L]
i
141

i
AL
Lt % o)
I

{ |
H : A
[AnEL L'k
i)
1 i |
| / WL i
_.. ¥]
1T et i
1 L
e TR R
n ol 1
) Behe i
it Pl
h Nl
LI
QRN YTk
y Y N
[A
LYs T M
| S P [
] 1 g
il K A Y
R kel o |
' ohal i 1i
i a1
|] []
\ } K o |
1 A
| 1 B
i WA
4 12y "
I i 1 !
1 L
i _..
i
{1 R
| \
T
TR,
'] (A {
_..... |
kg
e
[h] A
. oL,
L
! 1 s i Th
X Ui
_....... 1 ¥l
Ly it
__.._.._
] _ BT
§
il 1 |
) 1]
gl __.
L i
'
A |
WEL,
| i
N .. L 4 {
i I L
4] ki di
i ¥ | |
I - 3
|
! 1 i ¥
i 1 i L i
1) 1 |
] | L1t L 1 il
¥ i] ! 1)] 1]]]
5] %= 1)
i bt | !
] I i -
et |t b ey S R e R 8 gt 5 i e, g
- B R L e o a3 A e M it
. i 1 N LT g oA T e
1 ' i
e I o bk
1 ! | {] i |]
1 RS A Y i ;
! L _. " h JiL Bl N L
1,44 | | J il
bl N] iR i it
| H A T) ..]+ . 1o
i el S e i
i T __] ... ' | “ i]
i Y
__ f uf i/ ! !]
i I i ik] T i
1 1 { I ! 1 Bl
1 3 Sl e B 11
1 gt i Ay
| N]] O O
J A i i . | A g (!
Bt i i 3 | {
[l) 1
] 1 ' 1

|
‘ b
] i
LA
B
|
1 I
| 4
B .
! (PR .
{ e
' el
W
15
il
LA
[i
i | .
I

i I
(4 1
Sl R ALY

vt
I |

oyt i
|
ik ¥
ki
L

. ki i

[

| %
e L 1
1 L}

i |

: (T 1)
o 1 Iy
nb !
L AR
e |
L I
il
Gl TR
Y
LR
i A R |
LAY | §
hiohl
1 1
Iia
L
14 1
| |
I
o i
T P N
1
Wl |

§
L
1
1
%
L]
i
i
vl
|
|
I
1
]
I
|
(LRE
1L
i
B
i
"
L]
[

INTRODUCTION

This volume is intended to provide the programmer
with all the information necessary to write programs for
the 503. For a full account of the electronics, registers
and similar facilities, the interested reader is referred
to Volume 4 of the Manual, Certain operating instructions
are included in this Volume, but Volume 3 of the Manual
is intended for the operator of the computer.

The programmer or systems analyst using the 303
has available to him, in addition to the hardware of the
machine itself, a considerable range of carefully planned
programming systems, including intemationally accepted
problem—oriented programming languages, and at a more
machine—oriented level, such items as macro—instructions

for using peripheral equipment with maximum efficiency,

Such programming systems are made possible
largely by the greatly increased basic speed of the machine
relative to earlier electronic computers, They represent
great advances in the ease of programming and the range
of problems susceptible to data processing.

It is for the user to decide of which, if any, of
these systems he wishes to use. “The basic instructions
of the machine are also described in full detail.

503 TECHNICAL MANUAL

VOLUME 2: PROGRAMMING INFORMATION

CONTENTS LIST

PART 1: PROGRAMMING SYSTEMS

Section

1:

Section 2:

Section

3

Section L:

PART 2: 503 LIBRARY

Section 1l:

Section 2:

Section

Section

PART 3:

Section

PART bL: PROGRAMMING

Section

3:
L

1:

l:

Section 2:

Section

PART 5: PROGRAMMING

Section

Section

3:

l:

Section 3

Section L

Section

Basic Machine Programming
Symbolic Assembly Mark 1
503 Algel Mark 1

503 Autocode

PROGRAMS

Reserved Ares Program

General Information on the Library

Program Specifications (excluding test programs)

Daily Test Program Specifications

THE INTEGRATED SOFTWARE SYSEM FOR THE NON-BASIC 503

Introduction

LANGUAGES FOR THE NON-BASIC 503
Symbolic Assembly Mark 2

503 ALCGOL Mark 2

FORTRAN IV

AND OPERATING AIDS FOR THE NON-BASIC 503
Operational Techniques

The Storage Planning and Allocation System
Peripheral Control Program

The Controlling Programs

Segmented Tape Administrative Routines

(Issue L)

503 TECHNICAL MANUAL
VOLUME 2: PROGRAMMING INFORMATION

CONTENTS LIST

PART 1: PROGRAMMING SYSTEMS

Section 1: Basic Machine Programming
Section 2: Symbolic Assembly
Section 3: 503 Algol

Section 4: 503 Autocode

PART 2: 503 LIBRARY PROGRAMS

Section 1: Reserved Area Program
Section 2: General Information on the Library
Section 3: Program Specifications (excluding test programs)

Section 4: Daily Test Program Specifications

{ Issue 2)

503 COMPUTER
RESERVED AREA PROGRAM

April 1964

Issuc 2

(ELLioTT]
SCIENTIFIC COMPUTING DIVISION

Elliott Brothers (London} Limited
Elstree Way, Borehamwood. Hertfordshire, England

CONTENTS LIST

-
-9

1. FUNCTION OF THE PROGRAM

2. CONTROL MESSAGES
2.1a IN.
2.1b IN; N.
2.2a CONT. ..
2.2b CONT; ER_RJ[NT
2.3 RESET.
24 LIST. .
2.5 CANCEL.
2.6 CANCEL; NAME.
2,7 FREE STORE. ..
2.8a NAME. ..
2.8b N.and N; S.

LT IR R R I o ST N T S R R S

Lk

3. TYPING INSTRUCTIONS

4. DISPLAYED MESSAGES
4.1 Large Asterisk ..
42 NOPROG
43 UNCHEK
44 NAME ..

4.5 ERRSUM

46 =

47 7.. P

4.8 NOROOM

4.9 Small Asterisk .
4.10 END

4.11 ERRINT

T N N N N N T W S N

5. CONTROL OF INTERRUPTS..
5.1 Use of Interrupt Mask

o LA

b |

6. EXAMPLE ..
7. SUBROUTINES AVAILABLE TO THE PROGRAMMER - .. 8
8. METHOD OF STORAGE ALLOCATION .. i - - e 9

9. RELOCATABLE BINARY 55 - ath i o's . - 9
9.1 Fixed Programs.. e . . P i o .. 11
9.2 Optional Placing of ngrarns i i Vi o oo 12

GLOSSARY e ‘s . oo 13

(i)
(Issue 3)

2.2.1.

22.1.

1. INTRODUCTION—FUNCTION OF THE PROGRAM

The Reserved Area Program (RAP) provides the principle method of Manual Control for the
503 Computer. It is read into locations 7936-8165 of the computer store by the fixed instructions
contained in locations 0-3 and uses locations 7886-7935 for workspace. The locations 7936-8191 form
the Reserved Area of the store and the protection of this area is controlled through the use of the
NO PROTN button on the control console (see 1.2.2).

RAP interprets and executes control messages typed in by means of a directly coupled electric
typewriter. The DEMAND light on the control console indicates when a message is expected. It is lit
either when the operator depresses the MESSAGE button or due to a demand by a main program.

The position of programs in the store is dictated by pointers held by RAP which indicate the first
free (FF) and last free (LF) locations of the available store. RAP contains an Input routine which reads
a relocatable program tape and places the program in the first available space at either end of the
available store. Provision is made for several programs to be in the computer store at the same time,
and communication is facilitated by means of a system to which each program is automatically linked
on being stored.

Each program must be given a name, which is used for all communication with the program.
A program head of five locations is assigned to each program which provides RAP with essential
information about each program, including a means of determining the position of each of the
programs in the store. The need for the user to know the stored position of a program is thus obviated.

A facility is also provided, through the use of pointers stored in the program head, which enables
a sum check to be made on that section of a program expected to remain unaltered. RAP, on attempting
entry to a program, first performs this sum check where possible and then enters the program unless
the sum check fails. When the running of a program is completed, control of the computer returns to
RAP.

RAP is the most fundamental program on the 503, as the programming systems ALGOL, SAP
and AUTOCODE all function under its control.

1
(Issue 2)

22.1.

2. C

ONTROL MESSAGES
The following messages can be typed on the control typewriter:

2.1a

IN,
This instruction typed on the typewriter when the DEMAND lamp is lit causes a specially
prepared relocatable binary tape (see below) to be input from whichever tape reader is selected
as reader 1.

Unless a message parameter gives indication to the contrary, the program being input is
automatically placed in the first available space. Whether it is placed at the upper or lower end
of the free store or in a fixed position is a decision which is taken when the binary tape is produced
(see Section 8 for further details). When a program has been successfully input by RAP, the
program name is output on the same line as the input message.

On entry to the input routine, the eight bits of the Interrupt Mask Register are cleared and
the Interrupt Permit Register is set to one (see 1.2.3), so that Manual Interrupts are allowed but
Mormal Interrupts (from any other program) are inhibited.

Note that each control message must be followed by a full stop.

2.1b

IN: N. (where N is a number)

This instruction reads a special binary tape whose position in the store is optional. The
integer N specifies where the program is to be placed.

2.2a

CONT.

This instruction continues a program from the point at which it was left to obey a Manual
Interrupt.

2.2b

CONT; ERRINT.

Continues a program after an Error Interrupt.

The last program to be interrupted will be continued from the point of interruption, even if
a tape was being input when the Interrupt occurred.

23

RESET.

This instruction has the effect of clearing the main store with the exception of the RAP
workspace. It also sets the FF (first-free) and LF (last-free) pointers of the store, which indicate
where the available store begins and ends (see under 7 below), to their minimum and maximum.
The RAP pointer (see below) is set to point to RAP itself.

24

LIST.

This prints out on the output writer a list of all programs in the store in chronological order
beginning with the last to be stored. After an extra line feed, the size of the available store is
printed as a four-digit integer with no suppression of leading zeros. If a program is found to be
stored incorrectly as a result of sum check failure, then the program name is followed by an
asterisk (see 3.1.4.1 for possible action to be taken).

25

CANCEL.

This effectively removes the last program placed in the store by backdating the RAP pointer
and the FF and/or LF pointers.

Z
(Issue 3)

2.2.1.

2.6

CANCEL; NAME.

In this message NAME specifies and is replaced by the name of the program to be removed,
e.g. CANCEL; SAP. Not only this program is removed, but all the programs input after it (i.e.
named before it in the List). Before the beginning of the backdating process, a check is made to
ensure that the named program is present (to guard against possible spelling mistakes). NOPROG
is displayed if the program is absent,

2.7

FREE STORE.

This prints the size of the available store on the output writer as a four-digit integer with no
suppression of leading zeros.

2.8a

NAME.

This transfers control to the program called NAME. The computer only notes the first six
non-space characters of each message which may be terminated by a semi-colon or a full stop.

2.8b

N. and N; S, (where N is a number)

N. causes control to be transferred to the first instruction in location N and N, 5. causes
control to be transferred to the second instruction in location N. These messages are only used in
special cases, usually in conjunction with an IN; N. message.

3. TYPING INSTRUCTIONS

(a) When a message is being typed, any of the upper case characters may be used with the
exception of =, but only the letters may be used from the lower case. These restrictions
enable messages to be typed more easily.

(b) The symbols + and — are only used to precede integers (- is optional).

(c) The first character of an identifier must be a letter (upper or lower case). The rest of the
identifier may be numerals and/or upper or lower case letters.
(N.B. “ALGOL’ is treated as distinct from ‘Algol’).

(d) The semi-colon is used as an end of word symbol.
(¢) The full stop denotes the end of the message (and also the end of the last word of the message).

(f) The vertical bar is a special non-acceptable character. This may be typed to cancel a partially
typed message, which must then be restarted from the beginning. This is the recognised way
of cancelling a partially typed message. Once the terminating full stop or semi-colon has been
typed the message is acted upon and cannot be cancelled.

(g) All other characters, apart from “space’ which is ignored, are treated as non-acceptable, and
typing them is treated as a message error. RAP outputs a vertical bar with the capital letter X
superimposed to form a large asterisk. If a message to the computer is intended, it must be
restarted from the beginning, but this is not a recommended way of cancelling a message.

(h) In addition, the input writer may be used as a straightforward typewriter in order that com-
ments may be made by the operator. The comment may be composed of any of the admissible
alphanumeric characters and the ‘space’ character and should be terminated with a vertical
bar, i.e. comments are printed out by the typewriter but not accepted by the computer since
they are treated as partially typed messages cancelled by the non-acceptable character,
vertical bar.

All input messages appear in red on the paper in the typewriter.

3
{Issue 3)

22.1.

4. DISPLAYED MESSAGES

All messages from the computer are displayed on the output writer in black.

The standard messages are:

(1)

@)

(3)

(4)

)

(6)

()

(8)

9)

(10)

Large Asterisk # Explained under 3(g) above. This signifies that a non-acceptable character

NOPROG

UNCHEK

NAME

ERRSUM

NOROOM

has been input and that the message has accordingly been cancelled.

This is output after a search routine has been initiated by an input instruc-
tion transferring control to a program, or by a CANCEL; NAME.
instruction, or otherwise. It signifies that the named program is not
available.

This indicates that the program is not sumcheckable. This is not strictly
an error but serves as an indication that a program will not be protected
on entry. It is output on the same line as the program name only on input,
i.e. after an IN. instruction has been read.

The program name is normally displayed after input of a binary tape has
taken place correctly.

This is displayed to indicate that a program to which it is desired to transfer
control is stored with an incorrect sumcheck, i.e. has been corrupted.
Corrective action should be taken by the operator. If it occurs during input
of a program tape, the tape should be read in again. If it is displayed on
attempting entry to a program a CANCEL; NAME. instruction should
be typed. The program may then be read in again. If this is not convenient, a
duplicate copy of the program may be read in. (See 9(i)).

This symbol is output to indicate that entry into a program named by an
identifier has taken place.

This symbol is a response to a MANUAL INTERRUPT by depression of
the MESSAGE button, and indicates that the Manual Interrupt is accepted
and RAP awaits a message. The symbol is always output on a new line.

This indicates that there is not enough space in the available store for the
program being input.

The operator should take corrective action, e.g. cancel a program or
programs until the available store is large enough.

Small Asterisk * This is the asterisk as provided by the typewriter, not the symbol capital X

END

combined with a vertical bar (see 1) above.

It appears after the program name as a response to LIST where a
program is in store but found to be corrupt. Various types of corrective
action can be taken by the operator.

(i) If store space is of no account, read the program in again to the
next available space. The corrupt program is never picked up by
RAP since the last program placed is always the first examined.

(i1) 1If the programs input after the corrupt program (i.e. above it in
the list) are no longer required, type CANCEL; NAME.. The
program may be read in again subsequently.

This indicates that STOP has been reached in the program and control
transferred to RAP to await a message.

4
(Issuee 3)

2.2.1.

(11) ERRINT This signifies an Error Interrupt and is followed by a single integer (normally
1, 3, 4 or 5) or possibly a combination of such integers. If followed by

I This indicates floating point overflow. The instruction causing
overflow is completed before error interrupt takes place.

3 Parity error in the main store. The instruction or autonomous
transfer during which the error occurs is completed before error
interrupt takes place.

4 Attempted use of an unavailable peripheral device.

5 Attempted impermissible reference to the Reserved Area. The
instruction containing the impermissible reference is not obeyed.

These integers are obtained by reading the appropriate location on
interrupt (L + 3, see 1.2.5).

After RAP has output ERRINT n it searches for a program ERRINT and if no such program
exists, outputs NOPROG. If there is a program ERRINT (usually a short program to facilitate further
diagnosis of the error), control is transferred to it.

Note that ERRINT 2 occurs on a control shut-down due to a power failure. The appropriate bit in
location L + 3 is set to 1 but there is not sufficient time to print out a message to this effect.

5. CONTROL OF INTERRUPTS

Each interrupt channel has a location associated with it in the Reserved Area. However, in order
that the destination of interrupts from Channels 2, 3 and 4 (Tape Readers, Punches and digital plotter,
and Peripherals) may be controlled by a main store program when the Reserved Area is protected, a
SWITCH TABLE is provided outside the Reserved Area. The switch table occupies fifteen locations,
five for each of the three interrupts mentioned above. Four locations are reserved for the storage of
the registers on interrupt and one contains the transfer instruction for the interrupt routine, which
may be set by the main program. The location of the transfer instruction for each of the interrupt
channels is as follows:

Tape readers INT TR
Punches and plotter INT PUN
Peripherals INT PER

(The absolute locations are given in the Appendix)
Thus the contents of the five locations in the switch table for tape reader interrupt are:
INT TR) transfer instruction
C (modifier)
C (Accumulator)
C (Aux Register)
C (SCR and OFR)
and similarly for punches and plotter, and peripherals.
The interrupt locations in the Reserved Area hold the following pointers to the switch table:
8172) 00 INT TR : 00 INT TR + 1
BI71) 00 INT PUN : 00 INT PUN + 1
8170) 00 INT PER : 00 INT PER -+ 1

5
(Issuwe 3)

2.2.1.

When a tape reader interrupt occurs, the contents of the registers are stored in INT TR + 1 to
INT TR + 4 and control is then transferred to INT TR, which holds the transfer instruction to the
interrupt routine. At the end of the routine the 66 instruction restores the registers and returns control
to the main program.

When RAP is first read into the store there are standard transfer instructions in INT TR, INT PUN
and INT PER which ensure that although the registers are stored, the interrupt does not have any
effect since control is immediately transferred back to the main program. If interrupts are required,
the contents of the appropriate location must be set by program.

e.g. To ensure that a tape reader interrupt causes entry to a main program block called TAPE,
the following instructions are required:

30 < 40 TAPE : =
20 INT TR

The standard settings of the switch table transfer locations are only preserved if the user resets the

appropriate location. The instructions to restore the standard setting in the tape reader interrupt
location are:

30 < 00 B172/66 0 =
20 INT TR

5.1 Use of Interrupt Mask

A location in the RAP workspace known as IMASK is used to preserve a record of how the
Interrupt Mask Register was set (see 1.2.3 and 1.2.4 of the Manual).

Whenever RAP is read into the store or whenever a program is entered, the contents of
IMASK and of the Mask Register are set to a standard value which in the case of RAP (Issue 2)
is zero; (if a different standard setting for IMASK is required, the 503 Librarian can give further
information).

Whenever a RAP subroutine is called by a main store program a copy of the Interrupt Mask
Register should be in IMASK. As it is essential that interrupts be prevented during such a sub-
routine, the overall inhibition is set by RAP on entry. Exit from the RAP subroutine resets the
Mask Register in accordance with the contents of IMASK and also sets the Permit bit to 1.

If the programmer wishes to change the setting of the Mask Register for an interrupt under
his control, then he must ensure that the setting of the other bits in the Mask Register is preserved
and that IMASK contains a copy of this setting. The procedure to be adopted is best illustrated
by examples:

A. To allow Interrupt on the tape reader (Channel 2):

IMASK setting Mask reg. setting
720 e DODXXXX XXXX 0000 0000
30 = +191 =
23 IMASK . -2 D0OXOXX XXXX 0000 0000
30 =< +64 =
24 IMASK/ L. DDOXIXX XXXX 0000 QD00
72 256 XIXX XXXX

where X = the original bit state

(]
(Issue 3)

2.2.1.

B. To prevent interrupts on Peripheral devices (Channel 4):

IMASK setting Mask reg. setting
720 e DDXXXX XXXX 0000 0000
30 <+ 239>
23 IMASK/ « o DOXXX0 XXXX 0000 0000
720 KXXO XXXX

MN.B. Reference to IMASK must be made by using the absolute value 7886 until SAP Issue 3

makes provision for mnemonic reference.

When a routine has been entered via an interrupt, the programmer normally wishes for any
further interrupts to be inhibited until the routine has finished (i.e. a return to the main program
before any other interrupts are permitted). Since entry to the routine automatically clears the
Permit bit, no further action is necessary to set inhibition. To ensure that the main program is
re-entered before any other interrupts occur, the inhibition should be released by using the 66
order and not the 72 256 order, e.g.

67 IMASK
72 0
66 return

If the 66 order were not used, inhibition would be released before the registers were restored; thus
another interrupt could occur before the return to the main program and overwrite the information
stored in the switch table, so destroying the return link.

If, however, another selected interrupt is required during the interrupt routine, the inhibition
should be released thus:

67 IMASK
72 256

6. EXAMPLE

This is a conceivable output on the typewriter. Underlining indicates what appears on the record
in red.

?
CH

Hagerty 8 10 am 22 1 64 %

LIST.
CHECK
SAP*
PRINT

5649

CANCEL; SAP.

Comment Check and SAP have been removed =

IN. ALGOL UNCHEK

IN. DRS
Comment The program OBJECT for translation by ALGOL is now under the reader UNCHEK

means that no sum check is possible =

7
(fssue 3)

22.1.

ALGOL. = OBJECT FREE STORE 4495-6600
END

LIST.

OBJECT

DRS

ALGOL

PRINT

2105
OBJECT. =

?

Comment Message button pressed to place the correct data tape under the reader

CONT.

END OF THE PROGRAM

7. SUBROUTINES AVAILABLE TO THE PROGRAMMER

The following RAP subroutines may be used by a program in the main store. Each has a special

external entry for this purpose in order that they may be protected in case of Manual Interrupt.

They are:

(1) Read word from typewriter
The entry instruction is RAPread.

When exit has been made from this subroutine the word which has just been read is held in
location RAPword. If the overflow register is set on exit, an alphanumeric word has been read.
The character on which exit is made is held in location RAPsep and the accumulator, If the
overflow register is not set, then an integer has been read. The terminator is held in the accumulator

only. When an unacceptable character is typed, a solid triangle A is displayed on the output
writer. The complete word must then be repeated.

(2) Print alphanumeric word on output writer

The entry instructions are RAP1print and RAPprint.

The former is for printing the word on a new line and the latter for printing it on the same
line (see the section on relocatable binary for the form of the word). For both, the word is held
packed in the accumulator. The packed form is given in Section 8.

(3) Search for named program

The entry instruction is RAPsearch.

This subroutine is entered with the name of the required program held in the accumulator
as shown in the diagram on Page 9. On exit from the subroutine the address of the first location

of the program head is in the accumulator unless the program is not available, in which case the
content of the accumulator is zero.

8
(Issue 3)

2.2.1.

8. METHOD OF STORAGE ALLOCATION

RAPOINTER I-—-— May be
l | protected
i

% %
% A | FREE STORE [Hg | B |FAPl RAPp 7

,ﬂ 4 HA
) w/s| 7
! i ! } ' 8166-8191

|
FF, . FF LF LFs | 7036
|

In the above diagram, assume that A and B are the first and second programs to be placed by
RAP and that HA and HB are the locations which contain their respective *Heads’. The five *Head’
locations contain the following details:

0, Internal checksum of program.

—

, Main entry to program. Pointer to previous program.

2, Name of program.

3, Checkable address points (zero if no check possible).

4, Previous first-free (FF) and last free (LF) location points.

Shortage of space made it necessary that the RAP workspace should be placed immediately outside
the Reserved Area where it is ‘semi-protected’ by the RAP system, i.e. the maximum LF pointer
points to one location before the RAP workspace, so it will not be overwritten by a program being
read into the store. There is, however, no protection against the program itself causing a location of the
RAP workspace to be overwritten.

RAP has available the first free location, last free location and a pointer to the last program placed.
To find a named program, the search routine picks up the RAP pointer and steps through the programs
in the store until either the required program is found or R AP is reached again, in which case NOPROG
is displayed on the output writer and RAP then awaits the next typewriter message.

9. RELOCATABLE BINARY

This is a special form of binary tape which is designed to be read in under the Standard Input
routine. Programs prepared in this form may be placed in the free store either from the first free
location upwards (i.e. FF+) or up to the last free location (i.e. LF—). A translator exists which will
convert programs from their TI form to this binary form. Sum-checked binary versions of existing
803 Library programs may also be converted with the Translator. These, however, are fixed programs
and are dealt with more fully later in this Section.

The decision as to whether a program is placed FF+4- or LF— is taken when the program is
coded since this is determined by the presence of *action-words’ (i.e. instruction-pairs which are
immediately obeyed) which precede and succeed the program proper.

The Standard Input routine simply reads a word, modifies it as necessary, and detects whether it is
to be placed in the store or obeyed immediately. The action-words are used to perform the house-

9
(Issie 3)

2.2.1.

keeping functions appropriate to the particular type of program being input. These functions are
described in detail later in this Section.

The first non-blank character of all tapes of this binary form has the value +80. This character
cannot be produced on a flexowriter and is therefore used to enable the Standard Input routine to
reject tapes of the wrong form.

The program being read in contains the following information:

(I) Total space required by the program (including workspace). This is stored temporarily in the
first location of the program head.

(2) The program name or identifier. This must begin with a letter and is packed as 6-bit characters
in the following form:

2° 2—3!

000 [N |A|M|E |000000 | 000000

SPARE

1.e. The first 3 bits are always left spare and the name is then stored so that any spare bits are at the
least significant end of the locations.

Although the name must begin with a letter, the remaining characters may be taken from these
detailed below.

Character Tape Value Packed Value
A—Z 33— 58 1—26
a—z 97 — 122 27 — 52
0—9 16 — 25 53 —62
N.B. Only the first six characters of any name or identifier are preserved, the remainder being ignored

on input.
(3) Main entry to the program in instruction form.

(4) The checkable area pointers (where possible) in order that an internal sum check may be
made on repeated entry to the program finally placed. These take the form:
00 (size of checkable area) less one: 00 (1st address of this area).

(5) The negative check sum of the tape words.

Binary Representation

Six 8-bit tape characters are used to specify each word. Of these 48 bits only 42 are actually mixed
into the accumulator, the parity bit from each of the six characters having been removed. Since the
machine word length is 39 bits, we have three spare bits on the ‘tape word’ which are used to determine
how each word is modified by the basic address (i.e. first location of program) and whether it should be
stored or obeyed.

These three bits are known as the ‘control’ and are situated at the most significant end of each
word. The first two bits indicate which of the four possible modifications is required and the third
bit whether the word is to be obeyed or stored (0 for obey, 1 for store).

10
(Issue 3)

2.2.1.

Action Word Controls

Value

0(000) R:R Add basic address to both halves and obey.
2 (01 0) R:a Add basic address to 1st half and obey.

4 (100)a:R Add basic address to 2nd half and obey.
6(110)a:a Obey word as read.

1 (00 1) R:R Add basic address to both halves and store.
3(01 1) R:a Add basic address to 1st half and store.
5(10 1)a:R Add basic address to 2nd half and store.
7(11 1) a:a Place word as read.

Functions Performed by Action Words
‘Pre’ action words. These come before the program proper.
(1) Clear location which holds the tape check sum.

(2) Test whether one free location exists. If not, output NOROOM. If so, set storage count of
Standard Input routine to value of first free pointer. (The space (N) required by the program
now printed with control 7 is thus automatically placed in the first free location.)

(3) Form the basic address modifier a : R. Use N to test whether free store large enough. Output
NOROOM if not. Otherwise, reset storage count so that N is overwritten. N is also held in
the program head (for later use by the ‘post’ action words).

(4) Form the basic address modifiers R :aand R : R,
*Post® Action Words

(1) Perform tape-sum-check. If incorrect, output ERRSUM and await next message; clear
Binary flag.

(2) Form internal check-sum (if possible) and exchange with N which is held in first location of
program head. Use N to adjust the first free or last free pointer.

(3) Adjust the RAP pointer and set the previous RAP pointer in the second location of the
program head.

(4) Store details of the previous FF and LF pointers in the fifth location of the head.

(5) Output of the program name on the same line as the input message.

(6) 1If no sum check is possible, output UNCHEK on the same line as the input message.
(7Y Go to await next message.

9.1. Fixed Programs

The use of fixed programs on the 503 is not recommended since they have no head and, therefore,
no protection apart from a tape sum-check on input.

However, this facility has been provided for people accustomed to programming the 803 and who
prefer to use TI code. When running these programs the 803 system of program management must
be used.

(1) Programs written in TI code may be run on the 503 without being translated. After reading
in the T2 Standard, the program is read in by typing 5. The program is entered by typing N.
where N is the first instruction to be obeyed.

11
(Issue 3)

2.2.1.

(2) The above method cannot be used to run programs coded into sum-checked binary by T22/23
since T23 cannot be read into the end of the store. There are two alternative methods of run-
ning this type of program:

(a) Use the 803 Operator (CON 018, 2.2.3.1).

(b) Use the Translator T 35 to convert the sum-checked binary into a form which can be
read in by the RAP standard input routine but which is placed in a fixed position. The
program is input by typing IN. and entered by typing N. where N is the first instruction
to be obeyed. The Translator inserts the necessary action words in the translated program.

(3) The Translator may also be used to convert programs in TI code to a form for input by RAP.
The program is input by typing IN. and entered by typing N. where N is the first instruction,
to be obeyed. This is an alternative method to (1).

In the case of all fixed programs, the FF, LF and RAP pointers are set as if the store is free, since
fixed programs do not have a name and are therefore incompatible with the RAP system of pointers,
In general it is not possible to have fixed and relocatable programs in the store together; if the fixed
program is input first, it may be overwritten by the relocatable program; if the relocatable is input
first, its name will be lost when the RAP pointers are reset on input of the fixed program.

9.2. Optional Placing of Programs

The Translator may also be used to prepare programs (from their TI form) which are relocatable
but whose position in the store is determined by the first parameter of the input message., i.e. they are
modified not according to the position of the pointers, but according to the location specified in the
input message. These programs have no head and the RAP pointers will again be reset as for a clear
main store.

To place a program of this type from location N onwards the user must type ‘IN;N." and enter
by means of the instruction *N°.

12
(Issue 3)

2.2.1.

GLOSSARY OF MNEMONIC NAMES AND THEIR ABSOLUTE EQUIVALENTS

Data Location
FF 7925
LF ‘e - .. 7926
PP (RAPpointer) .- 7920
RAPword . .. 7914
RAPsep - s 7913
IMASK - - 7886
INT TR e .. 7887
INT PUN e . 7892
INT PER . . 7897
C. F, Deal April, 1964
13

(Issue 3)

2.2.1.

Appendix 1

RAP MI' : Magnetic Tape version of the Reserved Area Propram

For installations with magnetic tape units this special
version of the Reserved Area Program has been produced. [ts aim is to
improve the operating efficiency of the installation by facilitating fast
retrieval of batches of programs stored on magnetie tape. This it will
do in conjunction with both the STAR system (2.5.5) and the BATCH system

(2.2.3.25 and L6) on which STAR is dependent.

RAP MT, when stored in place of the existing RAP, enables
the user to bring to store a program batch dumped on magnetic tape by
DUMP Mark 2. If X is the name assigned to the batch, the operator will
type

IN: X .
in order to bring the batch to store from handler 1. No "leader" in the

form of paper tape is now required.

Certain extra facilities which provide automatic transfer

between STAR phases have also been included in RAP MT.

Appendix 1, Page 1

2.2-1 -

All the extra facilities are provided at the expense of

some of the more seldom used RAP functions, These are listed below:

Messages not recognised

IN;N. (where N is an integer)

N. and N3;S. (where N is an integer)
CANCEL.

CANCEL ; "NAME"

FREE 8T.

Please refer to the description of DUMP Mark 2 (2.2,.3.46)
for a full explanation of the facilities provided and details of the
error messages which may be displayed while the batch is being input from

magnetic tape.

N.B. All previous non-standard versions of RAP such as "STRAP"
(STAR RAP) are superseded by RAP MT. To indicate that
RAP MT is in store the figure X is output after the free

store message produced when typing LIST.

Appendix 1, Page 2

2.2.2.

2.1 INTRODUCTION

The complete Library of programs for the 503 can be divided into three different
groups: the systems programs (e.g. Algol, SAP) which are to be found in Part | of
Volume 2; the applications programs (i.e. those which are job—oriented) which are
available in separate pamphlets to members of the Applications Group. The remaining
Library programs (machine—oriented) are described in Section 3; each program or set of
related programs forms a chapter of the Section. There is a list of contents in
alphabetical order. The information given in this Section refers only to this group.

Programs of any type which can be run on the 503 only via the 803 Operator
using 5-hole equipment are still regarded as part of the 803 Library; however, tapes of
the 803 Library programs are available on request to users of the 503. (See Appendix 1
for conversion of 803 programs to work with 503 systems programs).

2.2 CODING SYSTEM

Each program is assigned a code name (e.g. CON 01S) consisting of up to
seven letters and digits of which the first must be a letter. The first six are intended
to convey the function of the program; for example, CON 01 is a converter program
(the 803 Operator); the seventh is a letter specifying the type of programming system
code in which it was originally written. So far three codes have been specified:—

Coding System Code
503 Algol A
503 Autocode C

Symbolic Assembly Code

Machine Code

If the program is such that during the course of a run it is necessary to call it by name
this is done via its code name, but otherwise the code is purely for mnemonic purposes.

2.3 CIRCULATION OF PROGRAMS

Descriptions of all programs are issued, as soon as they become available,
to every Manual holder. In general, program sheets are not supplied. The supply of

1
(lssue 2)

2.2 2

tapes is normally restricted to those customers whose equipment the program specifically
concerns, i.e. tapes of a program using the line—printer are only sent to customers who
have.a line—printer. The tapes provided are intended to be used only as master copies,
from which copies for local use should be taken.

2. 4 CHANGES AND UPDATING
The list of contents is frequently updated and distributed together with any

modifications to existing programs.

2.5 STANDARD HEADINGS

Description of programs is normally given using the following standard headings
where applicable.

(a) Code
(b) Function
(c) Store Used

(d) Method of Use

(1) Entry points

(2) Parameters

(3) Error Indications
(4) Data Tapes

(e) Format of Results

(f) Punching Instructions

(g) Configuration (in addition to the basic 503) e.g. 2 Magnetic Tape Desks.

(h) Accuracy and Time

(i) Tapes: form and whether provided or not.

(j) Process Used including references.

(k) Date of lssue and author

2
(Issue 2)

2 2.2

2. 6 ERRORS IN ISSUED PROGRAMS

Every program is carefully tested before being issued; nevertheless there is
always a possibility of errors being discovered in issued programs. The 503 Librarian
would welcome information on any errors discovered together with copies of the program
and data tapes causing such error. Elliott Brothers cannot accept any responsibility
for erroneous results produced through use of issued programs.

3

flssue 2)

&2

APPENDIX 1

CONVERSION OF 803 PROGRAMS TO WORK WITH
503 SYSTEMS PROGRAMS

Most programs which can be run on the 803 can also be run directly on the 503
with the use of the 803 Operator.

Alternatively, they can be converted to use the 503 system. This appendix is
mainly concerned with information on the second of these operations.

ALGOL

ALGOL programs can be converted from 803 A104 programs on the 803 by use
of the program ‘ALGOL 5 to 8' (see 2.2.3.5.).

The restrictions on the full ALGOL 60 language are the same as for A104.
It may, however, be necessary to change elliott orders for the following reasons:

(a) Absolute—address orders may corrupt other programs, which are allowed
in store on the 503 as well as the ALGOL system.

(b) Peripheral control orders may differ.

(c) ‘'read' orders should take into account the normal mixing of 7 bits rather
than 5 bits into the accumulator.

(d) ‘punch’ orders will normally send 7 bits to the output channel, not 5.

For these reasons it is recommended that ALGOL 803 A104 programs with
elliott instructions should be inspected in the light of these remarks by a person well
acquainted with the normal basic instructions of the 803 and the 503.

If five—hole equipment is available, the 803 Operator may be used for such
programs as an interim measure.

Programs not containing elliott instructions are best used in converted form
rather than via the 803 Operator.

When the current issue of 803 A104 is used with the 803 Operator it is possible
to ‘dump’ and ‘precompile’; this was not so with earlier issues.

i
flssue 1)

2.2. 2.

AUTOCODE

Using the 803 Autocode

If five—hole equipment is available, the 5-hole programs may be translated
and run using the 803 Autocode tapes (803 A3/A103) and the 803 Operator (see 2.2.3.1.).

The following notes will facilitate operation :

(i)
(ii)

(iii)

(iv)

(v)

(vi)

The Reserved Area must not be protected.

The Operator must be input last, because coded tapes (sum—checked
and relocatable binary) overwrite locations 8161-8192 inclusive.

The entry points are the same as for the 803, i.e. 5, 6, or 7 to translate
and 16 to run the translated program.

If a translated program uses punch 3, i.e. the output writer on the 503,
the output will appear unintelligible.

Care must be taken that the settings on the word generator are correct.
A non—zero setting left on the N2 buttons by mistake could cause the
program to be entered at the reference number specified by the N2 buttons.

The machine comes to a dynamic stop when each stage of the operation
is complete.

2. Using the 503 Autocode

This is the preferred method. Alterations can be carried out using EDITALL,
a program in the 503 library. The program for conversion from 5 to 8 hole is
ACconv S (see 2.2.3.6.).

The following.notes should be helpful :

Operating

i)

(ii)

503 Autocode systems tapes are input under the control of RAP and
thus the Reserved Area should be protected.

The Autocode translator is entered by typing messages on the typewriter,
e.g. 7. (seealso 2.1.4), to translate a program into store. The entry
messages are 5., 6., 7. to translate, 16. to run.

ii
flssue 1)

2.2 2.

(iii) Check that there are no undesirable settings on the word generator left
from the previous program.

(iv) Control is transferred to RAP when each stage of the operation is
complete.

Points to be noted

(v) When using the 503 Autocode all input and output is in 8-hole mode.
(vi) All error indications appear on the typewriter.

(vii) The standard settings for printing results are A, 8/ and 1, 4as
opposed to the settings A, 9/ and I, 12 in the 803 Autocode.

Restrictions

(viii) References to subroutines in Autocode tape 2, which may occur in a
machine code block will not be automatically corrected by the conversion
program. The user must alter these absolute addresses himself.

(ix) The mnemonic instruction VERIFY is always ignored by the 503 Autocode
translator.

(x) ‘Output n' instructions must be amended by the user.

CONVERSION OF 803 MACHINE-CODE ROUTINES FOR USE WITH 503 SAP

This process should be circumvented in a great number of cases. Owing to
the far greater speed of the 503, equivalent ALGOL programs may often be produced
easily and run without significant economic loss. Rewriting, or full conversion, in
SAP may often easily be carried out by someone with an adequate understanding of the
program. The use of EDITALL (2.2.3.21) makes these processes easier and can deal
with trivial slips.

It is also possible either to repunch the program in 8-hole form or to use
Autocode 5 to 8 to convert to B-hole and then use EDITALL to carry out modifications.

However, for the sake of completeness, all possible methods are described
below.

iii
(lssue 1)

2.2, 2.

Method (A) — the quickest method

It is assumed that the 803 program is a single block and locations are expressed
in relative form, i.e. in the form of an integer without a sign followed by a comma.

{a) Conversion into a SAC block

(i) Give the routine a name, differing from all other block and global
names used in the program.

(ii) Punch the routine in 8-hole code, preceded by the introduction:

begin X; (where ‘X' stands for the name chosen for the routine)
and with the asterisk or closed bracket at the end of the tape
replaced by

end X;
& (i.e. an ampersand).

(iii) If the block is a subroutine, refer to it using the instruction pair
73X:40X +n
where n is the usual (relative) entry point to the block.

Note that the block must be positioned before any such reference to it, since X
must be allocated before being used in a compound address such as X + n. Note also that
the block cannot be entered at any of its second half instructions by the instruction pair

T3X:44X+n
since the assembler treats block names as if they were first half labels, and so converts
44X +n to 40X + n.

If a block contains second half entry points, at least one of the entry points
must be introduced as a global label; this means introducing it at the head of the
program and then by the side of the appropriate instruction.

This method is the quickest but leads to restrictions, i.e. a non—standard
calling program, and is therefore not recommended for normal use.

(b) Conversion into a SAC program

This method can only be used if the routine’s first location is its link.
(iy Give the routine a name, differing from the names of all the

programs which are to use it.

iv
(lssue 1)

(ii)

(iii)

{iv)

2,22

Punch the routine in 8-hole code, omitting the first location,

preceding it with the introductions

program X;

block X;

begin X;

and replacing the asterisk or closed bracket at the end of the
tape with

end X;
trigger X;

To incorporate entry points other than the first location, label
each instruction at which entry can take place with a suitable
label, and introduce these labels in the block and trigger lists:
so, if the labels were A, B and C we would have

bleck X (A, B, C);
and
trigger X, A * X, B*X, C* X;

Refer to the routine by means of the normal COMP instructions.

Method (B) — normal method

(a)

Conversion into a SAC block

(i)

(ii)
(iii)

The routine is identified and repunched as in (A) (a), but, in
addition, references to its link location are replaced by references
to location LINK. So, if the link location is the first in the block,
an instruction like

30 o,
is replaced by
30 LINK

The content of the link location should be replaced by +0

The subroutine exits

00 0,/40 1 and 00 0,/40 n

may be replaced by

EXIT and EXIT, n

(a similar method is used if the link is other than 0,)

v
(lssue 1)

2.2. 2,

(b)

(iv)

(v)

Instructions at which the routine is to be triggered must be
identified (with labels), but it is not necessary to identify the
routine's first instruction in this way. These label identifiers —
call them A, B, C ... —must be introduced in the program head:

block Bl, B2 ..., X(A, B, C, ...}, Bn, ...;
Subroutine entries to the routine are then written as

SUBR, X and
SUBR, A*X etc.

Conversion into a SAC program

@)

The tape is prepared in the same way as above, (B) (a), except
that LINKCP and EXITCP are used in place of LINK and EXIT,
and the whole routine, in SAC block-form, is preceded by

program X;

block X (A,B,C .. .);
and followed by
trigger X, A*X, ... ;

Method (C) — Notes on full conversion

This means that all relative addresses are replaced by identifier addresses,
— otherwise the method is the same as given under (b) of Method (B).

(i)

(ii)

A jump instruction is changed by identifying its destination with a
label, and then quoting the label in the instruction.

If possible, all other instructions in the routine should be treated as
data handling instructions. This means that each location of data space
is given a name; the names are introduced with a data introduction —

begin X;

data D1, D2, D3, D4,...;

— the original data locations are omitted from the routine, and are
referred to by name instead of relative address.

vi
(Issue 1)

2.2.2

Sometimes programs are written so that some of the data handling
instructions are actually modifying the program, instead of working out
results. The above procedure cannot be applied to such instructions.

If possible the routine should be rewritten to avoid them.

Full conversion is best carried out with a full understanding of the
program, rather than by mechanical rule.

Checksums

SAC programs cannot be sumchecked if they modify themselves at runtime.
803 subroutines very often do this — either because they contain their own data space,
or because the program overwrites itself. In general, then, it is better to convert an
803 subroutine into a 503 Common Program: its calling—program will be sumcheckable,
even if it is not.

Another reason is that the editing of subroutines into new programs is more
elegant.

Multiblock 803 routines

These must be treated more carefully: all instructions with addresses of the
form ‘n, m" must be replaced by instructions with addresses like 'A*B’.

In addition care must be taken withinput and output routines when changing
from 5-~hole to 8-hole.

vii
(Issue 1)

