and START instructions .. e 10

8 JUMP INSTRUCTIONS .. i b 2 - 11
8.1. Unconditional jumps i = e iy i i o i 5 11

8.2, Conditional jumps .. o s - .. 11

9, SUBROUTINE ENTRY AND EXIT .. i i i o o i P 11
10, STOP, WAIT AND SELECTED STOP .. i i & R % 25 11
10.1. STOP i s g i o % i i % s o 11
10.2. WAIT = i e o i i 5 A i L s 12
10.3. Selected Stop 5 s o 2 : 12

11, INITIAL VALUES o s il e 5 oy e o i i 12

12

13. OUTPUT THE ALPHABET TABLE AND MODIFY

VARY AND CYCLE INSTRUCTIONS

12.1. YARY Instructions .
12.2. CYCLE Instructions, T}rpel i

12.3. Comparison of the VARY and CYCLE Type 1 famlmes

12.4. CYCLE Instructions, Type 2

12.5. Loops within Loops ;

12,6. Altering the Counting 1nﬂ’aruitla]-.e wnd'un the Loop
12.7. Other Special Effects. . .- .. .

13.1. Facility to output the alphabet table ;
13.2. MODIFY or modification of mnemonic tapes ..

14. INPUT INSTRUCTIONS

15.

16,

17,

18.

19,

20.

14.1. READ A and READ |
14.2, INPUT 1

PRINT INSTRUCTIONS

15.1. General
15.2. Detail
15.3. Errors..

MISCELLANEOUS OUTPUT INSTRUCTIONS

16.1. TITLE

16.2. LINE ..

16.3. LINES n

16.4. SPACESn ..
16.5. OUTPUT n ..

READER/PUNCH FUNCTION

17.1. General ..
17.2, Setting Instructions ..
17.3. Mnemonic instructions
17.4. Notes

CHECK INSTRUCTIONS AND TRACE FACILITY

18.1. CHECK A or CHECK I
18.2. Trace Facility

BLOCKS OF MACHINE CODE PROGRAM

19.1. General

19.2. Instructions ..

19.3, Constants i
19.4. Floating-point Anthnmt!c R
19.5. Miscellaneous Points

PREPARING THE MNEMONIC PROGRAM

20.1. The Written Form—Main Features ;
20.2. Punching the Mnemonic Tape—Main Fealures
20.3. Writing and Punching—Special Points

13

13
14
14
15
15
15
16

16

16
17

18

18
18

19
19

20

21
21
21
21

21

21
21
21
22

SRS

22
23
23
23
24

24

24
24

21.

B

2

PREPARATION OF DATA TAPES ..

21.1. All Numbers i

21.2. Floating-point Numbers

21.3. Integers .

21.4. Labels in -

21.5. Triggers and Stops ..

21.6. Error Erasure . %
21.7. Wrong Characters and {'Jw:rﬂuw .
21.8. Summary of Effects of Characters

. STORAGE LIMITATIONS

22.1. General e

22.2. Applicability of 503 Aur.mude wnth Refcrcmc tn St-::ure S1ze
22.3. Translating for a Limited Part of the Store i
22.4. Capacity Calculation

. OPERATING INSTRUCTIONS

23.1. Load and Go
23.2. Translation Stage Only
23.3. Running Stage Only

. THE TRANSLATED PROGRAM

ERROR INDICATIONS AND ACTION TO BE TAKEN

25.1. Summary of messages output during Translation

25.2. Errors during Translation ..

25.3. Action to be taken on an Error Stop dunug Trans]atlon
25.4. Fast Method of Detecting Errors on the Mnemonic Tape
25.5. Summary of Messages output at Run Time

. AUTOCODE POST MORTEM

26.1. Function Pt
26.2. Method of Use
26.3. Control Tape
26.4. Errors..

26.5. Re-entry

Appendices

. Summary of Instructions

. Summary of Operating instructions and Error Indications

. Floating-point Representation

. Addition of further Floating-point Funmuns

. Details of Floating-point Subroutines

. Example of the Use of the Elliott Autocode Program Sheet

ohoUn e L B e

303 Autocode Operation Sheet

25

25
25
26
26
26
26
26
26

27

27
27
28
28

29

k]|
32

32

33

i3
33
34
34
34

35

35
36
i6
36
36

. FOLD OUT

2.1.4

THE 502 PUTOCOC
1. INTRODUCTION

1.1. General

The 503 Autocode is an automatic coding system intended to be used as an aid in preparing programs
for the Elliott 503 Computer. It has been designed primarily for the scientific user on the 803 and is
provided as a 503 program primarily for the use of persons familiar with the 803 Autocode.

The 503 Autocode system is under the control of the Reserved Area Program (R.A.P.) (see 2.2.1),
but Autocode tapes | and 2 (the translator and the functions and ancillaries tape respectively) are
fixed, i.e. they always go into the same positions in the store. Tape 1 goes into the bottom of the store
(i.e. the low addressed end of the store), tape 2 at the top of the free store (the store not used by the
R.A.P.).

1.2. Method

The calculation to be carried out is first stated as a sequence of instructions written in a mnemonic
code which closely resembles ordinary mathematical notation. This mnemonic program is then tran-
scribed to punched tape.

The Autocode Translator (Tape 1) and the Functions and Ancillaries (Tape 2) are then placed in
the 503, and the computer is used to translate the mnemonic program and run it, that is, to carry out
that particular calculation. This method of translating a program and running it immediately is termed
Load and Go. While the Autocode Translator and the Functions and Ancillaries are in the 503 it is
permissible to translate and run as many programs as is required, one after another. Each program
translated Load and Go overwrites the previous one.

Alternatively, it is possible to carry out the translating and running processes separately. In this case
the Autocode Translator outputs the translated program on punched tape, and this translated program
together with the Functions and Ancillaries is placed in the computer whenever it is desired to run the
program. If this method is being used it is possible to specify a limited part of the computer store in
which the program is to be run (translating onto tape for a limited part of the store).

Translated programs are output in a special relocatable binary, suitable for input under the R.A.P.
Each one is preceded by a relocatable binary input routine, which the R.A.P. places in a fixed position
at the top of the free store.

1.3, Compatibility with 803 Autocode

All programs written in 803 Autocode can be translated and run using the 503 Autocode if they are
first re-punched onto 8-hole tape. The character @ does not appear in the 8-hole telecode and must be
replaced by [. The value of nin OUTPUT n instructions should also be altered because of the change
of code. The VERIFY facility is omitted in 503 Autocode because it uses up a lot of extra storage
locations and is quite complicated to use. The autocode post mortem can be used to output the current
values of specified variables (see Chapter 26). If the word VERIFY occurs in a 503 Autocode program
then it is ignored by the translator.

The repunching of the mnemonic tape can either be done by hand from the program sheets or through
the computer using the *Autocode 5 to 8 (see 2.2.3.6.).

1.4, Running 803 Autocode programs on the 503

It is possibl: to run 803 Autocode programs on the 503 provided 5-hole paper tape equipment and
803 Autocode Tapes | and 2 are available. The program is run under control of the ‘803 Operator’
{see 2.2.3.1.) and is subject to the limitations listed in that description.

1.5. Program Sheets
The program sheets for the 503 Autecode are not published.

2. OPERANDS

2.1. General

An operand is either a variable, or a constant, and it may be a floating-point quantity or an integer.
There are therefore four classes of operands:
(i) Floating-point variables
(ii) Floating-point constants
(iii) Integer variables
(iv) Integer constants
It is not necessary to know exactly what the terms floating-point quantity and integer imply, provided
it is remembered that:

(a) Floating-point quantities may range in magnitude from 4.3 x 10-7 to 5.8 x 107 approxi-
mately, or be zero. Any quantity which, as a result of some arithmetic step, would have less
magnitude than 4.3 x 10-7 appears as zero. If any attempt to produce a result having greater
magnitude than 5.8 x 107 is made, floating-point overflow will occur. This will cause an
Error Inteirupt and control will be transferred to the R.A.P. The method of representation
is described in 1.2.1.

(b) Integers are numbers which may take on any integral value between 4-274 877 906 943,

(c) Itis not permissible for lcating-point quantities to enter into arithmetical operations involving
integers, and vice versa.

2.2. Variables

Any letter of the alphabet, both upper and lower case, can be used to represent any variable. The
programmer must decide which letters shall represent floating-point variables and which shall represent
integer variables throughout any one program. It is possible to set lists of variables to their initial
vitlues (see Chapter 11).

2.3. Constants

The constants which occur in the calculation should be written in the program in normal decimal
notation and will automatically be treated as floating-point constants or as integer constants according
to the type of variable with which they are associated.

In instructions involving one or more integer variables, a decimal point may not appear. Constants
of the form 5 and -720 may appear, 5 must be written s such; the forms 5. and 5.0 are not permitted.

In instructions involving one or more floating-point variables, constants of the form 5, 5.0, =720,
-.003, and 241.47 may be used. Normal notation must be adhered to : 1.25 x 10-6 should be written
.00000125 (the form 1.25/-6 or 1.25 ;-6 must not appear on a program sheet),

There must not be more than 12 digits altogether. If there are 12 digits, their ‘integer magnitude’
must be less than 274 877 906 944, (By ‘integer magnitude” is meant the magnitude of the number
which would be seen if the decimal point were deleted.)

2.4. Conventional Allocation of Letters in this Text

To reduce the amount of explanation needed, the following conventions are adopted throughout the
remainder of this text.

A B, Cand D represent Floating-point variables

LILK and L represent Integer variables

. mandn represent Positive integer constants
p.qandr represent Any integer constants

% yand z represent Floating-point constants

2.1.4

2.5. Suffices

Positive and zero integers may be used as suffices to any type of variable. A suffix may be written
in any of several forms; these involve integer constants and/or variables. To take account of the fact
that Flexowriter equipment has no multi-level printing facility, it is customary to write suffices on the
same level as the letters which they qualify, that is to write Ad, not A,

The table below shows the forms permitted. On the first four lines it will be noted that two or three
different forms are grouped together; these are alternative ways of specifying the same quantity.

Floating-point Variables Integer Variables Type of Suffix
A or A0 or A(D) K or KO or K(0))
An or A(n) Kn or K(n)] Numerical
Al or A(T) KI or K(I) Simple
A(l-+n) or A(n+1) K{l+n) or K(n+1)
A(l-n) K(I—n)
A(n—I) K(n—1)
A(l=)) K(l+J)
A(I+nJ) K(I+nlJ) -
A(ml+]) K(ml£]) ' Complex
A(ml) K(ml) '
A(ml +n) K{(ml+n)
A(m+nl) K{m+nl)

In the examples below, whenever A, B, C, D, I, J, K or L appear as variables, any of the above
forms may be substituted unless otherwise stated. Suffices may not themselves have suffices. In parti-
cular, A(ml) and A(Im) are both interpreted as A_ |

Mote carefully that suffices should never be negative. Errors will occur if negative suffices are used.

2.6. Brackets

The combination of (and) is used to surround suffices ; and for no other purpose. They are obligatory
where the suffix contains more than one component. Thus A(I44) corresponds to the mathematical
notation a;;4; there is no parallel in the notation of this autocode to the mathematical form
(a+bj(c+d)

2.7. Functions

Existing function names contain only upper case letters (A to Z) but if additional functions arc added
to the translator they may contain both upper and lower case letters.

3. STYLE OF WRITING

[nstructions are written in columns. Spaces are left after words and quasi-words, but not elsewhere.
These points are dealt with more fully in Chapter 20, but to give a preliminary idea of what a simple

7

issue 2

program in autocode looks like, the instructions needed for a complete program to read in values
of A and B, form and print /A2 —B2 are:

SETV ABC

SETF SQRT

SETR |

[NREAD A

READ B

A=A*A

B=B*B

C=A-+B

C=S8SQRTC

LINE

PRINT C

S5TOP

START |

4. ARITHMETIC INSTRUCTIONS

Arithmetic instructions are of the form
A = an expression involving floating-point quantities

or
I = an expression involving integers
e.g.
A=B{C
[=J-2

and mean ‘evaluate the expression on the right and then set the variable on the left to this value’.
The range provided is

(a) Setting to a value: A=B I=]

(b) Addition: A=B+C I=J4+K

(c) Subtraction: A=B-C [=]—K

(d) Multiplication: A=B*C I=1*K

{e) Division: A=BfC -—
In which

(a) B and C may be replaced by constants, or by A, or be identical.
For example: A=2%A and A=A A are alternative methods of doubling A.
(b) J and K may be replaced by integer constants, or by I, or be identical.
For example: I=I+-1 increases the value of I by 1.
(c) A—sign may follow immediately after the = sign.
For example: A=—A negates A.
(d) The symbol * is used for multiplication to avoid confusion with the letter X.
(e) Division is indicated by /.
(f) MNote that division of integers is not permitted.
Examples of permitted instructions:
J=3
[=—4%]
C(I+2J) =—AI—B(2))
A(I+6) =—B(1+6)/4.275

5. FUNCTION INSTRUCTIONS

Most function instructions are of the form:
A = FUNCTION B or A = FUNCTION x
and again mean ‘cvaluate the expression on the right and then set the variable on the left to this value’.
A --sign may follow the = sign. B may be identical with A, but must not be preceded by a — sign.
The following functions are used as above, that is, with a floating-point variable on the left and a
floating-point quantity as argument:

SIN sine In which the unit is the straight angle of = radians

cos cosine or 180°, and the angle must have less magnitude

TAN tangent than 268 435 456. e.g. SIN 0.25 = sin 45° = 1/4/2

ARCTAN arctangent In which the result is in straight angles, and lics
between +14

LOG natural logarithm, that is, to base e

EXP exponential

SQRT square-root (SQRT 0=0)

INT integral part

FRAC fractional part

MOD modulus

The integral part of a negative number is minus the integral part of its modulus, and its fractional
part is such that:
integral part + fractional part = whole
For example:
INT —341is —3
FRAC —34is —4
Certain function instructions are provided which involve integers. These are of the form:
[=INT A Take integral part of A. convert it to integer form, and set [to this value.
A==8TAND | Take I, convert it Lo floating-point form, and set A to this value. (The technical
term for this process is standardisation.)
I=MOD J Make | equal to modulus of J.
Additional functions may be added to the above range: sec Appendix 4.

6. REFERENCE NUMBERS

In general, the computer performs the steps in a calculation in the sequence in which the instructions
are written down, and for this reason it is not necessary to number all the instructions in a program.
However. occasions arise in which it is desirable that the computer should break sequence and ‘jump’
to some other part of the program. Also, it must be possible to specify which instruction is to be
obeyed first, and to program the computer to stop when it has finished its calculations.

The instructions provided to achieve the above are detailed in Chapters 7, 8. 9, 10 and 12. Their form
15 such that it must be possible 1o make reference to one instruction in another. All instructions (o
which reference is so made must be given different reference numbers. in writing the program, reference
numbers appear on the left, each followed by a) thus:

4HA=B --C
I2)=INT B
As a rule, if there are n reference numbers in a program, they will be the integers 1,2 n, bul

they need not occur in that sequence. If, as a result of some afterthought, it becomes necessary to
delete one or two reference numbers it is not essential to close the gaps.

7. SETTING INSTRUCTIONS AND START
7.1. General

To enable the Autocode Translator to construct the translated program correctly, it must receive
certain general information before it starts translating the mnemonic instructions. Up to four setting
instructions, which appear at the beginning of a program, are used to do this.

In addition, a START instruction appears at the end. This has two roles. Firstly, it specifies which
of the instructions of the program is to be obeyed first. (Afterthoughts are often placed at the end, and
it is quite common for the instruction which is first to be obeyed to be nearly the last one written and
to have a high reference number.) Secondly, it is written aflter all other mnemonic instructions, to indi-
cate to the translator that there are no more instructions to be translated,

7.2. Details of the Setting and START instructions

(a) SETS

The SETS instruction specifies the letters to be used as integer variables. It may be omitted if no
integer variables occur in the program. The sequence in which the letters are written is immaterial.

After each letter one must insert, in brackets, a number indicating the highest value of any suffix
attached to that letter in the program. If, for example, JI occurs in the program, one must take into
account the highest value which I possesses at any time at which an instruction referring to JI is obeyed.
If no suffices or only suffix 0 are used, no number is needed.

Thus:

SETS J(4)K

indicates that [or 10, J or JO, J1, J2, J3, J4 and K or K0 are or may be used in the program.

(b) SETV

SETV specifies the letters used to represent floating-point variables in exactly the same way as SETS
specifies letters used for integer variables. It may be omitted if no floating-point variables occur in the
program.

(c) SETF

SETF specifies the functions which are required in the calculation, and certain types of peripheral
equipment. The abbreviation TRIG must be used to cover any combination of SIN, COS and TAN.
The two functions MOD and STAND are always available, and need not be mentioned. The sequence
in which the functions are written is immaterial. SETF may be omitted if no functions (other than
STAND and MOD} are required, and if there are no instructions referring to more than one reader
and/or punch (see Chapter 17).

Thus:

SETF TRIG SQRT LOG EXF

is suitable for a calculation requiring some or all of: standardised forms, moduli, sines, cosines,
tangents, square roots, logarithms and exponentials.

{d) SETR n

This instruction must always be used: n specifies the highest reference number usced in the program.

(e) START m

This instruction must always be used: m specifies the reference number of the first instruction to be
obeyed.

7.3. Positioning of Setting and START Instructions

The setting instructions are written in a group at the beginning of the mnemonic program, with
SETR last. The mnemonic instructions should follow immediately below the SETR instruction, the
one on the line below the SETR necessarily having a reference number.

10

The START instruction is written at the end of the mnemonic program, that is after the last instruc-
tion to be translated, which will generally be JUMP, EXIT or STOP.

8. JUMP INSTRUCTIONS

8.1. Unconditional Jumps

JUMP [n {or JUMP [I)
Means ‘break sequence and obey next the instruction whose reference number is n (or is equal
to the current value of I), and then proceed sequentially from there’.
In the form JUMP [I, the I may have a numerical suffix.

8.2. Conditional Jumps

JUMP IF A=B [n (OF-iivinws [n
JUMP UNLESS A=B[n for...... 1]

The first of these means ‘If A=B, act as for JUMP [n (or I), but if A+ B, do nothing’. The second
has the reverse effect, that is ‘If A=B, do nothing, but if A# B, act as for JUMP [n (or IV,

In the form JUMP IF (or UNLESS) A=B [I, | may have a numerical suffix.

The condition A=B in the above examples may be replaced by any permitted arithmetic instruction
form as given in Chapter 4 or any permitted function instruction form as given in Chapter 5. Further-
more, the = sign may be replaced by > or <.

The following are a few examples of the vast number of different conditions that can be stipulated
in JUMP IF and JUMP UNLESS instructions:

A=B A<0 A=4735
A=B/15 A<B+C A=>4*B
A=MOD B A<SIN B A=MOD B
I=1] I1<0 1=7

[=1*3 I<MOD] A=STAND I

A(1+21) <-BI-C(2J)

9. SUBROUTINE ENTRY AND EXIT

SUBR n

means ‘jump to the subroutine which starts with the instruction having reference number n’.

SUBR 1

means ‘jump to the subroutine which starts with the instruction having reference number equal to
present value of I'. 1 may have a numerical suffix.

EXIT

means ‘return to the main program or superior subroutine at the instruction immediately after the
SUBR which last caused entry to this subroutine’. Where the entry to a subroutine is by SUBK
instruction, the exit must always be by EXIT, not by a jump or conditional jump.

There may be subroutines within subroutines up to six in depth, i.c. at no point may more than
6 SUBR instructions have been obeyed without a corresponding EXIT instruction.

10. STOP, WAIT AND SELECTED STOP

10.1. STOP

The STOP instruction is translated as a transfer to the R.A.P. which, when obeyed at run time,
causes the word END to be output on the output writer. The R.A.P. then waits for a message.

There may be more than one STOP instruction in a program which has several branches, corres-
ponding to the end of calculation or the reaching of dead-end positions.

11

2.14

10.2. WAIT

This instruction is written in a program at any point at which it is desired that the caleulation should
be halted until the operator has had a chance to take some special action or other. (It has the effect
of stopping the program until the setting on the N2 buttons of the word generator has been changed
from odd to even or vice versa.)

10.3. SELECTED STOP

As an additional aid in finding program faults this facility has been incorporated to cause the cal-
culation to stop at some specified reference number n. That number should be set on the NI buttons
before the program is entered.

When the instruction with reference number n is reached, control is transferred to the R.A.P. 10
output the word *STOP’ on the typewriter and to await a message. Before a message is typed the
setting on the N1 buttons should be cither

(i) cleared it o more selected stops are required
or (ii) changed to a new value m (say). In this case when calculation is resumed it continues until
the instruction with reference number m is reached, etc.

or (iii) left equal to n. In this case when caléulafion is resumed, the instruction with reference
number n is obeyed and the program continues until that instruction is reached again.

Possible messages are

(a) CONT. Control is transferred back to the program by the R.AP. and the calculation s
resumed at the instruction with reference number n.

{b) 16. This has the effect of restarting the program.

(¢) 7. (load and go) or 5. or 6. (on to tape). If the load and go facility is being used then the
program could be retranslated, or a Yiew program could be translated. It is necessary to
re-input the translator before translating on to tape.

(d) If the post mortem routine is in store, then it can be entered by typing its name AUTOPM.
The current values of variables specified on a control tape are printed on a specified output
device. The post mortem is fully described in Chapter 26.

(e) If the post mortem routine is not in store, it may be input by placing it in the tape reader
and typing IN. The post mortem is entered as described in Chapter 26.

11. INITIAL VALUES

SET Alnim) =X, %2, a list of (m—n « 1) Aoating-point constants
SET linm)=py gy Ty evvvnnns a list of (m—n 1) fixed-point constants

By means of these mnemonic instructions it is possible to set lists of variables to their initial values.
The values in the list must be separated by , or L or S or T. If two.separators occur the second one is
ignored,

The number of constants in the list is only limited by the setting instructions SETV A(i) or SETS (i),
where i ==m. There is no check on this limit in the translator.

Mnemonic instructions which set variables to their initial values must not be confused with Setting
Instructions (see Chapter 7). They may occur at any point in a program after the SETR instruction,
but when the program is translated they come into effect immediately after the Setting Instructions,
i.e. before the actual calculation commences.

12

issue 2

Example
SETS I(6)
SETR |
1)

SETI(1:4)=5,6,7,8

The effect of this instruction is to set the initial values 5, 6, 7 and 8 in I(1), 1(2), I(3) and 1(4) respec-
tively before the first instruction (in this case that with reference number 1) is obeyed.

It must be understood that a program inciuding such orders can only be re-run correctly, without
re-input, if the initial values remain unaltered.

The effect of writing a reference number before a SET instruction is that on translation the reference
number will appe:ar before the next instruction which is not itself a SET instruction.

Example
The following pairs of instructions give identical translations:
3)SET I(0:2)=0,1,2 SET 1(0:2)=0,1,2
A=6 HA=6

12. VARY AND CYCLE INSTRUCTIONS

The VARY and CYCLE facilities are provided in order that the computer may be caused to carry
out a set or loop of instructions several times. A loop is commenced with one of six different types of
instructions involving the word VARY or the word CYCLE: this specifics that the loop shall be re-
peated several times with a particular variable, the counting variable, at different values, A REPEAT
instruction ends the loop. To each VARY or CYCLE instruction there must be one, and only one,
REPEAT instruction.

Mo reference numbers have to be given to VARY, CYCLE or REPEAT instructions unless desired.
However, greater advantage can be taken of the trace facility described in Chapter 18.2 if each REPEAT
instruction is numbered.

Throughout Chapters 12.1 to 12.4 below, the word (LOOP) represents ‘any set of instructions which
does not alter any of the variables menticned in the VARY or CYCLE instruction®. It is also assumed
that the variables to the right of the = sign in the VARY or CYCLE instruction are not identical with
that on the left. More complex cases, to which these conditions do not apply, are discussed in Chapters
12.6 and 12.7.

12.1. VARY Instructions

(a) VARY I=I:K:L
(LOOP)

REPEAT 1

The loop is performed with I = J, J + K, J 42K, J-L{L— DK, that is L times in all.

I may be of any permitted integer variable form.

J and K may be preceded by —signs, or may be replaced by integer constants. L must be
positive; it may be replaced by a positive integer constant. J. K and L may have simple
suftices only.

.14

(b) VARY A=B:C:L

(LOOP)

REPEAT A

The loop is performed with A = B, B+C, B+2C,...... B+(L—1)C, that is L times in all.
A may be of any permitted floating-point variable form.

B and C may be preceded by — signs, or may be replaced by constants.

L must be positive; it may be replaced by a positive integer constant.

B, C and L may only have simple suffices.

12.2. CYCLE Instructions, Type 1

(a)

(b)

CYCLE I=]:K:L
(LOOP)

REPEAT 1
The loop s performed with I = J, J+K, J+2K, , L that is (L—E—J i l) times in all. It

is essential that % is integral, and = 0.

I may be of any permitted integer variable form.

J, K and L may be preceded by — signs, or may be replaced by integer constants. They may
have simple suffices only.

CYCLE A=B:C:D

(LOOP)

REPEAT A

The loop is performed with A = B, B+C, B+2C,, D.

D—E—E must be = 0, but provided it is >} it need not be exactly integral. The value of A in
the final performance is adjusted to be exactly equal to D, and the number of times the loop

. . . D-
is performed is the nearest integer to (_ﬁf + l). Thus:

(i} For CYCLE A=1:1:3.1
the loop is performed with A = 1, 2, 3.1

(ii) For CYCLE A=1:1:3.9
the loop is performed with A = 1, 2, 3, 3.9

(1ii) For CYCLE A=1:1:3.5
the loop is performed with A = 1, 2, 3.5
A may be of any permitted floating-point variable form. B, C and D may be preceded
by — signs, or may be replaced by constants. They may only have simple suffices.

12.3. Comparison of the VARY and CYCLE Type 1 Facilities

{a)

With an integer counting variable
CYCLE I=1:K:L
and
YARY I=]:K:n
are identical if (n— 11K = L-1J, so the choice is a matter of convenience.

14

(b) With a floating-point counting variable

CYCLE A=B:C:D

and

VARY A=B:C:n

where (n-1) C = D-B, are theoretically identical. However the practical points arising out

of the use of floating-point arithmetic influence the choice. These are:

(i) The VARY version is much faster, but, unless the values of B, C and D are all exactly
expressible in the binary notation used in the computer, the final value of A, which is
formed by successive addition of C to B, may not be identically equal with the desired
final value D.

(ii) The CYCLE version guarantees that the final value of A is identical with the desired
final value D, but is performed more slowly.

12.4. CYCLE Instructions, Type 2

(a) CYCLE I=p.q.r,....
(LOOP)
REPEAT 1
The loop is performed withI = p, q, 1,
There are no restrictions on the form of I.
P, q, r etc. are integer constants, and there may be any number of them. There must be no
comma after the last number in the sequence.

(b) CYCLE A=xv.2,
(LOOP)
REPEAT A
The loop is performed with A = x, ¥, 2,
There are no restrictions on the form of A,
There must be no comma after the last number in the sequence.
X, ¥, Z etc., are constants, and there may be any number of them.

12.5. Loops within Loops

When translating load and go CYCLE Type 1, Type 2 and YVARY may not occur inside each other
in any combination to more than cight in depth.
When translating and running separately there are no restrictions on the depth of nested loops.

12.6. Altering the Counting Variable within the Loop

If one or more instructions to alter the counting variable are included in the loop, the effects stated
in Chapters 12.1, 12.2 and 12.4 will be medified as below.

(a) With VARY
The loop is performed L times, the value of the counting variable being increased by the
increment (K or C) between .he end of each performance and the beginning of the next, but
not after the last.

{b) With CYCLE Type 1
(i) With an integer counting variable.
If the value of the counting variable when the REPEAT instruction is reached is exactly
equal to the final value , L, cycling will cease. Otherwise, the counting variable will be
increased by the in:rement and the loop repeated. See note.

Nowe:

{ch

(i) With a floating-point counting variable.
The conditions under which the value of a floating-point counting variable can, with
safety, be altered within a CYCLE Type 1 loop, are so restrictive that it is more
convenient to arrange the program in such a way that the need is avoided than to comply
with them. Sce note

If. due o the intervening instructions, the value of the counting variable when the REPEAT
instruction is reached is never equal to the final value, cycling will continue indefinitely,
unless some other provision, such as the incorporation of a JUMP IF instruction in the
loop, is made.

With CYCLE Type 2

The loop is performed as many times as there are values in the CYCLE instruction, starting
cach performance with the counting variable at each of the values in turn.

12.7. Other Special Effects

By writing VARY and CYCLE Type | instructions and loops in which the variables to the right of
the — sign are either (i) identical with the counting variable or (ii) altered within the loop, one may
obtain various special effects. A few examples are given here:

(a)

(b)

)

{d)

VARY I=I1:1:n

(LOOP)

REPEAT 1

In the first performance of the loop, I retains whatever value it possesses when the VARY
instruction is reached. In subsequent performances it is increased by itself, We may therefore

say, writing Iy for the initial value of I, that the loop is performed with 1 = I,, 2l
4la, 201,

B0

CYCLE A=1:B:16

(LOOPR)

B=-B 41

REPEAT A

The loop is performed with A = 1,2, 4,7, 11, 16.

CYCLE 1 =1:'K:L

{(LOOP containing an instruction altering L)
REPEAT 1

Effect as in Chapter 12.6(b)i)

VARY A=B:C:L
{LOOP containing an instruction altering L)
REPEAT A

Cycling continues until the number of times the loop has been performed is exactly equal to the value
of L at the time the REPEAT instruction is reached.

13. OUTPUT THE ALPHABET TABLE AND MODIFY

13.1. Facility to output the alphabet table

On completion of translation of an autocode program.

(a)

type 1358, to output a-z and A-Z

16

214

o) type 13700 1o output A-Z enly.
The output is on the output writer and will be of the following form:

A = 6993
B - (992
s, 8
D — 698y
e1c.

Il there is no number on the right-hand side of an equals sign then that letter has not been set by
SETS OR SETV.

13.2. MODIFY or modification of mnemonic tapes

This facility is designed to reduce the amount of tape copying that 1s required when either program
or tape errors are discovered.
Orders between reference numbers can be re-written and translated at the end of the mnemonic
program, but before the START n instruction has been translated.
Thus, in order to use this facility, the original tape should end
s
blanks
START n
Note: Reference numbers included in SETR but previously unallocated may be freely attached to the
modifying instructions.
The modification tape is punched as follows:

MODIFY
m) —— the modified instructions.
——— N.B. There must be no other reference number between m and p
except previously unallocated ref. nos. Comments are not allowed
- = - after MODIFY.
p) SL
blanks

After the p} it is permitted to write MODIFY L instead of S L if more than one modification is
required, - -

After the p) of the last modification, it is permitted to write START n L instcad of S L.

If a VARY or CYCLE instruction appears in a modification then the currcﬁpondlng REPEAT
paust appedr in the same modification and vice versa. Two examples of this are given below,

Example: Original program Mudification
24) VARY J=1:1'N blanks
READ C) MODIFY
READ 1 24) VARY J=1:I:N
20) Z-0 READ CJ
i X=X C]

)Y =0 REPEAT 1
VARY J=1:1:N 20y MODIFY
JUMP UNLESS Y=2J[3 DY =0
Y=171] VARY J=I1:I:N

17

issue 2

3) REPEAT I JUMP UNLESS Y<ZJ[3
Y=2]
3) MODIFY
3) REPEAT I

4)

HSL
blanks

When the program is translated, the translation of both sets of orders between 24) and 20), and
2) and 3) will be present, but the reference table will be altered so that at run time only the modified
orders will be obeyed,

It is advisable, once the program is working correctly, to make a correct version of the mnemonic
tape.

Method of Use

(a) Translate the tape in the normal way until it stops in a keyboard loop just prior to the
START n instruction. (If the tape stops on an error which is known to be corrected by a
modification tape then change the sign digit to carry on translating, ignoring the error stop.)

(b) Remove the main tape from the tape reader and replace it with a modification tape. Change
the sign of the word generator to cause translation to recommence.

(c) When all the modification tapes have been read in a similar manner, replace the main
mnemonic tape in the reader at the blanks before START n and change the sign of the word
generator for the translation to be completed.

(d) Run the translated program in the usual way.

Modification of an autocode program after completion of translation

Load and Go only

When translating and running an autocode program load and go, it is possibie to translate a
modification to the program either after the START instruction has been translated or after running
the program (provided that the translator has not been overwritten), by using the MODIFY facility.

The modification tape (or tapes) should be prepared as already described and it must be translated
by placing it in the tape reader and typing 17. . If there is more than one modification tape, change the
sign of the word generator to continue translating the modifications.

The START instruction must be translated after the last modification. It may be either the START
instruction on the original maemonic tape or a new START instruction which specifies a different
starting reference number from the original one.

14. INPUT INSTRUCTION:

14.1. READ A and READ 1

both mean ‘read the next number on the input tape, and set the specified variable to the value read".
In addition to its main purpose, that of reading numbers into the computer, the READ function

also provides facilities by means of which the course of the program can be controlled by triggers and

stops punched on the data tape. Additionally, if it is desired that any explanatory notes should appear

on the output, these can be punched on the data tape in the form of labels, and will be copied on to

the output tape. For details, sce Chapter 21.

14.2. INPUT I

means ‘read the next character on the input tape, and set the specified integer variable to its
numerical value’. I may only have a simple suffix.

18

214

The INPUT function is useful for data tape control of the program, being primarily intended for
reading control characters.

The 8-channel Paper Tape Code is as follows:

OO000. 000
00010.001
00010.010
00000.011
00010.100
00000, 101
00000110
00010.111
00011.000
00001.001
00001.010
00011.011
00001100
00011.101
00011.110
00001.111
00110.000
00100.001
00100.010
00110.011
00100.100
00110.101
00110.110
00100111
00101.000
00111.001
00111010
00101.011
00111.100
00101101
00101110
00111.111

0 R (blank) 01010.000

I=i=l=i—

_.
T - - I, NI A ST N
g

11 £
12
13 &
14 *
15/
16 0
17 1
18 2
19 3
20 4
21 5
226
23 7
24 8
25 9
26 10
27 11
28 =
29 4
0 —
il

Abbreviations

I =icimio

01000.001
01000.010
01010011
01000.100
01010.101
01010.110
01000.111
01001.000
01011.001
01011010
01001.011
0101100
01001.101
01001.110
01011.111
01100.000
01110.001
01110.010
O1100.011
01110.100
01100.101
01100.110
01110.111
O1111.000
01101.001
01101.010
01111011
01101.100
O1111.101
O1111.110
O1101.111

Backspace
Erase
New Line
Run Out

Space

15. PRINT INSTRUCTIONS
15.1. General

A PRINT instruction has the meaning *punch on the output tape, or print on the output writer,t
the characters corresponding to the value of the specified variable in the specified mode’, However, it is

more convenient to speak in terms of the characters which will be printed when the output tape is
nterpreted: this rethod of description will therefore be used.

32 :
33 A
34 B
i5C
36 D
3T E
38 F
G

LIV 2BEEH8GES
<cHuRmOTVOZZICR

LA LA
[=
» =

57Y
58 Z
59
60
61
62V
63

1 <1ci=jzi-

10010.000
10000.001
10000.010
10010.011
10000.100
10010.101
10010.110
10000.111
10001.000
10011.001
10011.010
10001.011
10011.100
10001.101
10001.110
10011.111
10100.000
10110.001
10110.010
10100.011
10110.100
10100.101
10100.110
10110.111
10111.000
10101.001
10101.010
10111.011
10101.100
10111.101
10111.110
10101.111

Tabulate

Stop Code (Halt)

64 S
635
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
&1
B2
83
84
85
86
87
L
89]
90 1o
91 =
92 =
93
94 ~
95 %

iz

Paper Throw
Underline
Vertical Bar

11000.000
11010.001
11010.010
11000.011
11010.100
11000.101
11000.110
11010.111
11011.000
11001.001
11001.010
11011.011
11001.100
11011.101
LD 110
11001.111
11110.000
11100.001
11100.010
11110.011
11100.100
11110.101
11110.110
11100.111
11101.000
11111.001
11111010
11101.011
11114.100
11101.101
11101110
HI1LTL]

96 7
097 a
98 b
99 ¢
100 d
101 e
102
103 g
104 h
105 §
106 j
107 k
108 1
109 m
110 n
111 o
112 p
113 g
114 r
115
116
117
118
119
120
121
122
123
124
125
126
127

Mw ¥ g e« ~®n

 Jos! fond

T Henceforth the verb *display’ will be used for ‘print out on the control typewriter’.

19

When a PRINT instruction is obeyed, a negative number is preceded by —, a positive number by S.
Mon-significant leading 0"s are replaced by §’s. All numbers are followed by S.

No page layout characters are punched except when the variable to be printed is too great for the
mode of printing specified: the details of this are given below.

Although a floating-point quantity may be printed to more than 9 places, only the first 9 significant
decimal digits are accurate. If the form in (¢) below is used, there can be no purpose in makingm > 9,

15.2. Detail

(a)

(b)

(c)

(d)

(e)

(f)

PRINT A,m:mn or PRINT A,L:]

A is printed with m or [digits before and n or I digits after the point. If n or J is zero, then
the printing of the decimal point is suppressed. If m or [exceeds 9 then misset = 9and n = 3,
PRINT A,m or PRINT Al

A is printed with m or [digits altogether with the decimal point in the appropriate position.
There are (m + 3) or (I + 3) characters altogether.

fF|A] <35x10morif | A | <.5x 101

the result wppears as zero.

PRINT A,m/ or PRINT A,I/

A is printed as a decimal fraction of m or I digits, followed by a o and a 2 digit exponent
expressed as § or—and a two-digit number. Altogether (m +8) or (I +8) characters are printed.
If mor I exceeds 9, then it is set to 9.

PRINT A

A is printed in the same mode as the last floating-point variable printed. If no floating-point
variables have yet been printed, the mode used corresponds to PRINT A8/,

PRINT I,m or PRINT LIJ

I is printed as an m- or J- digit integer. A total of (m-3) or (J +3) characters is produced.
m or J must not be greater than 12,

PRINT I

| is printed in the same mode as the last integer printed. If no integers have yet been printed,
the instruction is obeyed as for PRINT [,4.

In all cases I and J may have simple suffixes when used as print parameters.

15.3. Errors

(1)

(ii)

If A is in non-standard form then ‘PRINT ERROR' is displayed. When the sign of the
word generator is changed, 7 is output on the current output device and zero is printed in
the specified mode.

If 1 is too great for the mode of printing specified then the print routine standardises 1 and
prints it as a floating point number in form (¢) (A,m/) unless this upsets the page layout.
In this case,) is output. If A is too great for the mode of printing specified then it is printed
in the form (c) (A,m/) unless this upsets the page layout. In this case.) is output. If n is the
total number of characters called for, then m=n—6if n > 6. If n < 6 then the closed
bracket) is preceded by n— | spaces.

16. MISCELLANEOUS OUTPUT INSTRUCTIONS

16.1. TITLE

This instruction is used to cause a heading or other explanatory note to be printed.
All characters which appear on the mnemonic program tape between the S or L which follows the
word TITLE and the next R or ; are punched on the output tape each time the TITLE instruction is

20
issue 2

obeyed. Care should be taken, in writing a TITLE instruction, to ensure that all necessary page layout
characters and the final ; are specifically indicated. See Appendix 6.
MN.B. A title may not include a ;.

16.2. LINE
Is used when it is desired to print the next number on a new line. It causes L to be punched.

16.3. LINES n or LINES 1
Similar to LINE, but n or I L’s are punched.

16.4. SPACES n or SPACES 1
Cause n or I §'s to be punched.

16.5. OUTPUT n or OUTPUT 1

Cause the character with numerical value corresponding to the integer n or | to be punched. Sce
Table in Chapter 14.2.

17. READER/PUNCH FUNCTION
17.1. General

The 303 is equipped with two tape readers, two tape punches, an inpul typewriter and an output
writer. The instructions given below make it possible for a program written in 503 Autocode to read
in data from either or both readers or from the typewriter, and to output results by means of either
or both punches and/or on the output writer.

17.2. Setting Instructions

If it is intended to input other than from reader 1 and/for to output results other than on punch 1
then it is necessary to set READER andfor PUNCH as a function in the setting instruction SETF
(see Chapter 7.2.(c)).

For more than one reader or for the input typewriter set READER.

For more than one punch or for the output writer set PUNCH.

For more than one rcader and for more than one punch and/or the typewriter set either READER
PUNCH or PUNCH READER.

17.3. Mnemonic Instructions

When an instruction READER n (or 1) or PUNCH n (or I) is obeyed, the function checks that
n (or 1) lies in the range 0<n (or I)=<7. If n (or 1) lies outside the range, RPUNCH ERROR is displayed
and the machine cycles in a keyboard loop. When the sign of the word generator is changed, the
function sets n (or 1) equal to 1 and continues,

Value of n Inputjoutput device set
1 tape reader 1, punch 1
2 tape reader 2, punch 2
3 input typewriter, output writer
4
5 tape reader 1, punch 1
6
7

2]

2.1.4

If n = 0, the function displays READ 0 or PUNCH 0 and reads a message from the typewriter of the
form m. where O0=- m =7, i.e. at that point in the program the operator can choose the input/output
device for all the following input/output orders until a further READER/PUNCH instruction is
obeyed. If m = 1 then tape reader/punch 1 is set, etc. If, after PUNCH 0, m = 0 then printing is
suppressed. If, after READ 0, m = 0 then RPUNCH ERROR is displayed and input continues from
tape reader | when the sign of the word generator is changed.

The instruction TELEPRINTER has the same effect as PUNCH 3.

17.4. Notes

(a) The Translator sets Punch 1 and Reader 1 as the currently available mechanisms at the
beginning of every Load and Go program and any translated program which has PUNCH
and/or READER set in the SETF instruction.

(b} The mnemonic program tape(s) will always be read in from Reader 1.

(c) The translated program will always be output on Punch 1.

(d) All error indications occurring during the running of a program will be output on the output
Writer.

18. CHECK INSTRUCTIONS AND TRACE FACILITY

18.1. CHECK A or CHECK 1

These instructions provide optional print-out of intermediate results. It is advisable to include them
at suitable points in all long programs, to assist in detecting program errors. If the B-digit key on the
word generator is kept depressed during the running of a program, they cause A or I to be printed on
a new line, preceded by * and in the mode corresponding to PRINT A8/ or PRINT I, 12. The checks
are output on the current output device at run-time. If the B-digit key is not kept depressed, they are
ignored.

Note, however that CHECK instructions are only included in the translated program if the B-digit
key is kept depressed during translation. Thus, when a program has been tested and found correct,
a new translated tape without CHECK'S can be prepared from the original mnemonic tape.

18.2. Trace Facility

if a program is not running its proper course, the trace facility can be used to determine at what
point the error arises.

I 40 is set up and retained on the F2 keys of the word generator during the running of a program, the
reference number of each numbered instruction obeyed is printed on a new line, followed by). The
traces are output on the current output device at run-time.

Note, however, that the trace facility is only included in the translated program if 40 is set up and
retained on the F2 keys during translation.

If a habit is made of numbering every REPEAT instruction, the trace facility can be used to determine
how many times each CYCLE or VARY loop is obeyed.

19. BLOCKS OF MACHINE CODE PROGRAM
19.1. General

For the convenience of programmers who are familiar with the 503 machine code, it is possible to
mclude blocks written in a style similar to the Symbolic Assembly code (see 2.2.2.) amongst the
mnemonic instructions of a program written in autocode,

22

The first word of such a block must be preceded by [which 1tself may be preceded by a reference
number and) if desired. The last word of the block must be followed by) on a new line on its own.
It is not possible to give a reference number (or label) to a word in the middle of a block.

Absolute locations 12, 12 and 14 may be used as temporary working space within the block but not
clsewhere in the program since their contents may be destroyed by one of the Autocode’s own sub-
routines,

Entry to a machine code block may be made either by a mnemonic JUMP type instruction to the
reference number of its first word, or in normal sequence whereby the machine code instruction
immediately following [is obeyed after the mnemonic instruction preceding it. Similarly exit from the
machine code block may be made by using function 40, 41, 42 or 43 to any instruction with a reference
number, or in normal sequence from the last instruction before) to the first mnemonic instruction
after it.

A machine code block may be entered by a SUBR instruction by giving its first word a reference
number, and ensuring that its exit leads to an EXIT instruction.

19.2. Instructions
Instructions are written in 4 fashion similar to that used in the S.A. code and may contain addresses

of four types:
(a) Absolute

30 13 : 55 5

{b} Relative to the first word of the block:
26 13 : 30 14,

{c) Referring to variables having numerical suffices, suffix zero being omitted if desired:
24 | : 30 Ad

(d) Reference numbers in the mnemonic part of the program, or at the start of other machine
code blocks. These may only be used with functions 40 to 43:
43 3) ; 40 5)

Reference to variables having suffices which are not numerical may be made by using B-lined
instructions. Provided such suffices are not complex, this is not at all involved. For example, to bring
A(l +2) in to the accumulator, write

00 | ! 30 A2

19.3. Constants

Constants may be fixed-point integers, unscaled fixed-point fractions of magnitude less than 1, or
floating-point numbers. The usual capacity restrictions apply.

Fixed-point integers must consist of + or — followed by one or more decimal digits, without a
decimal point.

Fixed-point fractions must consist of + or — followed by one or more decimal digits.

Floating-point numbers must consist of + or — followed by one or more decimal digits and a decimal
point. Further digits may follow the point if needed. The forms +.125/12 and +.125,012 are not
permitted.
Examples Fixed-point —123 +.345

Floating-point —123. +0.345

19.4. Floating-point Arithmetic

The functions specified in mchine code blocks are obeyed directly, not interpreted. Thus 30 B : 04 A
would be carried out in fixed-point fashion so that if A and B are non-zero floating-point quantities,
the result would be nonsense.

23

issue 2

19.5. Miscellaneous Points

Instructions must be written two to a line and zero instructions must be punched as 000, zero
addresses as 0, The zero word should be punched as +0 L or 000 - 000 Land S and T should not appear
m machine code blocks.

? cancels all characters since the last L or [. [and any reference number which precedes it can only
be cancelled by over-punching. -

20. PREPARING THE MNEMONIC PROGRAM

20,1, The Written Form-Main Features

The mpemonic program is written as @ column or a number of columns of instructions, with the
setting instructions at the top of the first and the START instruction at the bottom of the last.

An example of the type of program sheet used at Elliott Brothers (London) Limited, and a full
description of its use, are given in Appendix 6. The following is an abridged description.

The REF. column is used for reference numbers. Instructions and remarks are written in the appro-
priate columns. The use of the FLOW column is at the discretion of the programmer. The END
column is only used in special cases. Titles are written out in full detail and encircled.

In writing the instructions, a space should be left between each word or quasi-word and the letter,
figure or word which follows it, i.e. after SIN, COS, TAN, ARCTAN, LOG, EXP, SQRT, INT,
FRAC, MOD, STAND, TRIG, the group which specified any additional FUNCTION incorporated,
READER. PUNCH, TELEPRINTER, JUMP, IF, UNLESS, SET, SUBR, VARY, CYCLE,
REPEAT, READ, INPUT, PRINT, TITLE, LINES, SPACES, OUTPUT, CHECK, SETS, SETV,
SETF, SETR. START, and nowhere clse, with the exception of instructions setting Initial Values
(see Chapter 11). Whenever space is used it can be replaced by T (tabulate).

20.2. Punching the Mnemonic Tape-Main Features

The mnemonic program tape should commence with a lead-in of blanks, and the instructions of the
program each terminated by L. The translator ignores R. L is ignored if no instruction has been read,
so additional L’s may be punchn.d if desired to spredd out the print-up. Errors should be erased by
overpunching the wrong characters with E 5.

One 5 must be punched after each of the words and quasi-words listed in 20.1 above. except that 5
15 upimn'll after the last function specified in the SETF instruction, "3 is also optional after STDP'

WAIT, LINE, EXIT and TELEPRINTER, No other 8's may occur, with the following exception:

The constants on the right-hand side of an instruction setting variables to their Initial Values (see
Chapter 11) may be separated by SL T or,

Thus the number of 5’ s in Is
An arithmetic instruction 0
WAIT, STOP, LINE, EXIT or TELEPRINTER Oorl
JUMP IF A=B[n 2
JUMP UNLESS A=B[n 2
SETF TRIG LOG SQRT Jord
Any other type of instruction, with the exception of 1

Initial Values instructions (sce above).

20.3. Writing and Punching-Special Points

(a) Program Name
The name of the program may be punched on the mnemonic tape before the setting instruc-
tions, if desired, so that it will appear at the top of the print-up. It should be preceded by

24

(b)

il

(d)

- and termmated by L. Tt will then be output on @ new line on the output writer before
translation commences. If the name extends to more than one line : : must be punched at the
beginning of each line.

Explanaiory Notes

Explanatory notes may be punched on the mnemonie program tape o desired, so that they
will appeuar on the print up. It is possible to punch one short note after each instruction and
symbol in the program except SETS. SETY, SETF. SETR. the [which precedes a machine
black if it is on a line by itself, the) which terminates a machine code block. the R or ; which
terminittes & TITLE instruction, -

To mclude a note on the tape, punch @ and the note itsell between the last character of the
mstruction proper and the L which usually follows it. The translator ignores all characters
between @ tand L. There is no provision for explanatory notes which extend to more than
one line,

These s can only be erased by overpunching,

D oomay not appear before o mnemonic instruction. with the exception of the first setting
instruction (see () above),

Vachine code hlocks
These should be punched in the normal S.A.C. manner, but note that only the conventions
mentioned in section 19 may be used. that zero instructions and addresses must be punched
as 00 and 0 respectively, and that the zero word should be 000 : 000 L or -0 L.

Muemonic Program Punched in Parts - -

If it is desired to punch a mnemonic program on more than one length of tape, the end of
cach length except the last should be indicated by S L immediately after the L which follows
4 mnemonic instruction.

21, PREPARATION OF DATA TAPES
21.1. All Numbers

(i}
(b)
()

Negative numbers should be preceded by a — sign.

A - sign before positive numbers is optional,

The end of a number is signified by S. L or by T. No account is taken of S, Lor T unless a
decimal digit or point has been read, so additional page layout characters may be punched
to provide a reasonable print format.

21.2. Floating-point Numbers

(a)

(b

()

idi

May be punched in normal decimal form, with or withowt a decimal point, thus:

12,345 § 142 L

3720 L -
Any number of digits uﬁ-tu 12 may be punched. IT 12 digits are punched, their ‘integer
magnitude’ must be less than 274 877 906 944,
he argument, that is the formin (a) above. may be followed by | or ;o and a decimal exponent
p. say, implying multiplication by 10", Thus 12.345 can be represented by: 12.345 L or
12345/-3 Lur 123452 Lm. The / can bc replaced by a jo. The autocode allows , and or | to
be consecutive characters.
To represent the maximum possible positive number, punch & L. (It is not permitted to
mmch & 1)
Ta Ilmltn;b-pmnl number is written with an exponent. ¢.g. Aol or a'b. then the exponent
raust not be omitted even il it iz zero. The omission of an exponent is not always detected
by the read routine but it leads to errors.

21.3. Integers

Integers must be punched straightforwardly, without a decimal point, and must be of less magnitude
than 274 877 906 944, The character * may be used as a termination symbol instead of S, LorT.
To represent the maximum possible integer punch & L. (It is not permitted to punch — & L)

21.4. Labels

Tapes may be labelled, that is to say they may have identifying information punched on them which
does not constitute part of the data to be dealt with by the computer.

If while & READ instruction is being obeyed, an = sign is found, all following characters up to the
next R or ; will be copied on to the output tape, but otherwise ignored. After the R or ; has been
copied, the computer will recommence the READ action; any character read before the label was
reached having been erased by the = .

The label facility may be used to cause explanatory notes to be printed on the output, but this method
is inferior to the use of TITLE described in Chapter 16.1 unless the notes vary from one batch of data
to another.

21.5. Triggers and Stops

The data tape may be empowered to control the program by punching triggers and stops on it.

If the data tape is so arranged that a trigger, that is, a group of characters of the form n (where n is a
positive integer, is encountered while a READ A or READ I instruction is being obeyed, the computer
will jump to the instruction with reference number n. The READ A or READ 1 instruction will not
actually be obeyed: that is, the value of A or 1 will remain unchanged.

If the data tape is so arranged that the character) is encountered while 8 READ A or READ 1
instruction is being obeyed, it has the effect of stopping the program (see Chapter 21.8).

21.6. Error Erasure

The character ? may be used to erase incorrectly punched data. It has the effect of cancelling all
decimal digits of the number being punched, together with any minus sign, decimal point, or stroke.
It does not cancel a wrong character (see 21.8) nor * & = () SLor I

21.7. Wrong Characters and Overflow
The effects of wrong characters and of overflow while data is being read are given in Chapter 25.5.

21.8. Summary of Effects of Characters

The following table summarises the effects of all characters, encountered while a READ instruction
is being obeyed.

Characters Meaning or effect

E {blank) Ignored unless it occurs after an = |, in which case it terminates the label.

% } End of a number,

C Jump to instruction with reference number n specified by the number before the (.
) Causes a data wait, DTWAIT is output on the typewriter, change the valuc of

the N2 buttons from odd to even or vice-versa to continue reading.

Wrong.

Maxirium possible number,
End o an integer

‘R‘“ ar]

26

/ Precedes exponent.
0-9 Digits.
o Wrong.

= Precedes a label, the following characters are copied until either ; or bl is read.
; Precedes positive numbers (optional).

— Precedes negative numbers.,

Appears in floating-point numbers, wrong in integers.

- End of label.
-Z
’r‘ Wrong.
S End of number.
5 Wrong.
10 Precedes exponent.
<
-
H Wrong.
Y
? Causes all characters read so far to be ignored, the read routine prepares to read
a new number in the same mode.
d-Z
— Wrong.
(underline)
E Ignored.

Al other codes and unallocated codes cause error stops, when the read routine detects a wrong
character it stops reading and outputs ‘READ ERROR’ on the typewriter. The read routine is re-
entered if the sign of the word generator is changed.

22. STORAGE LIMITATIONS
22.1. General

When a program is being translated and run Load and Go the R.A.P., the Autocode Translator and
the Functions and Ancillaries are always in the store, along with that program. There must also be
room for each of the variables and constants which are required for the calculation. The capacity of
the store of the computer is limited, and this imposes limitations by which the lengths of program and/or
amounts of data which can be handled at one time are restricted.

If a program is not being translated and run by the Load and Go method, however, these limitations
are not so severe, for the following reasons. When such a program is being translated the R.A.P., the
Autocode Translator only and certain data relating to the program must be held in the computer’s
store. During the running stage, the R.A.P. and the translated program must be held in the store along
with the necessary Functions and Ancillaries, and there must also be room for each of the variables
and constants which are required.

22.2. Applicability of 503 Autocode with Reference to Store Size

The capacity of the computer’s store is measured in words. Each word occupies a location, the
locations in the store being numbered from 0 upwards. The store size of the 503 is 8192 locations, but
locations 7936 — 8191 hold the R.A.P. and the Interrupts (see 1.2.1 and 2.2.1) and a further 50 are used
by the R.A.P. workspace and its interrupts.

27
issue 2

22.3. Translating for a Limited Part of the Store

By means of this facility it is possible to specify a limited part of the store in which the program is
to be run.

Control Tape
If it is intended to make use of this facility a control tape must be prepared. This tape specifies the
lower limit of the store in which the program is to be run.
This control tape should be punched thus:
Either at the leading end of the mnemonic program tape (or the first length of the mnemonic
program tape} and separated from the program by some blanks,
X
+Y
L
blanks
SETV

Or on a separate tape with a closed bracket immediately after the last L,
LY
)
where, in both cases,
(i) X is the required lower limit, X = 17
(i) Y = 0if tape 2 is not to be copied onto the translated program (see Chapter 23.2).
Y = 1 if tape 2 is to be copied onto the translated program (see Chapter 23.2).

Both X and Y must always be set.

22.4. Capacity Calculation

To ascertain whether a long program or one which uses a lot of data at one time can be run, one may
either (a) Endeavour to translate it and observe the effect achieved. See Chapters 24, 25.1, 25.2(c)
and 25.3(c).
or (b) Add iogether the number of locations which the program’s instructions, constants,
variables, functions, ete., will occupy in the store (see (i) below) and compare this sum with
the number of locations allocated to the program in the computer store. (See (ii) overleaf.)
M.B. This method is only approximate.
(1) The following are the numbers to be added together:

Far Locations
Each mnemonic instruction, an average of 2
Each different variable specified in 1

SETS AND SETV
Each different floating-point constant and ecach different integer constant

If the largest reference number is n

(But if trace facility is required)

th N]:l —
=

28
issue 2

Functions specified in SETF
(if Load and Go method is not being used):

TRIG
ARCTAN
EXP
LOG
SQRT
INT
FRAC

READER/PUNCH/TELEPRINTER

Each word in machine code block
Every 5 characters specified in a TITLE instruction

58
39
57
40
29
41
22
24
1

|

Note. 1t must again be emphasised that when the Load and Go method is being used the numbers
given against SETF functions above should be ignored.

(ii)

The number of locations which a program may occupy in the computer store is determined
by whether or not the program is being run using Load and Go.

The following table lists the appropriate numbers to be compared with the sum calculated from (b) (i).

Method of Use Compile Time I Run Time
Load and Go 4686 | 4686
Translate and Run Separately 4583 7220

‘Compile Time® means the room available for the reference table and constants during translation.
Note. The numbers given against Translate and Run Separately will of course be altered if it is
intended to Translate onto Tape for a Limited Part of the Store.

23. OPERATING INSTRUCTIONS

It is assumed in this and subsequent sections that the reader knows how to operate the computer.
Except where otherwise indicated, every reference from here on to reader or punch is a reference to
Reader 1 and Punch 1.

23.1. Load and Go

Srage 1

Stage 2

Action

Place Tape 1, the 503 Autocode Translator in the

tape reader; type IN.

Place Tape 2, the 503 Functions and Ancillaries
Tape, in the tape reader; type IN.

29

Result

The tape is read in at speed.
When the sum-check is found
to be correct AUTO 1 UN-
CHEK is displayed. Control
returns to the R.ALP.

The tape is read in at speed.
When the sum-check is found
to be correct AUTO2 UN-
CHEK is displayed and con-
trol returns to the R.AP. If
ERRSUM is displayed go
back to Stage 1.

Stage 3
(translation)

Place the mnemonic tape in the tape reader, set
F2=40 if TRACE facility is required, depress
the B-digit if CHECKS are to be translated and
type 7.

If the program is punched in parts (see Chapter
20.3(d)).

Place the next length of tape(s) if any in the
reader and either change the sign of the word
generator or depress the MESSAGE button and
type 17,

The above sequence should be followed when-
ever the computer reaches the end of a length of
tape, with the exception of the last length.

The tape is read in and
translated into the store.

The computer will stop when
the S L is reached and
ERROR will be displayed.
The computer will now read
in the length of tape.

N.B. Re-entry by typing 17. cannot be used either in the middle of a machine code block or after
a START instruction has been translated unless using the MODIFY facility. See Chapter 13.2.

Stage 4
(running)

either

or

and either

ar

Action

Place the data tape if any in the appropriate
reader, set F2=40 if TRACE facility is required,
depress the B-digit if CHECKS are required and
type 16, having

Ensured that the N2 keys are clear

set N2=n

Ensured that the N1 keys are clear

sel Nl=m

Each time a WAIT instruction is obeyed the
program will stop,

Change the setting of the N2 buttons from odd
L0 even or VICe Versa,

If any further programs remain to be processed
go back to Stage 3.

30
issue 2

Result

Translation is complete when
the limits of the program are
displayed and control returns
to the R.ALP. (sec Chapter 24).

Calculation will start at the
instruction specified in the
START instruction.

Calculation will start at the
instruction with reference
number n.

Calculation will stop at the
point in the program specified
by the STOP instruction and
END is displayed.
Calculation will stop at the
instruction with reference
number m and STOP is
displayed.

WAIT is displayed.

The program will continuc.

23.2. Translation Stage Only

2.1.4

The following describes the operating procedure necessary at the translation stage if the Load and Go
facility is not being used.
(a) 1If it is mot intended to translate onto tape for a limited part of the store (see Chapter

Stage 1

Stage 2
(translation)

Stage 1

Stage 2
(translation)

Stage 3

Stage 4

Stage 1
Stage 2

Stage 1
Stage 2

Stage 3

(b)

(c)

(d)

22.3), proceed thus:

Action
Place Tape 1, the 503 Autocode Translator in the
tape reader ; type IN.

As for Stage 3 of 23.1 except that 5. is typed to
read in the tape and not 7.

Result
As for Stage 1 of 23.1.

As for Stage 3 of 23.1.

If it is not intended to translate onto tape for a limited part of the store but tape 2 is

to be copied onto the output tape, proceed thus:

Aciion
As for Stage 1 of (a).

As for Stage 3 of 23.1 except that 5 ; 5. is typed
to read in the tape and not 7. Do nef run out any
blank tape after translation is complete.

Place Tape 2, the 503 Functions and Ancillaries
Tape, in the tape reader and change the sign of
the word generator.

Run out some blanks, tear off the tape, place the
leading end in the tape reader and change the
sign of the word generator.

Result
As for Stage | of (a).

As for Stage 3 of 23.1 except
that®when translation is com-
plete the machine cycles in a
keyboard loop.

Tape 2 will be copied from the
tape until the trailing blanks
are reached.

The tape is read in at speed
and sum-checked. ERRSUM
is displayed if sum-check fails,

Repeat from b Stage 2. Other- " ©

wise END is output.

If translating onto tape for a limited part of the store and if the control tape is punched
on the beginning of the mnemonic program tape, proceed thus:

Action

As for Stage 1 of (ak

As for Stage 3 of 23.1 except that 6. is typed to
read in the tape and not 7.

Result
As for Stage 1 of (a).
As for Stage 3 of 23.1.

If Translating onto Tape for a Limited Part of the Store, and if the control tape is

separate from the mnemonic tape proceed thus:

Action

As for Stage 1 of (a).
Place the control tape in the tape reader and

type 6.

As for Stage 3 of 23.1 except that 6 ; 8, is typed
to read in the mnemonic tape and not 7.

31

Result

As for Stage | of (a).

The control tape is read in and
END is displayed when the
terminating) has been read.
As for Stage 3 of 23.1.

o

fe) It is intended to copy tape 2 on e the cutput tape then when translation 1s complets
do not run out blanks but proceed as for (b) Stage 3.

() It should be noted that it 15 not necessary 1o continually re-read Tape | mto the
computer if it is desired 1o translate one mnemonic program after another. On the
other hand, if it is desired to change from transiating onto Tape to Translating mie
stere. or vice versa, the Translator must be re-read into the computer. I this is noet
done = will be displaved and control will return to the R.AP.

23.3. Running Stage Only

The following describes the operating procedure necessary at the runming stage if the Load and Go
facility is not being used.

Acrion Resulr
Stage | Place the translated program i the tape reader he tape is read inatspeed and
and type IN. control returns to the R.ALP.

If ERRSUM is displaved
repeat this stage.

Stage 2 Place Tape 2, the 503 Functions and Ancillaries The tape is read in at speed
Tape in the tipe reader and wpe IN, and control returns to the
R.AP. If ERRSUM is dis-

plaved repeat from Stage 1.

Stage 3 As for Stage 4 of 23.1. As for Stage 4 of 23.1.

If a combined tape (the translated program and tape 2) was produced as in 23.2(b) proceed as above
but omit Stage 2.

24, THE TRANSLATED PROGRAM

The translated program tape is punched in a special relocatable binary code suitable for input under
the R.ALP.

The limits of the program are displaved when translation is complete. These are of the form M - P
and Q - R and indicate that locations M to P will be used for the main program. locations Q to R for
constants; reference table and workspace. If the program is translated onto tape M = 16.

If an overlong program is translated to its end, as suggested in Chapter 25.2(c), P will not be less
than Q. The excess is, in fact (P-Q + 1) words.

The R.A.P. pointers which indicate the first and last free locations are updated after the program
and tape 2 have been read into the store. When translating Load and Go the necessary instructions 10
update the R.A.P. pointers are carried out by the translator after the START instruction has been
compiled.

‘The two modes of translation (onto tape and into store) are not compatible, i.e. it is not possible 1o
change from translating onto tape to translating into store without re-inputting the translator. If a
change of mode is attempted without first re-inputting the translator then = is typed on the output
writer and control is transferred to the R.A.P. where it awaits a message.

32

25. ERROR INDICATIONS AND ACTION TO BE TAKEN

25.1. Summary of messages output during translation

Message Meaning Further Action
ERRSUM Tape sum-check has failed on input and control Re-input the tape.

is transferred to the R.ALP.

END The current stage of operation is complete. Proceed with the next stage

of the operation.

*ERROR An error in the setting instructions. Remove the tape, correct the

setting instructions and re-
commence translation.

ERROR An error in an instruction or a control tape or Mark the tape, change the
5 L i.e. stop at the beginning of a line. sign of the word generator to
In the latter case the error is ignorable. continue translating and set

ES

F2=04 if it is desired to sup-
press further output. If the
error occurred in a control
tape, correct the tape and re-
enter by typing 6. (sce also
Chapters 25.3 and 25.4).

An attempt to change the mode of translation. Re-input the translator.

NOROOM The program is too long for the store. Continue as for ERROR.

25.2. Errors during Translation

The error stops described below are those which may occur while the operations specified in Chapters

23.1 and 23.2 are being carried out.

The Translator will stop
(a) If there is an obvious error in the setting instructions.
(b) If there is an obvious error in any other part of the mnemonic program.
(c) If the translated program is becoming so long that there will not be room for it and its data
in the computer’s store at the running stage. In this case NOROOM is displayed.
Examples of (a)
(i} Word or quasi-word spelt wrongly.
(i) Unrecognised word used.
(iii) Same letter set twice.
(iv) Omitting SETR.
Examples of (b)

(i) Using a letter or FUNCTION which has not been set (N.B. Use of A8 where only A(7) has
been set, and use of Al when I < 0 will not be detected by the Translator, and errors will
arisc).

(i) Using a constant with excessive ‘integer magnitude’.

(iii) Using integers and floating-point quantities in wrong combinations.
Using an integer variable on either side of a FUNCTION instruction not applicable to
integers is not detzcted and will lead to errors at run time.

(iv) Using an integer * ariable in an instruction to divide.

(v) Using a constant on the left-hand side of any instruction,

(vi) Word or quasi-word spelt wrongly, or unrecognised word used.

(vii) Giving an instruction a reference number higher than the maximum specified in the SETR
instruction, or giving the same reference number twice.

33
issue 2

25.3. Action to be Taken on an Error Stop During Translation

(a) I the translator stops because of an error in the setting instructions the tape should be removed.
a corrected tape punched, and translation recommenced from the beginning. Use may be made of the
method described in Chapters 2003(d) and 23.1 Stage 3, but the whole of the setting intructions must he
repunched.
(b) It the translator stops because of an obvious error in the body of the program, the following
COUTSEs are open:
(1) Take the tape away and correct it. This is not very profitable, as there may be more errors on
il
or (i) Mark the tape at the point at which the error was found. Sct up 04 on the F2 buttons of the
keyboard and change the sign of the word generator. that is, change the setting on the F1
buttons from 40 (negative) to 00 (positive), or vice-versa. The translator will ‘read over' the
rest of the mnemonic tape and check it for obvious errors but no further output will take
place. It will stop each time it finds an error, whereupon the tape should be marked, and
checking recommenced by again changing the sign of the word generator. Then take the
tape awav and correct all errors.
or (iif) Mark the tape at the point at which the error occurred and remove it from the tape reader.
Punch a correction tape consisting of :

blanks

the correct version of the instruction L
5L
blanks

Place this in the tape reader, and cause it to be read by changing the sign of the keyboard
word (sce (ii) above). Then put the main mnemonic tape back in the tape reader, with the
first character of the next instruction in the reading position, and again change the sign of the
word generator,

(c) If the translated program is becoming so long that there will not be room for it and its data in
the computer’s store, NOROOM is displayed. If it is desired to continue translation, in order to deter-
mine the exact amount by which store capacity is exceeded, change the sign of the word generator.
See Chapter 25.1.

25.4. Fast Method of Detecting Errors on the Mnemonic Tape

If the translation process is being carried out separately, quite a lot of time can be wasted in attempt-
ing to translate mnemonic tapes in which there are errors. Some users avoid this possibility by always
making the translator ‘read over’ a mnemonic tape before actually attempting to translate it. This is
done by operating as in Chapter 23.2 but with the F2 buttons set at 04. No output takes place, but the
translator rapidly ‘reads over’ the mnemonic tape, stopping if any obvious error is found. The actions
taken on a stop are similar to those stated in Chapters 25.3(a) and 25.3(b) (ii).

25.5. Summary of Messages Output at run time

Printed on output writer Meaning

C is displayed when entering at 16. if there is any non-zero setting on the
word generator (apart from the sign bit which is ignored in this context).

N is displayed when entering at 16. if the word generator is zero (apart
from the sign bit).

sTOP is displayed when the selected stop facility is being used to indicate that

the instruction with the specified reference number has been reached.

34

END

Printed on output writer

WAIT
DTWAIT

READ 0
PUNCH 0

Error indications at run time

is displayed when the mnemonic instruction STOP is obeyed and control

is transferred to the R.A.P.
Further Action

Change the value of the N2 keys from odd to even or vice-versa and the

program continues.

Change the N2 keys as for WAIT and the next number on the data tape

is read.

Type a message m. where0 <m < 7

See Chapter 17.3,

Change the sign of the word generator to continue for group (a). Continuation is not possible for

group (b).
Message

Group (a).
READ ERROR

PRINT ERROR
TRIG ERROR

LOG ERROR
EXP ERROR

INT ERROR

SORT ERROR
RPUNCH ERROR
Group (b)

SUBR ERROR
END

Meaning

Wrong character on data tape, or
number read has excessive ‘integer
magnitude’, or a *." in an integer.
The floating-point number to be
printed is of non-standard form.

SIN, COS or TAN with argument
too great.

LOG with argument = 0

EXP with argument > 254 log.2

I = INT A with argument too great
for fixed point representation.

SQRT with negative argument.
READER I/n when I/n = 7 or I/n
< Dor PUNCH I/n where I/n = 7

orlin <0

Subroutines to excessive depth.

26. AUTOCODE POST MORTEM

26.1. Function

Effect

A new number is read.

? 0 is printed in the specified
mode.

Argument is set equal to max,
permitted value,

Calculate LOG (|A]).
Calculate EXP (254 log.2)

Function continues.

Calculate SQRT (|A]).

Set tape reader | or punch 1.

Control is transferred to the
F.A.P. to await a message.

To output the current values of variables of the Autocode program held in store (the object program),
as specified by a control tape.

35

26.2. Method of Use

The post-mortem must be input after each program requiring its use by typing IN. The mnemonic
program tape should be placed in Tape reader 2, and post mortem may then be entered by typing
AUTOPM.

The post mortem first reads the setting instructions from the head of the mnemonic tape of the object
program, on tape rcader 2, forms its alphabet table and then waits in a keyboard loop.

When the parity of the N2 keys of the word generator is changed, the control tape is read, also
from reader 2, the variables specified are output, together with any page layout characters on the control
tape until either * or) is read.) will cause the program to “WAIT’, and when the parity of the N2 keys
is changed the program continues reading the control tape. * causes the post mortem to exit to the
R.A.P. to await a message.

26.3. Control Tape

The control tape should contain the following:
£n (optional). n specifies the number of the output device on which the values are to be
(I =n<7) printed. If n is not set then the current device set by the object program will be used,
cxcept in the case where the current device marker has value 0 in which case output
will be on punch 1. £n must be terminated by L, Sor T.
A list of the variables whose values are required, in any one of the i‘ollnwmg forms:

| = orA = when I/A only is required
In = or An = when InfAn only is required
Im-n = or Am-n = when Im to In or Am to An inclusive are required.

Any page layout characters may appear on the control tape. These will be copied on to the output
but will otherwise be ignored.
) If there are further variables to follow later, e.g., on another tape.
* If the program is required to exit to the R.A.P. to await a message.
All variables are printed either in the form
PRINT A8/ or PRINT 1,12
The current output device marker is saved on entry to the post mortem and reset before exit or when-
ever the output device is changed during the course of the program. The output device may be changed
at any time during output by setting £n on the control tape.

26.4. Errors

Message Meaning Further Action

NOTSET ERROR A letter which has not been set in Change the sign of the word
the object program is specified on generator to continue reading the
the control tape. control tape.

SETIN ERROR A wrong character has been read Change the sign of the word
on the mnemonic tape of the setting generator to continue reading the
instructions. setting instructions.

ALPHA ERROR An impermissible character has Change the sign of the word
been found on the alphabet (con- generator to continue reading the
trol) tape. alphabet tape.

26.5. Re-entry

AUTOPM may be entered several times during the running of a program, but must be re-input
whenever another object program is run or translated. AUTOPM must always be input last, i.e. after
the translated program, otherwise it may be overwritten.

36

APPENDIX 1

SUMMARY OF INSTRUCTIONS

MNote In the examples below,

A,B,Cand D represent Floating-point variables.

ILJ,Kand L represent Integer variables.

I, mand n represent Positive integer constants.

p,gand r represent Any integer constants,

X, yand z represent Floating-point constants,

Any variable except the one before the = sign may be replaced by a constant.
ARITHMETIC A=B =B I=1] I[=-J
(Chapter 4) A=B+C A=-B+4C I=]+K I=-]+K

A=B-C A=_BC I=J-K I=-J-K
A=B*C A=-B*C I=K*K [=-J*K
A=B/C A=_B/C — -
FUNCTION A=SIN B
(Chapter 5) A=COS5 B
A=TANB
A=ARCTANB
A=LOG B
A=EXPB
A=SQRTB
A=INTB I=INT A
A=FRACB [I=MODJ
A=MODB
A=STAND I
SETTING AND START
(Chapter 7) SETS {Integer variables)
SETVY (Floating-point variables)
SETTING AND START
(Chapter 7) SETF (Functions and peripheral equipment)
SETR n {(Maximum reference number)
START m (Starting reference number)
In SETF (i) TRIG covers SIN, COS and TAN
(ii) MOD and STAND need not be mentioned.
JUMP
(Chapter 8) JUMP [K

JUMP IF A=B[K
JUMP UNLESS A=B[K

JUMP IF I=J[K
JUMP UNLESS 1=J[1

(K may have a numerical suffix)

Any permitted arithmetical instruction or function instruction may be sub-
stituted for A=B or =], and may have > or < in place of =

Appendix 1

Page 1

OTHER CONTROLS
(Chapters 9 and 10) SUBR n SUBR 1
EXIT
STOP
WAIT
(1 may have a numerical suffix)

INITIAL VALUES

(Chapter 11) SET Aln:m) = X, ¥, 2,
SET lin:m) = p,q,r,
VARY AND CYCLE
(Chapter 12) VARY A=B:C:L VARY I=J:K:L
CYCLE A=B:C:D CYCLE I=J:K:L
CYCLE A=x, v, 2, CYCLE I=p, q, T, .
REPEAT A REPEAT 1
(B, C. D, J, K, and L may have simple suffices only)
INPUT
{Chapter 14) READ A READ 1
INPUT 1
In Input I, 1 may have a simple suffix only.
OUTPUT
(Chapters 15 and 16) PRINT A, n:m PRINT A, I:]J
PRINT A,n PRINT A,I
PRINT A,n/ PRINT Al/
PRINT A
PRINT Ln PRINT LJ
PRINT 1
OUTPUT I
LINE
LINES 1
SPACES 1
TITLE

DOUBLE PAPER TAPE STATION

(Chapter 17) READ I/n PUNCH I/n
TELEPRINTER

CHECK

(Chapter 18) CHECK A CHECK 1

Appendix 1 Page 2

2.14

APPENDIX 2

SUMMARY OF OPERATING INSTRUCTIONS AND ERROR INDICATIONS

A. LOAD AND GO
1. Operation

(a) To read in appropriate Tape 1, type IN.
Input is sum-checked.
(b) To read in appropriate Tape 2, type IN.
Input is sum-checked.
(¢) To read in mnemonic tape, type 7. with:
B = 1 to translate CHECK’S
F2 = 40 to Incorporate TRACE facility.
(d) If the mnemonic program is punched in parts, to recommence translation either change the
sign of the word generator or type 17.
(¢) To enter the program at the point specified in the START instructions, type 16. with key-
board N2 = 0. To enter at the instruction with reference number n, type 16. with keyboard
N2 = n. To exit from the program at the point specified in the STOP instruction set N1 = 0.
To exit at the instruction with reference number m set N1 = m. Keep the keyboard set with:
B = 1 for CHECK’S to be obeyed.
F2 = 40 for TRACE facility to be used.
(f) If there are any WAIT instructions in the program, change N2 from odd to even, or vice
versa, when ready for calculation to continue.

2. Error Stops during Translation and Action to be taken

If the translator stops without completing the translation, including the output of the details of
storage space required by the translated program, then:
(a) If *ERROR is displayed remove the tape and correct the setting instructions.
(b) If ERROR is displayed, and the tape in the reader is not a control tape then:
Either (i) Mark the tape.
(ii) Set F2 = 04 on the keyboard.
(i) Change the sign of the word generator, that is, change F1 from 40 to 00 or vice versa.
(iv) Repeat (i) and (iii) each time the translator stops until the end of the tape is reached.
Then remove the tape, correct it at all marked points, and recommence.
or (i) Mark the tape and remove it.
(i) Punch a correction tape comprising: blanks correct instruction L S L blanks.
(iii) Change the sign of the word generator to read correction tape.
(iv) Change the sign of the word generator to continue reading main tape at beginning of
next instruction.
() 1f NOROOM is displayed the program is overlong. See Chapter 25.3(c) for recommended
action, and refer to Chapters 22.4 and 24.

B. TRANSLATION STAGE ONLY

1. Operation
(a) To read in appropriate Tape 1, type IN.
Input is sum-checked.

Appendix 2 Page |

2.1.4

ib) 1) If it is not intended to translate onto tape for a limited part of the store. to translate
mnemonic tape. type 5,

() If it is not intended to translate onto tape for a limited part of the store but tape 2 is 1o
be copied onto the output tape, to translate the mnemonic tape type 5;S. and when
translation is complete change the sign of the word generator to copy tape 2. To check
the tape produced. place the leading end in the tape reader and change the sign of the
word generator.

i) T it s intended to translate for a limited part of the store. and if the control tape is
punched on the beginning of mnemonic tape, then to translate mnemonic tape type 6.
I 'Y= 1 on the control tape then proceed as in (ii) above when translation is complete.

tiv) If translating for a limited part of the store and control tape is separate from mnemonic
tape. to read in the control tape type 6. To read in mnemonic tape type 6:5, If Y=1 on
the control tape then proceed as in (ii) above when translation is complete,

[all cases enter with:

B = I totranslate CHECKS

2 = 40 to incorporate TRACE facility.

e} If the mnemonic program is punched in parts, 10 recommence translation either change

sign of the word generator or type 17.

2. For a summary of Error Stops during Translation and Action to be taken, refer to Chapter 25.1.

C. RUNNING STAGE ONLY

1. Operation

fa) To read in translated tape, type IN,
Input is sum-checked.

(b) To read in appropriate Tape 2, type IN, (Omit this for 1(b)(ii) above).
If sum-check failure occurs, start again at (a).

{c) Now proceed sequentially from A.1(e).

2. For a summary of Error-Indications during Running, refer to Chapter 25.5.

Appendix 2 Page 2

APPENDIX 3
FLOATING-POINT REPRESENTATION
(a) General
Any number A can be represented in many ways by a pair of numbers (a,b) which satisfies the equality

A=ax2b
In which a is called the mantissa or argument and b the (binary) exponent.
For example, 6 can be represented by (6, 0) or by (.75,3) or by (12,-1).
(b) Representation in 503’s as used in the 503 Autocode

The representation used in the 503 is described in 1.2.1. The nine least significant digits of the word
represent (b+256), not (b+4255).

Appendix 3 Page 1

APPENDIX 4

ADDITION OF FURTHER FLOATING-POINT FUNCTIONS

Note: All examples in this appendix assume that it is desired to add three new functions, and that
these will be specified by mnemonic instructions of the forms:

A=LIMB
A=MIN B,C.D
A=Norm B

where LIM, MIN and Norm are the names of the functions and A, B, C and D are floating-point
variables.

Additional functions may be functions of one or more integers or floating-point variables, and up
to eleven such functions may be added.

SUMMARY

In order to be able to use functions which are not already available in the 503 Autocode the following
actions are needed:
I. Allocate a name to each such function.
2. Write additional functions subroutines in a style similar to S.A. Code, by which the functions
are formed.

3. Either (a) Produce a tape of these subroutines, punched in the conventions of the autocode
system (Additional Functions Tape), to be used in conjunction with tape 2.
or (b) Produce a modified version of the appropriate tape 2, incorporating these addi-
tional subroutines.

4. Either (a) Produce a tape by means of which the Autocode Translator can be adjusted each

time it is required to translate a mnemonic program using these additional functions
(Additional Names and Lengths Tape).

or (b) Produce a modified version of the appropriate tape 1 which will translate mnemonic
programs using the additional functions.

5. Specify any additional functions used in a mnemonic program in the normal way, that is, by
including their names in the SETF instruction, and use the additional or modified tapes
correctly.

6. Ensure that modified versions of Tapes | and 2 do not get mixed up or used in conjunction with
the standard versions, or differently modified versions.

1. ALLOCATING NAMES TO FUNCTIONS

Each name may be any combination of at least 3 of the letters of the alphabet, provided that the last 7
of them are different from the last 7 letters of any other function name in use. They may consist of any
combination of upper and lower case letters.

for example: LIM MIN and Norm

1. WRITING THE REQUISITE SUBROUTINES

Each subroutine must be written as on: block of S.A. code without data or label introductions, the
only permitted forms of addresses are integers and relative (see 2.1.2.3), and must comply with the
following specification:

Appendix 4 Page |

(i)
(i)

(iii)

(iv)

The entry point is the first instruction in 0,
On entry, the first (or only) parameter is in the accumulator. Additional parameters are
picked up in the following manner,
Placing the address of the m™ parameter in location 12 (for example) its current valuc
in the accumulator is achieved by the instructions:

00 15 30 m-1

20 12 30 0
There is no limit on the number of parameters.
Exit from the function must be made by the instruction pair:

00 15 f 40 n
where n is the number of parameters in the function, with A, the required result, in the
accumulator.
The subroutines should be written and punched as a series of whole words, i.e. 2 instructions
to a line. When two instructions are to be stored in the same location they must be
written and punched on the same line.

3. (a) PRODUCING AN ADDITIONAL FUNCTIONS TAPE

(i)

(ii)

(iii)

Punch S.A. Code tapes of the subroutines, complying with the methods of punching used in
preparing tapes for input by S.A.P. and with the following special provisions:

The comments between round brackets are not allowed.

The first subroutine must be preceded by * and one * must occur between each subroutine
and the next. The last subroutine must be followed by)

If the subroutines are punched on more than one tape, cach tape except the last must end
with - -

The subroutines may be punched in any sequence, but a note should be kn:pt of the actual
sequence used; say (1) LIM, (2) MIN, (3) Norm. Y.« 7 N R L R T '
Place Tape 3 in the tape reader and type IN. Input is sum- ci.t.u.kn:d the output of ERRSUM
indicates sum-check failure,

Place the 5.A. code tape of the additiona! subroutines in the tape reader and type AUTO3;1.
The coding routines on Tape 3 will now translate the subroutines into a form suitable for
use in conjunction with Tape 2, producing what is known as an Additional Functions Tape.
If the subroutines have been punched on more than one tape, then when each tape has been
translated, replace it by the next in turn, and type 2. to cause translation to continue.

3. (h) PRODUCING A MODIFIED TAPE 2

(i)-(iti) Proceed exactly as in 3(a) except that the last subroutine must end with 44 7898: (instead

of). Then, without running out any blanks or tearing off the Additional Functions Tape,
continue as below,

(iv) Place the leading end of a Standard Tape 2 in the tape reader, and type 4. This will causc the

relevant portions of Tape 2 10 be copied, so that the whole output constitutes Auto..d-
Tape 2 {modified). Care should be taken to mark it properly, e.g. 503 Autocode with 1.IM
MIN and Norm, Tape 2.

(v) To check the output tape. run out some blanks, tear off the output tape and place its leading

end in tape reader |, type 5. to cause the tape to be read in and sum-checked. If ERRSUM
is displayed repeat from 3(b) fiii) otherwise END is printed and control is transferred to
the R.AP.

Appendix 4 Page 2

4. (a) ADJUSTING THE AUTOCODE TRANSLATOR

(i) Prepare an Additional Names and Lengths tape, consisting of NAME S(orT)in L
for each function, where n is the number of locations taken up by the subroutine for the
function.
The functions must be specified in the opposite sequence to that in which they were punched
for coding, so in our example we would have, say,
Norm S 42 L
MIN S20 L
LIMS33C
(ii) Read the appropriate Tapc 1 into the computer in the normal way.
(iif) Place the leading end of the Additional Names and Lengths tape in the tape reader, and
type 1786.
The Autocode Translator will read the first name and length on the tape, adjust itself accord-
ingly and END will be typed. Type 1786. repeatedly until all the names and lengths have been
read and dealt with.
(iv) The Autocode Translator is now adjusted to translate mnemonic programs using the addi-
tional functions, and can be used in the normal way.

4. (b) PREPARING A MODIFIED AUTOCODE TRANSLATOR

{i)-(iii) Proceed exactly as in 4 (a) (i)-(iii), and then continue as below.

(iv) Make sure that there is plenty of tape in the punch, and type 1863.

(v) The Autocode Translator will now punch out a suitably modified version of itself, and care
should be taken to mark it properly, e.g. 503 Autocode with LIM, MIN and Norm, Tape 1.

(vi) To check the output tape, run out some blanks, tear off the output tape, place the leading
end in tape reader 1 and change the sign of the word generator. If the check-sum fails,
ERRSUM is displayed and the operation must be repeated from stage (iv), otherwise END
15 typed and control is transferred to the R.AP,

5. USING 503 AUTOCODE WITH ADDITIONAL FUNCTIONS

The following notes amplify the provisions of the basic specification of 503 Autocode.
(a) Writing the Mnemonic Program

The names of any additional functions used in a mnemonic program must be specified in the

SETF instruction in the normal manner and the way in which each additional function instruc-

tion is written must conform with the usual conventions.

Functions of more than one variable must obey the following further restrictions:

(i) The first parameter may be either a constant or a variable with any form of suffix. The
second and subsequent parameters must be variables with at most numerical suffices.

(ii) The parameters must be separated by commas and the last variable must be followed
by L or ::

(iii) A comma following the last variable will cause an error stop on translation. A function
call with the wrong number of parameters will not however be detected and will lead to
run-time errors.

(b) Load and Go Operation
(i) Using a modified form of Tape 1 :
Read the modified Tape | into store. Read in either a modified form of Tape 2 or an
additional functions tape followed by the standard form of Tape 2. Then type 7. to translate
in the normal way. Type 16. to run the program.

(i) Using the standard form of Tape 1 :

Read the standard version of Tape 1 into store, then modify it by the method described in

Appendix 4 Page 3

paragraph 4a). The autocode translator must be adjusted as in paragraph 4(a) before
mputting either a modified form of Tape 2 or an additional functions tape lollowed by
the standard form of Tape 2. Then type 7. to translate in the normal way. Type 16, to run
the program.
Restriction: Additional functions must not be added when using the Load and Go facility
after entering Tape | to translate a program, without first re-inputting Tape 1.
(¢} Translate and Run Separately

(i) Translating the Mnemonic Program.
Either use a modified form of Tape 1, produced as described in 4(b) above, or use the
standard form, modifying the translator after input by the method described in 4(a).

(ii) Running the Translated Program.
If a modified form of Tape 2 has been punched, as described in 3(b) above, this should be
used instead of the standard form, operating in the usual way.
If only an Additional Functions Tape has been produced, this should be read in (by
typing IN} after the translated program but before the standard Tape 2. Otherwise,
operate in the usual way,

6. INCOMPATIBILITY OF STANDARD AND MODIFIED VERSIONS OF THE TAPES

A mnemonic program which does not in fact use any additional functions may, if desired, be trans-
lated by a modified version of the translator, but the translated program tape so produced can only be
run under a correspondingly modified version of Tape 2.

Care should be taken to ensure that each modified tape is kept with its pair, and does not get mixed
up with standard tapes or with tapes modified for other sets of additional functions.

Appendix 4 Page 4

2.1.4

APPENDIX 5

DETAILS OF FLOATING-POINT SUBROUTINES

This appendix gives sufficient details of the READ and PRINT subroutines of Tape 2 of 503 Auto-
code to enable users to employ them in machine code blocks (see Chapter 19) and additional function
subroutines (see Appendix 4).

1. DETAILS OF READ AND PRINT SUBROUTINES IN 503 AUTOCODE

Throughout this section, all quantities except I and J are standard floating-point numbers unless
otherwise stated.

READ
To read a floating-point number from the input tape, and place it in the accumulator, enter
73 15 - 40 7679
To read an integer from the input tape and place it in the accumulator, enter
73 15 3 40 7673
For details, see Chapters 14 and 21.
PRINT
[For Format l Place A or I in the
Il Corresponding to Set Parameter \ In Location | Accumulator and Enter
|
PRINT A,m:n 20m : 00 m+n ‘ 7323 73 7620 40 7325
PRINT A,l:J 201 :00 1 +J ; i
PRINT A,m 10m : 00m | 7323 |73 7620 40 7325
PRINT A,l 101 :001 i :
|
PRINT A,m/ 400:00m ‘ 7323 73 7620 40 7325
PRINT A.If 400:001 I |
[
PRINT A — I 1 73 7620 : 40 7325
PRINT I,m ! +m | 7324 | T3 7620 - 40 7326
PRINT 1J L ‘ [
, PRINT 1 [— ' —_ 73 7620 : 40 7326
i | '

For details, see Chapter 15.
Madifications to the Print Routine

(a) To output + instead of §, modify the contents of location 7577 from +64 to +29.

(b} To cause the sign of the number to be output before the suppressed leading zeros, modify
the contents of location 7501 from 30 7605 : 10 7530 to 40 7513:

{c) To cause leading zeros to be output instead of spaces and to be preceded by the sign, modify
the contents of location 7499 from 44 7493 : 02 7582 to 44 7493 : 30 7569 and 7507 as
in (b) above.

It is also possible to modify location 7499 so that certain other characters are output instead of
leading zeros.

Appendix 5 Page 1

2.1.4

APFENDIX 6

EXAMPLE OF USE OF THE ELLIOTT AUTOCODE PROGRAM SHEET

The accompanying sheet is an example of the method of writing programs in autocode employed
at Elliott Brothers (London) Ltd.

WRITING ON THE FORM

In general, the REF. column is used for reference numbers, while instructions and remarks are
written in their appropriate columns. The use of the FLOW column is at the discretion of the pro-
grammer: one possible method of indicating jumps, etc., is shown.

Working through the example, the following special cases will be observed:

(a)
(b)
(c)

(d)
(e)

REF. column used for :: before program name, and the program name is written across the
page (Chapter 20.3(a)).

An additional must be directly specified : the punch operator is instructed to ignore lines
left completely blank. (Chapter 20.2.)

Where any instruction is too long to be written on one line, a large X appears in the END
column, and instruction is continued on the next line.

TITLE instructions are written out in full. (Chapter 16.1.)

;1 is written in the END column where a remark is to be punched. (Chapter 20.3(b)). (If a
remark is not to be punched, the END column is left blank.)

PUNCHING FROM THE FORM

General
(a)
(b)

(c)
(d)

(e)

Lead in with blanks followed by@

Punch whatever is written in the REF. and INSTRUCTION columns on one line, then
punch and go on to the next line, and so on.

Finish off with @and run out on blanks.

Punch on after the ‘words’

ARCTAN, CHECK, COS, CYCLE, EXP, FRAC, IF, INPUT, INT, JUMP, LINES,
LOG, MOD, OUTPUT, PRINT, PUNCH, READ, READER, REPEAT, SET, SETF,
SETR, SETS, SETY, SIN, SPACES, SORT, STAND, START, SUBR, TAN, TELE-
PRINTER, TITLE, TRIG, UNLESS, VARY, and nowhere else.

Erase may occur anywhere on the program tape.

Exceptional Cases

(f)
(g)
(h)
(i)
(i
(k)

0]
(m)

Where :: appears in the REF. column, pupch :: and then copy everything else on that line,
with spaces between words, and end witl(lb

Where :: appears in the END column, punch :: and then copy the REMARKS column,
with spaces between words, before punchin

Where there is no :: in the END column, do not copy the remarks.

Where therg is X in the END column, or at the end of the line, go on to the next line without
punching@

Take no notice of the FLOW column entries.
If you me@wrilten on 4 line, just punch@anoe and go on to the next line.
After TITLE punnh@fullowed by all the characters in the circle followed b

An entry]ikc@ means six sp’s

Appendix 6 Page 1

APPENDIX & TO 503 AUTOCODE (Continved)

Sci

entific Computing Division.....ELLIOTT BROTHERS (LONDON) LTD

503 AUTOCODE PROGRAM

2.1.4 EXAMPLE

Sheet. .1..,.u'l‘ N

FLOW

T
REF |

INSTRUCTIONMS }-EMJ FLOW

REMARKS

&

Srom Sheet 5

@

EXAMPLE OF USE OF AUTOCODE Eﬁ?&‘?AM SHEET oo oo

X

SETs I(e#)J(64) K(e4) L (5)

m(10) NP (2)

SETV A(10) BC

SETF PUNCH READER TRIG

SETR 30

17)]

PUNCH Cf-‘

?3? Jﬁﬁ’f{ﬂ PRINTING ??'FF z? ON DEMAND

mire/ @@ sPeciFy (5) CHARACTERS @‘\

REQUIRED (5) THEN (5) ENCIRCLE (5) K

T___Lug G 7iree G) 4s B) sHoww ;)

se7 Lf0:5)=0,18)2,3(D+,5

READ N

P=Nri2

(R

SUBR 23

C}’C.’.E R“'—ﬁ F P

LYCLE A-f. 520

- — -

8 =5TAND K‘

PUNCH E i

PRINT Al,8/

r
PRINT AEJ 2 :6

t’ 7 ,.}_-h_REPEA?' A - i h
5_;2 REPEAT K

Var=smwa T

| A2=Ccos B i

Iowes o - ; aan

VARY I-—f)" 20

K=l | ai

' _f!-xr +1

REPEA 7 I

& 30 L : 501

oo I/.?G.J

-

)

Appendix 6 Page 2

Aarjs 308

APPENDIX 7 : LINEPRINTER FUNCTIONS AND 5-CHANNEL INPUT

GENERAL

The version MOD/LP of 503 Autocode uses the lineprinter as an
output device, as well as punched tape and the typewriter, and accepts
either 5-channel or B-channel Elliott-code data tapes. There are three
extra functions in this version: LPSET, LPSKIP and LPCOL. They are used
as normal functions, with an integer variable on the left hand side and an
integer variable or constant as the parameter on the right hand side of the

instruction.

The operation of the lineprinter differs from tape output in
that the characters are stored in a buffer and the whole line is output at
one time. The length of the buffer is 121 locations, of which the first
location contains the vertical formet control character. When the lineprinter
has been set as the current output device, all characters to be output using
the instructions PRINT,OUTPUT,TITLE,LINE etc. are stored in the buffer in the
correct order, The contents of the buffer are printed either when it becomes
full or when a "newline" character is to be output. Thus, provided that the
line is not more than 120 characters long, the printed results are consistent
with those produced from punched tape. Tabulating may be used, and

“"top of form" may be given.

Appendix T, Page 1

quih

THE INSTRUCTION I=LPSET J

This performs certain initial overations on the system, It
is used only once in the propram, at the beginning and before print and
read statements. 'I' can be any of the programs integer variables whose
value may be lost at the given point. The parameter J is an integer

variable or constant specifying the vertical format.
The following operations are performed by LPSET:

- prepares for lineprinter output and the option

of 5-channel input,
- sets the lineprinter as the current output device,

- clears the linevrinter buffer and sets tabs for

every sixth location,

- the count which indicates how many characters have
been stored into the buffer is set to zero, i,e.
the first character to be output is to be stored

in the first location of the buffer,

- the value of the variable I is set to the sbsolute
address of the beginning of the buffer, (which may

be used in a machine-code block),

- the first location of the buffer is set to the value
of J,.

Appendix T, Page 2

The content, p, of the first location of the buffer specifies

where the line is to be printed:

0<psg 30 Move p + 1 lines and print
p = 31 or 32 Overprint, i.e. no line feed
33<p £ 62 Look for configuration (p-32) on the

paper tape control loop, and print.
p=63 If there is a control loop, find the

"top of form", i.e. channel 8, and

print, otherwise move one line, and

print.

Hote, that the actual printing doesn't take place before the

"newline" character terminating the line is given.

If the value of p is greater than 63, or is negative, it is
given the value 63, In practice, p will usually have the values 0 or 63,
Usually one gives I = LPSET 63 which causes the first line to be printed at
the top of a new page. When the buffer is printed, the first location is

automatically cleared, so that output can be on consecutive lines,

The following instructions, LPSKIP and LPCOL, cannot be given
before the LPSET instruction.

THE INSTRUCTION I=LPSKIP J

This alters the walue of p. The variables I and J are treated
in the same way as above, but if J is negative the walue of p is unchanged.

Thus the instruction I=LPSKIP 63 moves the paper to the beginning of a new
page.

Appendix 7, Page 3

THE INSTRUCTION I=LPCOL 7

This changes the value of the written buffer-length count.
I and J are integer variables (J may alsc be a constant)., If 1< J § 120,
the count takes the value of J, and characters to be output are stored in
locations J onwards of the buffer. If J=0 or is greater than 120, the
count is given the value 120, if J is nezative the count is unchange:s The

value of I becomes the previous value of the count.

METHOD OF USE

The functions LPSET, LPSKIP and LPCOL must appear in the
setting instructions SETF. When the lineprinter is the current output
device, all printing instructions, including data tape headings to be copied,
cause output to the lineprinter. When a new line character is to be output
the line is printed and character storing begins from the beginning of the

buffer again, unless an LPCOL instruction specifies otherwise.

If the buffer exceeds 120 characters, the line is automatically

continued on the following line.

If LPSET has been obeyed and the output device has been changed
by a PUNCH instruction, the instruction PUNCH L resets the lineprinter as

the current output device.

Appendix T, Page b

2.1.h

One extra LINE should be gmiven at the end of the program to

ensure that the last line is printed,

All lower case letters are printed as upper case letters,

The character () (runout) and () (erase) are ignored.

STORAGE REQUIREMENTS

The functions occupy the following space:

LFSET 251 locations
LPSKIP 12 locations
LPCOL 12 locations
total 275 locations

N.B. The translator AUTO 1 MOD/LP is not able to test whether I

e

and J are intepers.

ERROR INDICATIONS

The instruction LPSET tests whether the right version of tape
2 is being used. If not, RAP displays the message ISSUE ERROR. If it is
attempted to obey LPSKIP or LPCOL before LPSET has been obeyed, the program

comes to a stop.

Refore a line is printed, the lineprinter contrel word is
tested. If it is zero, the line is printed, otherwise one of the following

messages is displayed:

Appendix T, Pape 5

MESSAGE CONTROL WORD

bit 5 L 3 2 1
LPERRU unavailable 0 0 0 0 1
LPERRT throat 0 0 0 1 0
LPERRF functional 1 0 0 0 0
LPERRS summed 0 0 v} i 1
LPERRE error 1 v 0 0 1
LPERRD funectional 1 0 0] 1 0
LPERRC combined 1 0 0 1 1
LPERRV vacant 0 0 0 0 o)

The message in brackets should not occur.

After displaying LPERRT the program continues immediately.
After any other error message the program continues automatically after the
error has been corrected by the operator and the lineprinter has been put

into the auto state again.

The lineprinter functions do not check the "busy" state of the
lineprinter. Thus, if the lineprinter goes into an error state during a
paper skip (top of form etc.), then ERRINT4 may occur. The operator may
then continue by typing

CONT;ERRINT.

5=-CHANNEL DATA INPUT

LPSET prepares for either 5- or B-channel data tapes to be used,
The system automatically tests the state of the MODE button, and if depressed,
every S-channel character read is translated to the corresponding 8-channel

character. (Except when the characters are read by a machine code block.)

For example, the value of the character read by the instruction
INPUT is an 8-channel paper tape code value, regardless of whether the data

tape is S5-channel or 8-channel.

Appendix T, Page 6

2.1.h

However, 5-channel tape may only be read through input channel 1,

i.e. tape reader 1, or reader 2 + SELECT.

The following conversions apply to S-channel characters which

do not exist in the 8-channel code:

-
-

e = 10
1f - L
cr - ignored, a new character is read
f's is interpreted, a new character
1s - is read.
K. KARKKAINEN, February, 1966.

FINNISH STATE
COMPUTER CENTRE

Appendix T, ©Pape T

2.14

503 AUTOCODE OPERATION SHEET

DESCRIPTION

AT i vi v anatnnisnessnanenspnsensssssmesssesens OPBRATOR: o oo v annsnnswoisv s
PROGRAMMER o0 cninvsonwivasvone i siseinesi Lok Moy rasevamsai
RATE SUBMITTED. .o ovivsati sy i e isinsing DATERUN................
EXPECTED TIME................ WEAOE, TIVER, . oo ovncncnonoasnis ACTUAL TIME............
TRANSLATION

l. EntryPointccovviiiinnnnnnnnn. 2. Trace required YES/NO

3. Checks required YES/NO 4. No.of programtapes....................
RUNNING

1. Trace required YES/NO 2. Checks required YES/NO

3. Entry at reference number................ 4. Program contains WAIT YES/NO

5. Program contains DTWAIT YES/NO

6. Number of data tapes(a)reader 1.................... (byreader 2.cvvuevvincnsnsnss
7. Continue after errors

(a) Floating-point overflow YES/NO (b) others YES/NO
Selected Stop YES/NO
AT ACTION

[=]
H

SPECIAL INSTRUCTIONS

OPERATOR’'S COMMENTS

