ALPHABETICAL INDEX TO LIBRARY PROGRAMS

Deseripiion
ALGOL CARD RENADER
PROCEDURES

ALGOL C.B.S. ARRAY
PROCEDURES (Version 1)

ALGOL C.B.S. ARRAY
PROCEDURES (Version 2)

ALGOL 5 to B

ALGOL LINEFRINTER
PROCEDURES

ALGOL MAGNETIC TAFE
PROCEDURES

ALGOL MATRIX PACKLGE

LALGOL MaTRIX PACKAGE
MARK 2

ALLGOL PLOTTER PALCKAGE
ARCTANGENT

AUTOCODE TO ALGOL
TRANSLATOR

ALUTOCODE MAGNETIC T.LPE
BLTCH ROUTINE

AUTOCODE 5 to 8

BACKGROUND PROGRAM
DEVICE ROUTINES (MTREAD,
MTWRITE,EDITS(BG),EDITS1
(BG), LPRINT(BG))

BESSEL FUNCTIONS OF
INTEGRAL ORDER

BESSEL FUNCTIONS JO,J1,
Y0, Y1

DOUBLE LENGTH
ARITHMETIC SUBROUTINES
(ADDITION,SUBTRACTION,
MULTIPLICATION end
DIVISION)

Date of
first issuc

February, 1966

December, 1965

December, 1965

November,1963

November, 1964

May, 1966

Novenber, 1963

Hay, 1966
September, 1965

November, 1963

January, 1966

July,1967

November, 1963

hugust, 1966

November, 1963

November, 1963

January, 1966

Name

CARD

CBSA

CBSB

ALGOL 5

LPRLG

NTALLG

MTXO1

MTX02
PLOT

arctan

AUTALG

SETINT

LiCconv

BGFROG

BESO

bez=sel

DADD
DSUB
DMULT
DDIV

2.2.

Language

&

A

A

Fit

J.I-j.

it

ke

o

ooy we

i
(Issue 5)

3

Chapter

42

31

32

24

43

40
26

10

36

50

47

18

33
33

35

2.2.3

Description

EDITALL

EDIT8

EDIT 8 INTERFACE
ERROR AND PROBABILITY
FUNCTIONS
EXPONENTIAL

FORTRAN TO ALGOL
TRANSLATOR

GAUSSIAN PROBABILITY
INTEGRAL

GENERAL PURPOSE ROUTINES

GENERAL MAGNETIC TiPE
ROUTINE

GENERAL MAGNETIC TAPE
READ ROUTINE

GENERAL ILLGNETIC TAPE
WRITE ROUTINE

GENERAL NUMBER PRINT

(lincprinter and paper tape

punbhes)

GENER.AL SORT
INTEGRALZTION OF L SET OF
SIMULTAREQUS FIRST ORDER
DIFFERENTIAL BOUATIONS
LINEFRINTER QUTPUT

LINEPRINTER CONTROL
ROUTINE - 8 CHALNNEL TAPES

LINEPRINTER CONTROL
ROUTINE - 5 CHANNEL T.PES

LINEFRINTER LINE
ASSEMBLER

1%
(Issue 5)

Date of
first issuc

January, 1964
January, 1966

February,1966

Hovember, 1963

November, 1963

October, 1965

November,1963

July 1969

November, 1967

November, 1967

November, 1967

Hovember, 1965

Hovember, 1963

November, 1963

February, 1964

November, 1967

November, 1967

May, 1966

Hame

EDITAL
EDIT8

EDITSL

approx

exp

FEAT

Gauss

CpP

GHT

GITR

GiiTW

NFRINT

gensor

intdif

LPRINT

LP 8

LF 5

LINEAS

Language

L2

d

A

Chapter

21
27
3

12

29

44

48

48

48

28

14

17

22

49

49

45

Description

MAGHETIC TAPE PROGRAM
MATCHES (DUMP,BRING &
LOAD)

(DUMP MARK 2)

(puMp 2m)

MAGNETIC TAPE ROUTINES
(HANDLER4)

MAGNETIC TAPE SORT
PROGR.AM

NUMERICAL INTEGRATION

OF ORDINLRY DIFFERENTIAL

EQUATION

803 OPERATOR
POLYNOMIAL INTER-
POLATION AND EXTRA-
POLATION

POST MORTEM LISTING OF
STORE ON LINE PRINTER

PTSPRINT
PTSRELD
ROOTS OF A POLYNOMIAL
SINE,COSINE or TANGENT

SINGLE WORD,MULTIPLE
KEYFIELD SORT

SINGLE WOKD SORT

SQUARE ROOT
LANGUAGE CODE
A ALGOL

C AwUTOCODE
S S4C

ate of
first izsue

Novenmver, 1963
Septumber, 1965

Iay,1966
October, 1966

July, 1969

fizy, 1.966

May,1966

December, 1964

November, 1963

Decomber,l 365
January, 1964
January, 1964
April, 1964

Novenber, 1965

November, 1963
November, 1963

lovember ,1963

Name

log

ATCH

DuUNMF2
DUMP2H

HTSTOR

HNICDE

Con 01

polint

PML
PTSPRr1
PTSHEL
BAIRST

trig

multke
swsort

sqrt

2.2.3

Languagc

ik

iii
(issue 5)

Chapter

25

46
46

41

38

39

-

16

30
20
19
23

15
13

i

ISSUR |

CONFIGURATION 1 DESCRIPTION
CODE 1o,
P 3 ALGOL 1 PLOTTER PACKAGE/ALG
PCBSMT 1 ALGOL 3 PLOTTER PACKAGE/ALG
P 1 EDITPLOT
PCBSHT 1 CHAROU (PLOTTER VERSIOH) /SAC
BP 1 PLOTTERMOD/BIN!
CBSHMT 2 A3C/BIN
CESHT 2 A3D/BIN
CES 2 ALGOLB/SAC
CBSNOLP 2 ALGOLB (NO LINEPRINTER) /SAC
TN FOLLOVING TAPES ARE AVAILABLE ON REQUEST TO THE
ADDRESS GIVEN IN PAGE 5 OF NEWSLETTER P13.
A 2 PCCP/SAC
MT | MTFEAT/LLG
T 1 MTSTOR/SAC
CBSMT 2 FEAT STANDARD PROCEDURES/TAFE 1/ALG.
‘CRSHT 2 FEAT STANDARD PROCEDURES/TAPE 1c/ALG.
Hp 2 INTERN/SAC
CBSMT 2 A3C/TI
CBSMT 2 A43D/TI
CBSHMT 1 A3L/TI
CRIUT 1 A3C,A3D,A3L EDITS (COMBINED TAPE)
A 1 T2/SLC
A 1 TRANSA/BIN
LP 1 FILIF/ALG
CBSLP 1 FILIP (FOR RGCBS)/ALG
CBS 1 EDITALL (FOR RGCBS)/SAC
OBS 1 RGCBS/S.AC
|

“THIS ROUTINE ALSO REQUIRES A CARD READER

2.23.1.
CON 015

CHAPTER 1: 803 OPERATOR
CODE CON 018

FUNCTION

The function of this program is to make the control of the 503 obey the word generator. The
control of the 503 normally obeys the control typewriter, whereas the control of an 803 is via the
word generator or its equivalent. This enables the 503 to be run ‘as an 803" and hence makes it
possible to use almost all the Library and Applications Programs of the 803 on the 503. This in-
cludes B03 Algol and 803 Autocode. Appendix 1 describes special provisions for 803 C2, and
Appendix 2 describes the tape copying routines available for use on the 503.

Further information about 803 Programs can be obtained from the 803 Librarian and the Appli-
cations Group Secretary, Scientific Computing Division.
STORE USED

Locations 8162—8191 inclusive.

METHOD OF USE

Input of 803 Operator tape

The 803 Operator uses locations 8162 to 8191 which are normally used by sum checked binary
tapes to contain the input routine,

Thus:—

All sum checked binary tapes and any others which require locations 8162 to 8191 during in-
put must be read in before the 803 Operator.

When all other such tapes are in:
(a) Ensure that the NOPROTN button is depressed.
(b) Clear the word generator.

{c) Press the RESET button,
(d) Place the 803 Operator tape in Reader 1 and press the Initial Instructions button.

One or more of the characters listed under *Action’ should be displayed on the typewriter, If
nothing is displayed andfor spaces are output on punch 1, repeat from (c).

If the last character displayed is an I then the next depression of the MESSAGE button will
cause the word generator to be read but if any other character is displayed repeat from (c) above.

Action
The 803 Operator is used in conjunction with the MESSAGE button. Each depression of the
MESSAGE button causes either I, R, D, or DA to be displayec.
CHARACTER MEANING

1 The current program has been Interrupted
and control is now with the 803 Operator.
The next depression of the MESSAGE
button causes R to be displayed.

R The word generator has been Read. The
next depression of the MESSAGE button
causes D or DA to be displayed.

1
{Issue 2)

22.3.1.
CON 015

D The word generator has been obeyed (Done).

A Obeying the word generator did not cause a
transfer of control. The next depression of
the MESSAGE button will cause the word
generator to be read Again.

Note 1 Only the F, N, digits of the word generator are obeyed (as for the 803).

2 After the word generator has been read (i.e., R displayed) there is no way to avoid obeying
it.

Error Indications

If at any time an error interrupt occurs, ‘E’ is displayed on a new line followed by one or more
of ‘a’, *b’, *d” or 'p’ with the significance indicated below, and the program waits:

a The error was due to an impermissible
reference to the protected reserved area.

b The error was due to an impermissible
reference to a peripheral device,

d The error was due to main store parity
failure.

p The error was due to floating point over-
flow,

The next depression of the MESSAGE button causes the word generator to be read.

Special Facilities

1. If the last character displayed is I, a, b, d, p, or A then the main program may be continued by
causing the Operator to obey 44 8189.

2. After the word generator is obeyed then, provided the word generator did not contain a trans-
fer order (GROUP 4), the value of the accumulator is stored. The accumulator is restored to
this value immediately before the next instruction on the word generator is obeyed.

RESTRICTIONS

1. 803 Programs using Film, the Card Reader or Line Printer cannot be used on the 503 as it has
no Film and the Card Reader and Line Printer have different codes. However, if Film, Card or
Line Printer orders are given the 803 Operator will not be destroyed.

2. The 803 Operator cannot be used with programs that make use of locations 8162-8191 during
running, except to start them initially.

3. A restriction on the use of the 503 as an 803 is that any 5 hole output for the 803 direct
teleprinter (punch 3) will be printed on the output writer on the 503, which is set for 8 channel
code,

The 5 channel output will thus appear unintelligible, although it can be partially decoded.
FORMAT OF RESULTS

Only the print out on the direct output writer is a ‘result’ of the 803 Operator itself, Other results
are as indicated by the appropriate 803 program.

CONFIGURATION
The basic 503 computer and five hole paper tape equipment [reader(s) and punch(es).]

TAPE
Pure binary with a self-contained sum check routine. A tape is provided.

2
{Issue 2)

2231
CON 015

EXAMPLE OF USE OF THE 803 OPERATOR
Translate and run an Autocode program in which checks are to be used.

DEcraliun DisEIEE

(a) Place 803 A103 Tape 1 in Reader |
{Make sure that the MODE button

is depressed).
{(b) Press Initial Instructions button,
(c) Prf:_ss Initial Instructions button
again.
{d) Place 803 A103 Tape 2 in Reader 1.
(e) Press Initial Instructions butlon,
| Clear word generator.
| Press RESET button.
Place 803 Operator in Reader 1.
I Press Initial Instructions button, 1
(f) Place mnemonic tape in Reader 1.
{g) Set 40 7B on word generator
Press MESSAGE button R
Press MESSAGE button again D

After the dynamic stop at the end of
the translation has been reached,
press MESSAGE button. |

(j) Place data tape in reader.
(k + 1} Set40 16B on word generalor
Press MESSAGE button R
(m) Press MESSAGE button D

The letters on the left hand side correspond to the paragraphs on pages 38-40 in the 303 A3
and A103 description.

8. M. Quinn. December, 1963,

3
(fssne 2)

2231
CON 015

APPENDIX 1

Use of the 803 Operator with 803 C2
To print the contents of the store use the Operator in the normal way.
However, paragraphs (i), (v), (vii) of page 2 (Issue 2) of the 803 C2 description should be
replaced by:—
(i) If it is intended to print the content of the sequence control register, read and obey each of
the following instructions:—

30 8181
5l 1
20 4

(The sequence control register is the device which holds the address of the instruction
which was due to be obeyed when interrupt occurred.)

{v) When used with the 803 Operator, the auxiliary register has address 8180 and the accu-
mulator has address 8179. The content of location 4 is assumed to be the content of the
sequence control register and if it is printed it is preceded by SCR instead of the address.

(vii) When all the required information has been obtained the accumulator, auxiliary register,
overflow register and sequence control register may be reset by reading and obeying the
instruction 44 8189,

-
{Issue 2)

2.23.1.
CON 018

APPENDIX 2

503 Tape Copying Routines

The recognised method of copying tapes on the 503 is using EDIT ALL (2.2.3.21.) but the
following routines are also available. These are modified versions of 803 C1(B) with a copy of the
803 Operator program included on the tape. 803 C1(B) cannot be used with the 803 Operator since
it clears the rest of the store when it is entered and therefore 503 CI(B) is issued.

There are 2 tapes provided, they are:—
503 C1 (B) (7 bit)
503 C1 (B) (5 bit)

Both tapes are coded in 5-hole binary and the operating instructions are the same as for 803
CI1(B) (see the 803 Program Library) using the 803 Operator program.

R. A. Finch. April, 1964.

7
{Issue 2)

2232
MTX 01A

CHAPTER 2: ALGOL MATRIX PACKAGE

CODE MTX 01A (Issue 2)

FUNCTION

The following set of procedures perform the standard operations of matrix arithmetic. Certain
oplimising techniques have been used within the procedures which ensure that they will run faster
than corresponding procedures written in conventional ALGOL.

STORE USED

About 1240 locations in all. If storage space is critical, unused procedures may be omitted.

CONFIGURATION
The requirements are as for 503 ALGOL.

PARAMETERS

The parameters of the routines are, in general, array names, The vectors and matrices which are
used as actual parameters must have been declared in the main program as TWO-DIMENSIONAL
arrays with appropriate subscript bounds, e.g., A column—or row—vector A should be declared as
All:m,1:1]or A[l:1,1:m].

The first parameter usually gives the array in which the result of the operation is stored, and
subsequent parameters specify the operands. Storage space for results is allocated when the proce-
dure is called, the subscript bounds of the operands then being known. In general, the procedures
make all tests for compatibility, etc.,, which are necessary for the performance of the operation
intended.

SUMMARY OF PROCEDURES
Throughout this summary
A, B and C represent two-dimensional real arrays (matrices)
x represents a real scalar, e.g., a matrix element
i and j represent integers used as suffices to indicate particular array elements.
N.B. An alternative print procedure for larger matrices is given in Appendix 1.

procedure mzxaux (A, B, C,d, e);
value d, e; boolean d, e; array A, B,C;
comment this procedure is used in mxsum, mxdiff, mxcopy, mxneg and mxquot as
an auxiliary procedure. If any of these procedures are used outside the
matrix package then mxaux must also be in store. The procedure tests that
the arrays A, B, and C are the same size. If they are not then the message
“mxaux error” is displayed and the program is terminated;
procedure mxdiff (A) becomes: (B) minus: (C);
array A, B, C;
comment this procedure which uses mxaux subtracts array C from array B and
stores the result in array A. A may be the same as either B or C;
procedure mxsum (A) becomes: (B) plus: (C);
array A, B, C;
comment this procedure which uses mxaux adds array B to array C and stores the
the result in array A. A may be the same as either B or C;

1
(Issue 3)

2232
MTX 01A

procedure

procedure

procedure

procedure

mxcopy (A) becomes: (B},

array A, B;

comment this procedure which uses mxaux and is used by mxquot copies array B,
the copy becoming array A;

mxneg (A) becomes minus: (B);

array A, B;

comment this procedure which uses mxaux negates array B. The result is stored
in array A. Array A may be the same as array B;

mxprod (A) becomes: (B) times: (C);

array A, B, C

comment this procedure forms the matrix product of arrays B and C, The result is
stored in array A.

A must not be the same array as B or C. If the arrays are incompatible
the message “mxprod error” is displayed and the program is terminated;

formmx (A) becomes: (x) with respect to: (i) and: (j);

real x;array A;integer i, j;

comment this procedure forms an array A where each element A [i, j] is a function of
i and j. This is done by use of Jensen's device (see E.W. Dijkstra's"“A Primer
of Algol Programming”, Academic Press 1962, P.57). Briefly, Jensen’s
device allows a procedure to treat a formal parameter t as a function of the
actual parameter corresponding to another formal parameter i.

The actual parameters are:
A a two-dimensional real array.
X a real expression defining the value of the element A [i, j].

i,j two integer parameters which specify respectively the row and column
number of the array element. The lower limit of both these para-
meters is 1;

mxtrans (A) becomes transpose of: (B);

armay A, B;

comment this procedure forms the transpose of array B and stores the result in array
A. Array A may not be the same as array B, If A and B are incompatible
the message “mxtrans error” is displayed and the program is terminated;

scprod (A) becomes A times the scalar: (x);

value x; real x; array A;

comment this procedure multiplies array A by the scalar x in situ;

mxguot (B) becomes: (A) to minus one times: (C);
value A;array A, B,C;

comment this procedure which uses mxaux and mxcopy solves a set of simultaneous
equations A X B = C in one procedure call. If the call by value is

2
{ssue 3)

2232
MTX 01A

omitted, both space and time will be saved, but A will be destroyed
during the computation. The method used is Gaussian elimination. The
solution array B, has the same number of rows and columns as the
right-hand side, array C.

The procedure contains certain checks by which, if the B-digit is depressed
atl translation and run time, at each stage of the elimination the ratio of the
new pivot to the greatest pivot to date is output.

If at any stage the ratio of the new pivol to the greatest pivot is less in mag-
nitude than 10, the following message is displayed

“mxquot : pivot ralio = . size g stage "
and a data wait is entered. It is possible to continue, but the results are un-
likely to contain any correct significant figures. Failure at the first stage is

specially distinguished. If the arrays A and B are incompatible, the message
“mxquot error” is displayed and the program is terminated;

procedure invmx (A);

array A;

comment this procedure inverts the non-singular array A in situ. The program uses
the Gaussian elimination method, searching for the maximum element in
cach column and using these elements as pivots.

The procedure contains certain checks by which, if the B-digit is depressed
al translation and run time, at each stage of the elimination the ratio of the
new pivol to the greatest pivot to date is output.

If at any stage the ratio of the new pivot to the greatest pivot is less in mag-
nitude than 10, the following message is displayed

“invmx : pivotratio ="%. size B stage 4"

and a data wait is entered. It is possible to continue, but the results are un-
likely to contain any correct significant figures. Failure at the first stage is
specially distinguished.

If A is not square the message “invmx error” is displayed and the program
is terminated;

procedure printmx (A);
array A;

comment this procedure prints an array by rows. Each element is printed on the device
and in the format current when the procedure is called.

The format is specified before the procedure call, e.g.:

punch (2)

prefix (£, £58277)

freepoint (4)

printmx (A)

Each row is printed on a new line. No row or column numbers are printed
nor is any facility included for the printing of large matrices;

3
(Issue 3)

2232
MTX OIA

procedure readmx (A);
array A;
comment this procedure reads any real number and places the result in an element of
the matrix A. Successive elements are placed in the same row of the

matrix until the row has been filled. Data is punched as described on page
6, section 2.1.3.1 of the 503 Technical Manual.

Reading takes place on the device current when the procedure is called.
The device setting may be altered before readmx is called.

e.g. reader (2)
readmx (B);

METHOD OF USE

The package ends with a H haltcode (telecode value 76) sign. The Master program requires an
additional *end’.
ACCURACY

Single-length floating point arithmetic is used in all the procedures.
STORAGE

When the MATRIX PACKAGE is in store, locations 20-4900 (approx.) are available for pro-
gram and data.

TAPE
A mnemonic tape is provided.
TIME
The procedures have been timed using 5 x 5, 10 x 10 and 20 x 20 matrices on the 503.
Times where available

5x5 10 x 10 20 x 20
PROCEDURE

FORMMX Depends on the function

MXSUM 005 secs 019 secs 065 secs
MXDIFF 005 secs 019 secs 065 secs
MXCOPY 005 secs 019 secs 065 secs
MXNEG 005 secs 019 secs 065 secs
MXPROD 033 secs 207 secs * 1.51 secs
SCPROD * 005 secs * 019 secs 065 secs
INVMX 065 secs 330 secs 2.1 secs
MXTRANS * .005 secs * 019 secs * 065 secs
MXQUOT Depends on the matrices

READMX t t

PRINTMX t t

* The times marked with an asterisk are approximate
+ Reading and printing take place at the full speed of the reader and punch on the 503

4
(Issue 3)

2.23.2

MTX 01A
EXAMPLE
Evaluate E: = A*B + C"'
where E and C are 5 x 5 malrices
Aisa 5 x 10 matrix
and B isa 10 x 5 matrix.
A and B are to be read from paper tape and C is
defined by C[i, j] = 1 + 1/ (i -+ 2¥%)).
evaluate A* B + C ¢ (- 1)
begin array a [1 : 5, 1 : 10}, b [1:10,1: 5], ¢,d,e[1:5,1:5];
integer i, j;
comment d is work space;
formmx (c, 1 + 1/ (i + 2*)), 1, j);
readmx (a); readmx (b);
mxprod (d, a, b); comment D:=A * B;
invmx (c): comment C:=C™';
mxsum (e, ¢, d); comment E:=A*B+C™";
printmx (e);
end evaluate
end malrix package;
R. V. Wood.
P. Simmons. April, 1965.
5

(Issue 4)

2232
MTX 01A

APPENDIX 1

FUNCTION

In cases where the number of columns is too great for the matrix to be printed on one level either
of the following output procedures may be used.

procedure printcol {A);
array A;

comment this procedure prints the array A by columns. The elements of a column are
all output on the same line and each column is output on a new line. The

format for printing is set before the procedure is called. This procedure is
due to Mr. R. Tobler, National Cash Register Company, Zurich, Switzer-
land;
procedure mxoutput (A, m, n);

value m,n;

integer m,n;

array A,

comment this procedure prints the array A by rows (see example) together with its

row and column numbers. The row and column numbers are printed in the
format digits (3). If the array has so many columns that it will not fit on the
available output sheet, then the procedure will arrange for the array to be
output on more than one level (see example).

The parameters of the procedure are:—
A, a real array,

m, the number of characters available across the output sheet and
n, the number of characters occupied by each element of the array.

The format for printing elements of the array is set by the programmer
before the procedure is called. From this n, the number of characters per
element, may be calculated, e.g.

freepoint(t): t+2 characters are required by each element.
aligned(r,s): r-+s-+2 characters are required by each element.

For further details of the character requirements of output formats see
2.1.3.2 of the 503 of the Technical Manual;

STORE USED
About 260 extra locations,

METHOD OF USE

These procedures are on a separate tape from the main package. When these procedures are
required their tape should be input immediately after the main package.

CONFIGURATION

The Algol Matrix Package plus these two procedures will fill the available store during trans-
lation and hence facilities for storing the owncode version on Core Backing Store are desirable but
not essential.

flssue 3)

2232,
MTX 01A

TAPE
A mnemonic tape is provided. An E Halt Code (76) is punched at the end.

R. V. Wood. April, 1964,

(Issue 2)

2232

MTX 01A

Example using mxoutput with the format set to freepoint (5).
ROW/COL 1 2 3 4 5 6 7

1 00000 14.000 21.000 28.000 35.000 42.000 49.000

2 00000 00000 21.000 28.000 35.000 42.000 49.000

3 .00000 00000 00000 28.000 35.000 42.000 49.000
ROW/COL 8 9 1c 11 12 13 14

1 56.000 63.000 70.000 77.000 84.000 91.000 98.000

2 56.000 63.000 70.000 77.000 84.000 91.000 98.000
3 56.000 63.000 70.000 77.000 84.000 91.000 98.000

ROW/COL 15 16 17 18 19 20
1 105.00 112.00 119.00 126.00 133.00 140.00
2 105.00 112.00 119.00 126.00 133.00 140.00
3 105.00 112.00 119.00 126.00 133.00 140.00
END OF MATRIX
9

fTeece 2)

2, 2.3. 3.
13158 OIC

CHAPTER 3 : BESSEL FUNCTIONS OF INTEGRAL ORDER
(Autocode Subroutine)

CODE BES 01C

FUNCTION

To calculate] (x). The value of Y (x) may be made available at the same time, if
required.

CONFIGURATION

The requirements are as for 503 Autocode.

SETTING AND OTHER REQUIREMENTS

Integer variables N(2)

Floating—point variables 1(2), 0(2), B(3)

Functions INT, LOG

Reference numbers used 1 to 18 inclusive

Storage required about 220 locations, not including

INT and LOG

If the main program using BES 01C as a subroutine employs any integer from 1 to 18
inclusive as a reference number, the reference numbering of BES 01C must be altered. The first
instruction of BES 01C has been assigned the reference number 18, and all positive integers
below are used elsewhere in the subroutine.

TAPES
The library tape is punched in the mnemonic code of the 503 Autocode. A tape is
provided.

METHOD OF USE

Before entering BES 01C to calculate Jp(x), the main program must set I1 to x and
N to n. The value of J(x) will be found in location O1 on exit.

If Y (x) is also required, a non—zero marker should be set in 12; 02 will then be set
to Y (x) on exit. If Y (x) is not required, 12 should be cleared; 12 and 02 will be clear on exit.

Entry is by means of the instruction SUBR 18 unless the reference numbering on the
library tape has been altered.

(lssue 2)

2.2.3. 3.
BES OIC

ERROR EXITS

Negative Input
is displayed and control is transferred to RAP, if either n or x is negative.

If Y (x) is required, and the given values of n and x are such that Yn[x) cannot be
held as a standard floating—point number,

Overllow

is displayed, and control is transferred to RAP.

TIME

The following formulae give a very approximate idea of the time involved in calculating
]n{x} and Y, (x):
If J,(x) only is required, about (4 +3k) /5 milliseconds.
If Y, (x) is also required, the total time is about k milliseconds,
where if x<10 and n<x then k=2x +9
x<10 and n>x then k=2x +9 +n
x>10 and n<x then k=1.05x + 25
x>10 and n>x then k=1.05x + 25 +n

ACCURACY

Results are correct to 8 decimal places.

PROCESS USED
k is chosen so large that ¢ in the expression

Jy +, ¢], = ¢: 1 may be neglected. With S(k + 1) = 0,

S(k) = 10719, the sequence S(p) is generated downwards from the expression S(p—1) = 2p
S(p)x~'=S(p + 1), (1<pgk)-

Jo(x) is then taken as S(n)
Sto) +2 * 3" S(p)

p=1

2
(Issue 2}

2,2.3. 3.
BES 0IC

Yn{xj is calculated from the expression

2 Y
p+a1 = t D -
u—YP__l

Y

Y, (x) and Y (x) being obtained from the calculated values of J (x) and J,(x)-

S.M. Quinn and P. Schwar. November, 1963

3
(Issue 2)

CHAPTER 4: GAUSSIAN PROBABILITY INTEGRAL

CODE Gauss A

STORE USED

03 locations

CONFIGURATION

The requirements are as for 503 Algol.
ACCURACY

The results are accurate to 8 significant figures.
TIME

Less than 5 milliseconds in the worst case.
TAPE

A tape is provided.

real procedure Gauss (x); value x; real x;

comment This procedure, which is based on 803 B 109, calculates
the integral from —infinity to x of
exp (—0.5*x12)dx/sqrt (2%pi);

begin real y, z, w;
if x=0 then z:=0
else
begin y:=sbs(x) /2;
if y >3 then z:=1
else ify <1 then
begin wi=y*y;
ze={ (((((({0.000124818987*w
-0.001075204047)*w
+0.005198775019)*w
=0.019198292004)* w
+0.059054035642)*w
~0.151968751364)* w
+0.319152932694)* w
-0.531923007300)*w
+0.797884560593)*y*2

end

else

1
{Issue 2)

2.2.3. 4.
Gauss A

2. 2. 3. 4.
Gauss A

beginy: =y — 1

end

Gauss : =if x>0 then (z+1) /2 else (1 ~-2)/2

end Gauss ;

D. lbbetson.

end

z: = (((((CC((((((—0.000045255550*y
+0.000152529290)*y
-0.000019538132)*y
-0.000676904986)*y
+0.001390604284)*y
=0.000794620820)*y
-0.002034254874)*y
+0.006549791214)*y
-0.010557625006)*y
+0.011630447319)*y
=0.009279453341)*y
+0.005353579108)*y
-0.002141268741)*y
+0.000535310849)*y
+0.999936657524

2

flssue 2)

November, 1963.

2.2.3. 8
ALGOL 58

CHAPTER 5: ALGOL 5 TO 8

CODE ALGOL, 58

FUNCTION

To produce an eight hole ALGOL tape from a five hole tape.

STORE USED

1590 locations.

METHOD OF USE

Running Instructions

1) Translate the SAC program in the normal manner.

2) Place the 5 hole Algol tape in reader 1 and type ALGOL 5 to 8.

3) If the symbol § is encountered outside a string or a title the program waits until
the sign of the word generator is changed. [f the B—digit is set when the sign

digit is changed, the stop code (76) is output before translation continues.

4) After converting a program (or detecting an error) the routine returns to RAP.

Error Indications

If the program detects an error, normal output is suspended, the next 64 non—blank
characters are output (in 8—hole code) on the output writer and control returns to RAP
(see (4) ahove).

N.B. The majority of syntactic errors will pass undetected.

Restriction

1) If a parameter delimiter in a standard function is a letter string containing a basic
word it will be incorrectly converted.

For example the parameter delimiter

) STEP : (

1
{Issue 2)

2. 2. 3.5.
ALGOL 55

will be converted to
) step : {
if it occurs in a call of a standard procedure.

2) If a formal parameter of a procedure, which is specified to be an array, has the
same name as a previously declared procedure, then the latter procedure will be
givan square brackets in all calls until the end of the block in which the procedure
with the offending array identifier is declared.

3) % followed by any other character is treated as though it were % 1.

FORMAT OF RESULTS

The eight hole ALGOL tape will be produced by punch 1. Brackets, basic words and
operators such as < and 1 are correctly produced. If an error is detected the next 64 non—blank
characters will be printed on the output writer (see Error Indications).

CONFIGURATION

This program uses tape reader 1, tape punch 1 and the output writer.

TIME

The new tape is produced at the full speed of the output punch.

TAPE

The program is written in SAC and the tape is provided.

PROCESS USED

The following information is stored in locations STACK + 1000 downwards:—

Zero for each begin

40 0 + 0D B9 for each [

400,/ 00 9 for each (appearing outermost in a procedure
declaration eall.

fIssue 2}

2.2 3. 5.
ALGOL 58

40 0 : 00 9 for each (otherwise

Array and switch identifiers Store as left justified strings of
six or less characters.

Procedure identifiers Similarly and with a marker in bit 38.

An identifier which is followed by a left bracket is a procedure, an array, or a switch.
The stack is scanned to find out which it is,

A right bracket is checked to see if it is a parameter delimiter. If so the following
letter string is copied.

Any identifier which contains letters only is tested to see whether it corresponds to
any 5-hole basic word. A binary search is used and special actions performed if necessary.

When the % symbol is encountered all characters up to and including the next

semicolon are ignored.

]. Blake and D). Pullin. November, 1963.

3
(Issue 2)

2.2.3.6.
ACconv S

CHAPTER 6: AUTOCODE 5 °TO 8 Issue 2

CODE ACeconv Issue 2 5

FUNCTION

To produce an 8-hole Autocode mnemonic tape from a 5-hole tape, with an optional

copy on pum:h 2 and or a print up on the line printer,

STORE USED

About 300 locations.

METHOD OF USE

Running Instructions

1)

2)

3)

4)

5)

6)

Translate the SAC program in the normal manner.

Place the 5 channel program tape in reader 1. An 8-hole copy is always produced on
punch 1,

(a) for an additional copy on punch 2, depress key 2.

{b) for a print up on the line printer, depress key 1.

To treat the characters preceding the first shift character as on:—
(a) letter shift, type .-‘\.{:cumr; 1.
(b) figure shift, type ACconv; 2.

Output is on punch 1, and on the additional devices specified by keys 1 and 2
(see para. 2 above).
The program must be stopped manually on the trailing blanks.

To check the 8-hole tapes produced, place each tape in reader 1 in turn and enter
ACconv; 3.

1
flssue 3)

2. 2. 3.6,
ACeonv S

Error Indications

1) If the line printer is unavailable,
(a) LPMANL is displayed if it is in the manual state.
(b) LPERR2 is displayed if it is in error 2 condition.
2} If the sumcheck fails, SUMERR is displayed.
FORMAT OF RESULTS

Except for the items below, the 5-hole characters are copied literally into 8-hole
characters. (See under METHOD OF USE (3) for characters preceding the first shift character).

803 5-hole telecode 503 8-hole telecode

A
@ [

cr (neglected)

1f new line

TIME

The new tape is produced at the full speed of the output punch.
TAPE A SAC tape is provided.
RESTRICTIONS

OUTPUT instructions, the interpretation of the results of INPUT instructions, the
contents of TITLE instructions and 74 instructions in machine-code blocks may need modification.
Dynamic stops in machine-code blocks should be replaced by jumps to RAP. For further information
reference should be made to the specifications of the two Autocodes.

PROCESS USED

A look-up table is used; the B-hole character value obtained depends on the 5-hole

character value and the last shift read.

M. Beat June, 1965

2
(lssue 3)

2231
log S.

CHAPTER 7 : LOGARITIM
(Subroutine)

CODE log S

FUNCTION

To evaluate log A where A is the standard floating—point number in the accumulator,
satisfying A>0.

STORE USED

47 locations

METHOD OF USE

1) Global Declarations

Block name: log

2) Entry and Exit
Entry: SUBR, log
Enter with A in standard floating—point form in the accumulator.

Exit: logth is in the accumulator on exit.

3) Error Indication

If, on entry, A<0. 'log error' is displayed and control is transferred to RAP
to await a message.

TIME

The time taken is approximately 760 microseconds.

TAPES

The library tape is punched for input by SAP. A tape is provided.

(Issue 2)

2.2. 3.7
log S

PROCESS USED

Let A=a2"® andlet4a=xandb - 255=m

Then the program uses

7 - x =+/2/4
x (3-2 y2) + (3 y2-4) / 4

in evaluating

4
H = > B:r+1zw+]

where

8415 x 2-38

=
L]
n

343173 x 2~ 38

==
il

16347428 x 2738

==
(]

025538404 x 2°°8

==
n

94323185678 x 2~ 38

=
]

and forms log, A =m log, 2 - .g.ll:ngB 2+H

2
(Issue 2)

November, 1963.

2. 2. 3. B.
exp S

CHAPTER 8 : EXPONENTIAL
(Subroutine)

CODE exp S

FUNCTION

To evaluate e"" where A is the standard floating—point number in the accumulator,
and satisfies the condition :

A < 254log, 2 (176.059383)

STORE USED

58 locations.

METHOD OF USE

1) Global Declarations
Block name : exp
2) Entry and Exit
Entry : SUBR, exp
Enter with A in standard floating—point form in the accumulator.
Exit: e’ is in the accumulator on exit.

3) Error Indication

If A > 254 log,2, 'exp error' is displayed on a new line and control
is transferred to RAP to await a message.

ACCURACY

Answers are accurate to B significant figures.

(Issue 2)

2,2, 3. 8
exp 5

TIMIE

I'he time taken is approximately 1250 microseconds.

TAPES

The library tape is punched for input by SAP. A tape is provided.

PROCESS USED

Let x = }r.EE’ where y and b are the binary mantissa and exponent of the automatic
floating—point notation.

exp evaluates
n=8
los 8 y"
n=0

where 8g, 8y« + + 4 Bgare given constants, and squares the result b times. Then if x <0,

the reciprocal is taken.

Special notice is taken of the following cases:

x=10 s answer taken to be 1
x < =254 10&2 = answer taken to be 0
b < -38 = answer taken to be 1
November, 1963.
2

(Issue 2)

2.2.3.9
trig s

CHAPTER 9 : SINE COSINE OR TANGENT
(Subroutine)

CODE g S

FUNCTION

To find the sine, cosine or mngent of wA where A is the standard floating—point
number in the accumulator, satisfying |A| < 228,

STORE USED

64 locations

METHOD OF USE

1) Global Declarations
(i} Block name and global labels : trig (sin, cos, tan)

(ii) Global data : cos 1 * trig

2) Entry and Exit

Entry: Enter with A in the accumulator in standard floating—
point form by instruction

SUBR, sin * trig to find sin 7 A
SUBR, cos * trig to find coe 7 A
SUBR, tan * trig to find tan 7 A

Exit: On exit, the required result is in the accumulator, and cos rA is
in location cos 1*trig
3) Error Indication

If |A| > 228, ‘trig error' is displayed and control is transferred
to RAP to await a message.

TIME AND ACCURACY

The time taken for sine or cosine is 880 microseconds. For tangent it is 980

microseconds. Answers are accurate to eight significant figures.

1
(Issue 2)

2.2.3.9.
trig S

B TAPE

The library tape is punched for input by SAP. A tape is provided.

PROCESS USED

For -2°15¢ x < 275 the program puts sin mx = mx and cos mx = 1. For all other values,
the following process is used.

Let x = ¥n + My, where n is an integer and =4 <y <4.
n', the 2 least significant binary digits of n, is found and then trig computes

z=tan ¥ = 4 P(y?
4 4=-y2

where P is a power series which converges rapidly for y2.< %

Then if S =% gin T = x and
2 14 g

CnYcos " = % 132
2 1+z2

! sin 7x and 4 cos mx are chosen according to the following table.

n' % sin mx Y cos mx
0 5 C
1 Cc =5
2 =5 -C
3 -C 5

The necessary steps are then taken to standardise these two results and obtain the

final required results from them.

November, 1963.

2
(Issue 2)

2. 2. 3. 10.

arctan S

CHAPTER 10 : ARCTANGENT
(Subroutine)

CODE arctan S

FUNCTION

To evaluate % arctan A, where A is the standard floating—point number in the

accumulator.

STORE USED

43 locations.

METHOD OF USE

1) Global Declarations

Block name : arctan

2) Entry and Exit

Entry: Enter with A in standard floating—point form|in the accumulator
by the instruction SUBR, arctan. |

Exit: 1- arctan A is in the accumulator on exit.
mw

TIME

The time taken is 1500 microseconds.

TAPES

The library tape is punched for input by SAP. A tape is provided.

PROCESS USED

(i) If |x| <1 put u = x
Otherwise put u = %

1
fIssue 2)

2. 2, 3. 10.
arctan 5

(ii) Find .}; arctan u by means of a Chebyshev power series.

1

(iii) If |x| <1, exit with — arctan u
If x 3 1, exit with -4 = %arctnn u

If x<=1, exit with % = %mtnn u

November, 1963.

2
(Issue 2)

2.2, 3. 1L
sqrt S

CHAPTER 11 : SQUARE ROOT
(Subroutine)

CODE sqrt S

FUNCTION

To find the square root of the standard floating—point number, A, in the accumulator.

STORE USED

33 locations

METHOD OF USE

1) Global Declarations

Block name : aqrt
2) Emry and Exit

Entry: Enter with A _in standard floating—point form in the accumulator
by the instruction

SUBR, sqrt.
Exit: On exit the required result is in the accumulator.

3) Error Indication

If A <0, 'sqrt error' is displayed and control is Brnnuf:rrad to RAP
to await a message.]

TIME

The time taken is 450 microseconds.

ACCURACY

The results are accurate to 8 significant figures.

TAPES

The library tape is punched for input by SAP. A tape is provided.

1
flssue 2)

2.2, 3. 1L
sqrt S

PROCESS USED

sqrt separates the mantissa and exponent and adjusts them to have values a and b
respectively such that

A=a :-:Eh. where Y ga <1, and b is even.
y/a is then found by performing
B, ,

= 4%(B,+ &)
1 n En

using By = % + .4368
and taking B, as a satisfactory value.

Then mantissa B, is combined with exponent b to give the required standard floating—
2

point result /A

The case A = 0 is treated separately.

November, 1963.

2
(lssue 2)

2281
approx S

CHAPTER 12 : ERROR AND PROBABILITY FUNCTIONS
(Subroutine)

CODE approx S

FUNCTION

2
To calculate H([x|) = ,,.;,-fllirt’ dt, or
0

-t2

|x
P(]x|) = \H'i___slr_ f ayy® 2 dt, where x is the standard floating—point

number in the accumulator on entry.

STORE USED

62 locations.

METHOD OF USE

1) Global Declarations

Block name and global labels: approx (Hx, Px)
2 2) Entry and Exit

Entry : SUBR, Hx * approx to find H(|x|)
SUBR, Px * approx to find P(|x|)

In both cases, enter with x in standard floating—point form in the accumulator.

Exit: On exit the required result is in the accumulator.

ACCURACY

The results are accurate to 8 significant figures.

1
(Issue 2)

2. 2. 3. 12
approx S

TIME

The time taken varies according to the magnitude of x:

Range of x in H(|x|) Range of x in P(|x]) Time taken in microseconds
x=0 x=0 50
0<x<y\2 0<x<2 1050
VI x <372 2£x<6 1650
x 32342 x 26 250
TAPES

The library tape is punched for input by SAP. A tape is provided.

PROCESS USED

P(|x|) is obtained as follows :

P(0) is set equal to zero.

In the range O0<|x|<2, the power series for -]-hP{[xn has been economised,

using Chebyshev polynomials and a series of nine terms in x? obtained. This is
evaluated and multiplied by |x|.

In the range 2¢|x|<6, a polynomial of 15 terms similarly obtained is used to

obtain P(|x|).

For |x|36, P(|x|) is set equal to unity.

H(|x|) is obtained using the identity H{|x|) = P(y/ 2|x|)

ACKNOWLEDGEMENT

The National Bureau of Standards Tables of Probability Functions, Vol.ll
(New York 1942) were used for checking purposes.

Dr. A.M. Murray. November, 1963.
University of Aberdeen.

2
(Issue 2)

2.2.3.13.

swsort S

CHAPTER 13 : SINGLE WORD SORT
(Subroutine)

CODE swsort 5

FUNCTION

To sort into ascending sequence any number of single—word items (numbers) located

sequentially anywhere in the store.
A separate entry checks that the sequence is correct.

The data is sorted within the area it occupies.

STORE USED
39 locations.
METHOD OF USE

1} Global Declarations

(i) Block names and global labels: swsort (sort, check, B1)

(ii) Global data: ws * swsort

2) Entry and Exit

Entry: To sort : SUBR, sort * swsort with 2
words of parameters after the entry instruction,

To check: SUBR, check * swsort with 2
words of parameters after the entry instruction.

Exit: If the check finds an item out of sequence the accumulator will be
negative on exit, and the address of the offending item is found by
adding the address part of the second instruction in location Bl * swsort

to the content of we*swsort.

3) Restrictions

The numerical difference between any two words compared must be less
than one, This is assured if all the numbers are non aegative. Failure to
observe this restriction will cause an error, and set the overflow indicator.

2, 2. 3. 13

awsort S

A program using swsort as a subroutine cannot be entered more than once
because an order in swsort is overwritten during the running of the program.
Therefore the program using this subroutine should be assembled with key 35
depressed. In this case RAP does not form an internal checksum of the program
when it is entered. Alteruatively the subroutine could be made into a common
prugram. il

4) I'arameters

N : the address of the location containing the number of items
A : the address of the first item

A + C(N) < the number of locations in the computer’s store.

These parameters should be placed, in the sequence shown, in the two
locations immediately following the entry instructions.

TIME

Time taken depends in a complicated fashion on N and on the number of ones in the
binary expression of N. The following times are a guide.

1023 numbers .75 secs
2047 numbera 1.78 secs
3009 numbers 4.17 secs

TAPES
The library tape is punched for input by SAP. A tape is provided.

PROCESS USED

A mift sort with varying interval of comparison and exchange. The method is described
in "A High-speed dorting Procedure® by D.L. Shell in Communications of the A.C.M., Vol. 2,

No. 7 of July, 1959.

November, 1963.

(lssue 2)

2. 2. 3. 14.
gensor S

CHAPTER 14 : GENERAL SORT
(Subroutine)

CODE gensor §

FUNCTION

To sort into ascending sequence of keys, any number of items located
consecutively anywhere in the store. Each item may be of any fixed length, its key may
be of any fixed number of consecutive words, and the first word of the key may be located
anywhere within the item.

A separate entry checks that the sequence is correct.

The data is sorted within the area it occupies.

STORE USED

69 locations.

METHOD OF USE
1) Global Declarations

(i) Block names and global labels: gensort (sort, check, A2)

(ii) Global data : S*gensort

2) Entry
To sort : SUBR, sort*gensort followed by one indirect parameter.

To check : SUBR, check*gensort followed by one indirect parameter.

3) Exit

If the check finds an item out of sequence the accumulator will be negative
on exit, and the address of the first word of the lowest offending item is found by

adding the content of location S*gensort to the address part of the second instruc-
tion in location A2*gensort.

2. 2. 3. 14.
gensor]

TIME

4)

5)

Restrictions

The numerical difference between any two words of the lceyn which are to be
compared must be less than one. This is assured if all the words of every key
are non-negative. If this restriction is not observed an error will arise, and the
overflow indicator will be set on exit.

A program using gensort as a subroutine cannot be entered more than once
because an order in gensort is overwritten during the running of the program.
Therefore the program using this subroutine should be assembled with key 35
depressed. In this case RAP does not form an internal checksum of the program
when it is entered. Alternatively the subroutine could be made into a common

program. i« 7O

Parameters

The word which follows the entry instructions must be the address of the
location holding N. The five parameters listed below must be placed in any five
consecutive locations, in the sequence given.

: the number of items
: the address of the first word of the first item
: the number of words in each item

: the number of consecutive words in the key

m R - > =

: the position of the first word of the key within the item, using the con-
vention that F = 0 indicates that the first word of the key coincides
with the first word of the item.

The following inequalities define the ranges of the parameters:

A + L.Ng the number of locations in the computer's store

1< Kgl.
0¢ Fgl-K

The time taken depends in a complicated fashion on I, N and on the number of ones
in the binary expansion of N. The following times are a guide.

N 300 600 900 1200 1500 1800

| BEC. sec. Bec. sec. BEC. sec.

2 314 714 1.55 1.87 2.29 3.37

4 428 1.05 2.10 — P -

6 65 1.37 - —_ - “
2

(Issue 2)

2,23 14.

gensor q

TAPES

The library tape is punched for input by SAP. A tape is provided.

PROCESS USED

A sift sort with varying interval of comparison and exchange. The method is described

in "A High Speed Sorting Procedure” by D.L. Shell in Communications of the A.C.M., Vol. 2,
No. 7 of July, 1959.

November, 1963.

3
{Issue 2)

2.2 3. 15.
multke §

CHAPTER 15 : SINGLE WORD, MULTIPLE KEY FIELD SORT
(Subroutine)

CODE multke S

FUNCTION

To sort into ascending or descending order of keys, any number of single word items
located sequentially anywhere in the store. The key field may be any group of consecutive bits
in the word, (see NOTE below).

Those consecutive sets of the above items which were not differentiated h}r the previous
sort may now be further sorted on some additional key field. This process may be repeated for
any number of key fields,

STORE USED

54 locations.

METHOD OF USE

1) Global Declarations

(i) Block name and global labels : multkey (M)

(ii) Global data : ws*multkey, wa*multkey +6

2) Entry and Exit

SUBR, multkey with 2K + 2 parameter words following the entry instruction,
(K being the number of key fields). The content of the accumulator is destroyed.

Exit is to the first location following those holding the parameters. The
content of this location must not be zero, nor -1 x 2%,

On exit the accumulator contains the contents of location (2K +3) + 1.

3) Restriction

A program using multkey as a subroutine cannot be entered more than once
because an order in multkey is overwritten during the running of the program.
Therefore the program using this subroutine should be assembled with key 35
depressed. In this case RAP does not form an internal checksum of the program
when it is entered. Alternatively the subroutine could be made into a common
program. @ £ g

1
flssue 2)

2.2.3. 15
multke 5

4} Parameters

The following parameters must be placed in the 2K + 2 locations following the
entry instructions, which are assumed to be in location E. Thus:

In location place the which specifies
parameter
E+l n address of first item
E+2 N address of last item
E+3 d, direction of first sort
E+4 K, collating constant for first key field
E+5 d, direction of second sort
E+6 K, collating constant for second key field
E+1+2i d; direction of ith sort

where n, N, K, K,are all integers and
d; = 0 if items are to be sorted in ascending sequence for this key field.

d; =< x 2738 if items are to be sorted in descending sequence for this key field.

If di takes neither of the above values, the routine will exit to the word

containing d;, i.e. address E + 1 + 2i,

5) Note

The sign digit may be one of the digits of a key field if desired. The consecutive
bits forming this key field will nevertheless be treated aa a positive binary integer.

Thus, for example, one may sort on the F1 functions of a series of instructions.

2
(Issue 2)

2. 2. 3. 15.
multke S

6) Modification

To sort on a new key field within categories already differentiated by some
other key field(s), set a collating constant for the previous key field(s) in location
ws*multkey, before entry, and modify multkey in the following way :

M*multkey 20 ws+6*multkey : 00 0
(The contents of location M*multkey on the library tape are

20 ws + 6*multkey : 26 ws“'multir.ey)

The constant set in ws*multkey, is disturbed on completion of that sort.

TIME

Time taken is approximately 143 x I x b milliseconds where I = number of items to be
sorted and b = total number of bits in all the key fields.

TAPES

The library tape is punched for input by SAP. A tape is provided.

PROCESS USED

On any one scan through the items, only one bit is examined, to determine whether an
interchange is required. Previously examined bits are also tested so that the results of earlier
scans are not disturbed.

J. W. I. Williams November, 1963

3
flssue 2)

2. 2. 3. 16.
polint 5

CHAPTER 16 : POLYNOMIAL INTERPOLATION AND EXTRAPOLATION
(Subroutine)

CODE Pﬂllﬂl o]

FUNCTION

To obtain an approximation to the value of a function f(x) for any given x by fitting a
polynomial of specified degree to values of f(x;) tabulated at equal intervals of the argument.
The values of x; used are chosen to be as nearly as possible symmetrical about x except that
when this would imply the use of values outside the range of the table, values at the end of the
table are used.

STORE USED

80 + A(n) locations,

METHOD OF USE

1) Global Declarations
(i) block name : polint

(ii) global data : address * polint, A (n)

where Af(n) is a block of n locations allocated to hold
the table of given values.

2) Entry and Exit

Entry: Place the address of the table, A, in location address * polint
and place the standard floating—point number x in the accumulator,
and enter by SUBR, polint. The contents of locations address *
polint and A (n) are not disturbed and need not be set again before
subsequent entries.

Exit: On exit f(x) is in the accumulator in standard floating—point form.
kY| Table

The table of f(x;) may be placed anywhere in the store.
The table must be of the following form:

1
flssue 2)

2. 2. 3. 1s.

polint §

Location Contents
A n

} integers
A+l N
A+2 X \1
A+3 h Standard
A+4 fx,) floating—
A+5 f[xl} point
.......... numbers
A+3+N f{xN-ﬁ"J

where n is a positive integer or zero such that n + 1 is the degree of the interpolating
polynomial and n+ 2 is the number of valnes of the function used.

N is an integer specifying the number of values of f(x;) in the table.
X, is the first argument at which the function is tabulated.

h is the interval in x;, i.e. h=x , ,-x

4) Error Indication

Two new lines are output and
polint error
is displayed if n is negative (attempt to fit polynomial of negative or zero degree)
or if N < n + 2 (attempt to use more values of the function than are in the table)

and control is transferred to RAP to await a message.

ACCURACY

In general a polynomial of degree m gives a good approximation to a tabulated function

only if all difference of order m + 1 are small. See PROCESS USED.

Otherwise the method is exact within the limits imposed by the rounding errors inherent

in floating—point arithmetic.

TIME

The maximum time taken is .75+.5n + .12 n? milliseconds.

2
flssue 2)

2.2.3. 16.
pu|int S

TAPES
The library tape is punched for input by SAP. A tape is provided.
PROCESS USED

Neville’s iteration method. See "Numerical Analysis® by Z. Kopal for a description
of the method and a discussion of the errors which arise when higher differences are not small.

X=X

r is defined as the integral part of ﬁl_" -n except that if this quantity is negative,
r is set equal to zero, and if it exceeds N—n-2, r is set equal to N—n-2. The n + 2 values
of f(x)withi=r,r+l,........ r+n + 1 are used to obtain f(x).
The basic iteration formula is
fj (x;) %X
fi""ll:xi1’.= +{xi+j+l_xi}
{j"~"i+13l E+j+17x
where i=r,r+1,...... ,r+n+1~-jand io{xi}=”’i]‘

Then f(x) = £, y (xg)s
The above formula can be written in the form
fi*l{xi}__'{i {xi}*ifi{-‘i.;. |}"fj|:xi}iix—xi]+fxi+j+]—xii
=f1h‘l} +|[j{xi* i‘]"rj{xi}ilx_xi I+{]+1]h

and it is this last relation which is used in the subroutine.

Dr. AM. Murray.

University of Aberdeen, November, 1963.

3
(lssue 2)

2.2.3.17.
intdif S

CHAPTER 17: INTEGRATION OF A SET OF SIMULTANEOUS
FIRST ORDER. DIFFERENTIAL EQUATIONS
(Subroutine)

CODE imdif S

FUNCTION

To perform one step of the step—by—step integration of the n simultaneous first order
differential equations.

dy: _ ;
a_;l__F{xl}rtl}'!.----lrn}|{1.1|2’-#l!jn}1

using the Runge — Kutta — Gill method.

n 2 1, so intdiff may be employed to integrate a single equation. The upper bound of
n is determined by store size.

STORE USED

53 +Y(n) + Kin) + G(n) + aux locations.
METHOD OF USE

1) Global Declarations
(1) block name : intdiff, aux

(ii) global data : par* intdiff, Y (n), K (n), G(n)

2) Notation
n The number of equations to be integrated. (See paragraph 3)
h The integration step
x The independent variable
i A suffix

y; The dependent variables

1
flssue 2)

2. 2. 3. 17.
intdif S

k; hF;
g An intermediate result produced in one step and used in the next step
(if there is a next step). Initially the values of all g; must be zero.

Y: The address of the location holding y;
K: The address of the location holding k;
G: The address of the location holding g;

h, x, yi, k; and g; are standard floating-point numbers, while n, i, Y;, K;
and G; are fixed-point integers.

3) Auxiliary Subroutine

(i) In order to define the function he wishes to be integrated, the user
must write an auxiliary subroutine which will calculate, on each entry,

k; 'hFi{x,:{]....,yu},{i-l,z....,n},
and place the results k; in locations K;.

Enter the subroutine by the instruction SUBR, aux (where intdiff
assumes that the name given to the subroutine is aux).

(ii)) This auxiliary subroutine is entered four times from intdiff each
time intdiff is entered from the main program.

(iii) If x occurs explicitly in any F; then the values of x to be used by
the auxiliary subroutine on the four occasions on which it is entered
are X, [xu + 13h), [xo + 4h), {xn + h), respectively, where x_ is the
initial value of x. This can be achieved by arranging that the value
of x shall be increased by '%h immediately before exit from the
auxiliary subroutine for the 1st, 3rd,]| time.

(iv) An alternative way to do this is to set n one greater than the number
of dependent variables and make the additional variable, y, so
formed, satisfy y = x, and then use y, instead of x when calcula-
ting F;. The increments to the value of y, are made by intdiff
automatically.

To make y, = x, set its initial value, then set k, = h by the main program before
entering intdiff and let the auxiliary subroutine evaluate

2
(Issue 2)

4)

2,2.98. 17
intdif 5

Ki=hFy (Yue ¥y Ygoov oo ¥a o 9)
for {(i=1,2,...,n =1) only.

If this is done and the value of h is altered, the value of k must
also be altered by the main program.

(v) The auxiliary subroutine forms one of the blocks of the main program
and its name must be included in the block declaration.

Entry and Exit
Entry for the first step of an integration :
(i) Place the parameter - (n-1) in location par*intdiff.
(ii) If using the procedure of paragraph 3 (iv), place k in location K + n.
(iii) ~ Set the initial values of y; in locations Y +i and clear all locations G +i.
(iv) Enter intdiff by the instruction SUBR, intdiff.

Exit after any step:

(v) On exit, the incremented values of y; will be in location Y; and the
error quantities g; will be in locations G;, using the same notation

as in ‘PROCESS USED'

C (Y =y,

C (G;) = g4

(vi) The contents of locations Y; and locations G; must not be altered
if it is intended to re-enter for another step, but the contents of
locations K; are of no further use and these locations may be over-
written if desired.

Re—entry for a further step of an integration :
(vii) [If necessary, adjust the settings mentioned in paragraphs 4(i) and 4(ii)-

(viii) Make a standard entry to intdiff.

3
(Issue 2)

2.2.8. 17,
intdif S

5) Restriction
A program using intiff as a subroutine cannot be entered more than once
because an order in intdiff is overwritten during the running of the program.
Therefore the program using this subroutine should be assembled with key 35
depressed. In this case RAP does not form an internal checksum of the program
when it is entered. Alternatively the subroutine could be made into a common
pn}grﬂ.m.

TIME

If A is the time taken (in milliseconds) by the auxiliary subroutine, the total time taken
on each entry is :—

0.3 + 4A + 1.4n milliseconds

TAPES

The library tape is punched for input by SAP. A tape is provided.

PROCESS USED

The theory of the process is discussed by S. Gill (Proc. Cambridge Phil. Soc. Vol. 47,
p. 96, 1951)..

In the following description, first suffices denote the stage of the calculation required
for one step of an integration. That is to say y; is the initial value of y;, while g,; is the
fourth end final calculated value of g;. It should be noted that g ; of the first step of an
integration is zero, while g . and y,; of a subsequent step are identical with g andy,; of
the preceding step.

Stage 1 k|i=hFi{x.ym....,}'°n] (im1,...,0)
i =2 (ky; - gy
¥ai-= ¥aj * 5y
Byi = i *3ni = %Ky
Stage 2 ky; _hF; (x4 A R AT
r; = (1=Vk) (kyj = 8y;)
Yai =%ii *Tai
By = Byi * 3% - (=y ky

4
(Issue 2)

5. E Gilbert

Stage 3

Stage 4

kai =hF] {I + !?ihq- }rz'll L e :"Izn}
rai = (14 V) (ky; = 85)
Y3i =Yai *Tai

Bai = By +3rg; = (1 +Vu)ky

E‘i=hFi{x+h.}'3]|----}'3“}
rai = Vallik,; - ggi)
Yai =Y3i T4

Byi = Bai *3r - ik

5
(Issue 2)

2.2, 3.17.
intdif S

November, 1963.

2. 2. 3. 18.
bessel S

CHAPTER 18 : BESSEL FUNCTIONS J0, J1, Y0, Y1
(Subroutine)

CODE bessel 8 (lssue 2)

FUNCTION

To caleulate J (x), J,(x), Y,(x), '1'11'.!} where x is the standard floating—point

number in the accumulator.

STORE USED

About 312 locations. This includes the subroutines log, sqrt and trig.

METHOD OF LUSE

This subroutine consists of two hlocks, bessel and polyn, and also requires log, sqrt

and trig.
1) Global Declarations
(i) Block names and global labels: bessel (Jj, I,, Y, Y,),
log, =qgrt, trig (sin, cos, tan), polyn.
(11) Glchal data: cos 1 *trig, Ja* bessel, t2* bessel, ws * pul_',ru.
The block polyn is punched on the same tape as bessel, and is used as a
subroutine by bessel. log, sqrt and trig must be assembled with bessel which uses
them as subroutines.
2 Enuy
SUBR, "Iﬂ * hessel to find ,]nl:x}
SUBR, .]1 * hessel to find ‘II{X]
SUBR, Y, * bessel to find Yn{x]
SUBR, "1’1 * hessel to find Yl{x}
3) Exit

The required result is in the accumulator on exit.

Where the required result is Yu{x} or YI{x} and x < 4, Jﬂ{x:l or Jt{ﬂ is to be

found in location Jn * bessel.

1
(Issue 3)

2. 2. 3. 18.

bessel §
4) Error Indication
'bessel error' is output on a new line on the output writer if x<0 on entry
te find Yq(x! or Y, (x}, and control is transfezred to RAP to await a message.
5} Rasteiction

A program using bessel and polyn as subroutines cannot be entered more
than once because an order in polyn is overwritten during the running of the program.
Therefore the program using this subroutine should be assembled with key 35 depressed.
In this case RAP does not form an internal checksum of the program when it is entered.
Alternatively, the subroutine could be made into a common program consisting of two
blocks, bessel and polyn.

TIME

To calculate]n{x} and], (x), where x<4, approximately 1.04 milliseconds.

To calculate Ynl[x} and Yl{x}, where 0<x< 4, approximately 3.0 milliseconds.

To calculate JQ{X}'IJ'I{X}' Yu{x} and Y, (x), where x>4, approximately 3.5 milliseconds.
TAPES

The library tape is punched for input by SAP. A tape is provided.

PROCESS USED
Summation of series.

Refer to Mathematical Tables — Aids to Computation Vol. 11, 1957, pages 86 —88.

April, 1965

2
(lssue 3)

2.2 319

PTSREA S

CIHAPTER 19 : PTSREAD
(Common Program)

CODE IP"ISREA S

FUNCTION

To cause one or more numbers to be read from a specified input device.
1. To input a number to the accumulator, the mode of the number and the input device
being specified by a parameter word; alternatively, to input a string of alphanumeric

information and pack it, five characters to a word in a location specified by a
parameter word.

2. To input a number or alphanumeric string on the same device as on the previous entry,
and using the same parameters.

STORE USED

341 locations.

METHOD OF USE

This routine is based on the 503 Algol input procedures, (see PROCESS USED), and
accepts numbers in any format which would be accepted by the Elliott Algol system (see 2.1.3.),
In addition, it can be used to input fixed—point fractions.

Entry Points

Method 1. COMP, PTSREAD

W (W is the parameter word)

On exit from numeric read, the number will be in the accumulator.

On exit from alphanumeric read, the address of the first location after the
packed words will be in the accumulator.

Method 2.
a) Floating Point COMP, PTSREAD, 2
b) Fixed Point COMP, PTSREAD, 3
¢) Alphanumeric COMP, PTSREAD, 4

In all cases the contents of the accumulator will be as in Method 1.

1
(Issue 2)

PTSREA S

Parameters

The parameter word W

F1 =00
Fl1=20

F1 =40

d=
d=
d

B = O

Error Indications

F1 N1 : 00 2048d

controls the input as follows:

Floating—point input; N1 is not used; input on device d.

Fixed-point input; if the number contains a decimal point it
is assembled as a fixed-point fraction, otherwise as an
integer. Fixed-point fractions are divided by 10(N1), Input is
on device d.

Alphanumeric input on device d.

N1 is the address of the location which holds the address
where the first packed word is to be stored. On exit, this
location will be pointing to the first word after the packed
information.

The device used is reader 1.
The device used is reader 2.

The device used is the typewriter.

On detecting an impermissible combination of characters, READ ERROR

will be displaye

d and the program will wait. When the sign of the word generator is

changed the routine will exit.

The following conditions will cause an error:—

Two decimal points in a number.

Two /s ina number.

A decimal point following , ,.

No digits after | .

No digits after a decimal point.

No digits between signs.

Fixed—point number out of range.

£ read before + - ., or digit during input.
Digit read before £ during string input.

£ read in inner string.

2
(Issue 2)

TAPES

2.2 3. 19.
PTSREA 5

The program is written in SAP. A tape is provided. This should be translated as a

common program (see 2.1,2.4.).

PROCESS USED

1)

2)

3)

D, Pullin

Numbers

Numbers dealt with by PTSREAD conform to the ALGOL definition of number; each
number must be followed by some character other than a digit, i.e. a decimal point

or a suffix 10

Inner Strings

Interpreted layout characters may be inserted in inner strings, i.e. between an
additional £ and ?

The meanings are 1 newline
8 space
r runout (i.e. blank)
tab
h halt

Each of these may be followed by an integer indicating the number of such
characters required.

For example,
££1681077
is a string consisting of six new lines followed by ten spaces.

Packing of Strings

Alphanumeric characters are packed five to a word, with the leading character at the
more significant end. The sign bit is 1 for the last word of any string and 0 for all
other words, If a string is not an exact multiple of 5, the final characters are leit
justified.

January, 1964,

(Issue 2)

2, 2. 3. 20.
PTSPRI S

CHAPTER 20: PTSPRINT
(Common Program)

CODE PTSPRI §

FUNCTION

To cause one or more numbers to be printed on a Bpe:ifieﬂ output device.

1. To output the number from the accumulator in a mode and format specified by two
parameter words, which also specify the output device used; alternatively, to output
the string of packed characters, of which the address of the first word is in the

accumulator.

2, To output the number in the accumulator, or the string whose starting address is in the
accumulator, in the same mode as the last number of the same type, and on the same
output device and in the same format as the last number of any type. Standard formats
are provided and can be set up by a single entry to the package.

This routine is based on the 503 Algol output procedures and provides all the
facilities of format and page layout that are available in the Elliott Algol system. In addition,

it can be used to output fixed—point fractions.

The expected form of the information for output is as defined in PTSREA S (2.2.3.19.).

STORE USED

478 locations,

METHOD OF USE
Entry Points

Method 1. COMP, PTSPRINT
W1
W2

with the number or the starting address of the string in the accumulator.

Method 2.
a) Floating—point COMP, PTSPRINT, 2

1
(Issue 2)

2. 2. 3. 20.

PTSPRI S
b) Integer COMP, PTSPRINT, 3
¢) Fixed—point fraction COMP, PTSPRINT, 4
d) String COMP, PTSPRINT, 5
e) Presumed settings COMP, PTSPRINT, 6
a), b) and c) will output the number from the accumulator; d) will output the string
whose starting location is adjacent to the last location of the previously output
string, and e) performs no output but sets up the following formats for subsequent
parameterless entries:
Punch 1, newline, leadzero "space", grouping (0)
For floating—point freepoint (8)
For integer digits (8)
For fixed—point fractions 12 digits
PARAMETERS

The first parameter word, W1,
F1 N1 : 00 N2

controls the mode of printing as follows:—

Fl Mode

40 Scaled

20 Aligned

10 Freepoint

04 Fixed—point fraction
02 String

00 Integer

N1 = number of digits before the point.
N2 = total number of digits.
Note. When freepoint is used, N1 and N 2 should be set equal.

For integers and fixed—point fractions, N1 is ignored..

The second parameter word, W2,
F1 N1 : F2 n +2048d

specifies the format of the output and the device to be used, as follows:—

2
flssue 2)

2. 20 20
TSPRT S

00 Sign of number dealt with in usual way

40 Special (1)

20 Special (2) see 2. 1. 3. 2. Chapter 2. 5. 3.
10 Special (3)

b) F2 the six bits are treated as an integer (i) and the digits are grouped
according to the rules for "grouping (i)". (see 2. 1. 3. 2.Chapter 2. 5. 1.

c) N1 is the address of the first word of the string that is to be prefixed
to the number.

If N1 = 0 the prefix is "newline".

If N1 = 1 there is no prefix (i.e. "sameline").

d) The seven least significant bits of the character n are the binary equivalent
of the character used to replace leading zeros. If n = 0 the leadzero character
is a space.

e) QOutput occurs on device d where

d = 0 for tape punch 1
d = 1 fortape punch 2
d = 2 for the output writer.

Emergency Printout

If the number to be printed is too large for the requested format, an emergency routine
is entered which will preserve the page layout. Provided that more than six characters have
been requested the number will be printed in scaled (n—6) format; if not, a halt symbol and an H
will be output.

If a real number is not in standard form, PRINT ERROR will be displayed.

If an impermissible character appears in an inner string, STRING ERROR will be
displayed.

TAPES

The program is written in SAP. A tape is provided. This should be translated as a

common program (see 2..1. 2. 4.).

3
D. Pullin (Issue 2) January, 1964.

2. 2.3 21
EDITAL S

CHAPTER 21 : EDITALL

CODE EDITAL S

FUNCTION

To produce a modified copy of a five— or eight—hole tape (the input tape) by means
of detection, insertion and replacement of strings of characters. The alterations are specified
by means of an edit tape .

STORE USED
Program 318 locatioms
Workspace 201 locations

If the one reader mode is used (see METHOD OF USE) then the edit tape is
packed with five 7—bit characters to a word and is stored in the free store
between the program and its workspace.

METHOD OF USE

There are two methods of use, depending on whether one or two paper tape readers
are available.

In the two reader mode, the input tape is in reader 1 and the edit tape in reader 2 during

the editing process; in the one reader mode the edit tape is first read into the computer and
stored, and is then 'read' from the store as required during the editing process. (See Note 2).

RUNNING INSTRUCTIONS

(n denotes the number of channels on the tape).

1. To translate EDIT ALL. depress key 35 and type SAP.
2. To enter EDIT ALL type EDITAL; 1.

3. Clear the keyboard.

1
(Issue 2)

2.2.3.21.
EDITAL §

One

H E:Hd er Mude

T wo

Set up on the keyhoard

Load the edit tape in the reader
and set 40 on the F2 keys. The
edit tape is read in.

Load the input tape in the reader
and change the sign of the word
generator.

The edited tape is output on punch 1.
[f the edit tape ends with an RE
command (see Commands), the editing

must be stopped by depressing the

MANUAL button then pressing
RESET.

To check the edited tape for

punching errors

The message ERRsUM indicates an
error (see Checking the Edited Tape).

R Eﬂ.liﬂl' tl‘l}d e

Set up on the keyboard

Load the input tape in reader 1,
and the edit tape in reader 2.

Chnhgﬁ the Elg]l of the word generator.

The edited tape is output on punch 1.
If the edit tape ends with an RE
command (see Commands), the editing
must be stopped by depressing the
MANUAL button and then pressing
RESET.

To check the edited tape for punching

Eerrore

The message ERRSUM indicates an error
(see Checking the Edited Tape).

2
(Issue 2)

Type EDITALL; 2.

00 2 : 00

Type EDITALL; 2.

2. 2. 3. 21,
EDITAL S

C omma I.'III.S

Each command occupies a single line of a print—up of the edit tape. The first
two non—ignorable characters on the line specify the [unction; the remaining characters

up to, but not including, the next *new line*, form the edit string . Lines containing no
function characters are ignorable. (See Note 1).

FL {Find Line)

The edit string is read. Then the input tape is copied until a line beginning
with this string is found. The last character copied is the last character of the edit
string.

DL (Delete to Line)

The edit string is read. Then the input tape is skipped until a line beginning

with this string is found. The last character skipped is the last character of the edit
string.

FC (Find Characters successively)

If the characters of the edit string are C; C5 C3 C,.thenthe input tape
is copied until C; has been copied, and then further until C, has been copied, and so
on until C, has been copied.

DC (Delete to Characters successively)

If the characters of the edit string are C, Cy C3 . . . C, then the input tape
is skipped until C, has been skipped, and then further until C, has been skipped, and
so on until C has been skipped.

FE (Find End of Line)

The input tape is copied up to, but not including, the next *new line®. The
"new line" character is read and stored in a buffer, and is held while insertions, if any,
are made from the edit tape. If the next command after the insertions is a *find"
command, then the buffer character is output; if it is a "delete® command, the buffer
character is ignored.

The edit string is ignored, and may be used for comments.

3
{Issue 2)

2.2.3.21,
EDITAL 5

DE (Delete to End of line)

The input tape is skipped up to, but not including, the next "new line®. The
treatment of this "new line® and of the edit string is the same as for FE.

IS (Insert on Same line)
The edit string is copied. (See note 1).

IL (Insert on new Line)

A "new line" is output, and then the edit string is copied.

CO (Comment)

The edit string is ignored.

RE (Remainder)

The remainder of the input tape is copied. The copying must be stopped
manually. (See Checking the Edited Tape).

ST (Stop)

The program enters a keyboard loop. When the keyboard sign digit is changed,
the program continues as if CO had been read.

The two following commands are effective only when five—hole tape is being
edited, For eight—hole tape they are equivalent to ST:—

SL (Set Leuer)

Punches a letter shift on the output tape, and sets the input and output shift

markers to "letter shift".

SF (Set Figure)

Punches a figure shift on the output tape, and sets the input and output shift
shift markers to "figure shift".

4
(Issue 2)

2,.2.3.21.
EDITAL S

Ignorable and Compound Characters

1. Eight-hole tape

The characters erase and blank, and also space and tab when not underlined,
are ignorable, in the sense that they can be removed from or inserted into a string of
characters without changing the value of the string, (e.g. *If a=0" and *if a = 0" are
equivalent strings). Thus these characters cannot be used as *"targets® for FC and DC
commands. They are however copied if they occur in the edit string of an IL or IS
command. (See Notes 1 and 2).

A character preceded by an underline or a vertical bar (or both) is regarded
as a single character. Thus, for example, FC b will not find the b in begin. In
combination with either of the non—escaping characters, space and tab are not ignorable

2. Five-hole tape
Blank and space are ignorable in the sense given above,

The character "carriage return® is ignored under all circumstances, and the

character *line feed" is treated as "new line® (i.e. carriage return, line feed). Thus
it is not possible to edit tapes on which carriage return occurs unaccompanied by a
line feed.

The Edit Tape for the One Reader Mode

When only one tape reader is being used the edit tape is held in the store
during editing. In this case, the edit tape must be terminated by a halt character (* : *
for 5-hole tape, 'Stop Code' (H) for B8-hole tape) occurring at the start of a line. If

the halt character occurs anywhere on the edit tape other than as the first character on
a line, it is packed normally.

If the program tries to read beyond the ena of the stored edit tape, EpIT oFLO
is displayed. In the two reader mode, the edit tape would shoot out of the reader.

Checking the Edited Tape

During editing, a checksum is formed of all the characters sent to the output
punch.

B
(Issue 2)

2.2.3.21.
EDITAL S

During checking, the characters are read and subtracted successively from
the checksum. When the checksum becomes zero, the next ten characters are read from
the tape, If these are all blank, it is assumed that the end of the tape has been reached,
and the check is successful. EnD is displayed. If not, or if the checksum ever becomes
negative, the check has failed and ERRSUM is displayed.

The check has also failed, if the tape shoots through the reader while being
checked.

The checksum is preserved, so that the check can be repeated after a failure,
in case the error is caused by the reader.

If the editing is stopped manually, then this is normally done when some of
the blanks at the end of the input tape have been copied. If, however, editing is stopped
while non-—blank characters are being output, this must be done by depressing the
MANUAL button, then the RESET button, so that it is not possible for a character to be
output and yet not added into the checksum.

Notes

1. To make a print up of the edit tape more readable, a space may be punched
between the function letters and the edit string. Therefore, if the first character
after the function letters is a space, it is ignored. This means that to insert
a space on the output tape one must give the command IS followed by two spaces.

2. In the one reader mode the length of the edit tape is limited by the amount of free
store available. The tape is packed five characters per word, blank characters
being ignored completely. This means that in the one reader mode, IL and IS
commands cannot be used to insert blanks on the output tape. If the edit tape
is too long, NorooM is displayed.

3. The edit string can occupy only one line. If several consecutive lines are to be
inserted, one can precede each by the command IL; alternatively one can use a
ST command to halt the editing, and change the input tape in the reader.

4. In the five hole mode, the program assumes that the input and edit tapes have
started on figure shift. Reduadant shift characters are ignored during editing,
except when an RE command is being obeyed. Also, if a single RE command is
used to edit (i.e. copy) a five hole tape, then a figure shift character is output
before copying starts.

b
(Issue 2)

2.2.3. 2L
EDITAL 5

5. In treating FL. and DL, commands, space is allowed for 150 non—ignorable characters in the
edit string. This is more than can occur on a single line of the widest teleprinter or
flexowriter. If the edit string of an FL or DL. command exceeds 150 characters, the effect
of the command is undefined.

6. If the first line of a program is to be the target for an FL or DL command, the program tape
must begin with a "new line".

7. Since the EDITALL program modifies itself during running, it is essential that key 35 be
depressed during translation of the SAP program tape.

CONFIGURATION

The basic 503 computer with either one or two paper tape readers.

TAPES

The program is written in SAP. A tape is provided.

PROCESS USED

The editing takes place in steps; in each step a command is read from the edit tape,
and then an appropriate amount of the input tape is processed. The commands of the edit tape
must therefore be written in the same sequence as they are to be obeyed.

A short example of an edit tape end the input and modified output is given overleaf.

illmore
. Williams January, 1964.

-
Ly

=
W

7
{lssue 2)

2.2,3 21,
EDITAL S

EXAMPLE

Input
procedure equals (2); value x; integer x;
comment equals assigns the matrix on top of the list to the name x;
begin integer P;

P :=down;
il store [NA+x] = 0 then delete (x);

if tour (P, store [P]) then;

end equals ;
ﬂutput
procedure equals (x); value x; integer x;
comment equals assigns the matrix on top of the list to the name x;
begin
if store [NA+x] ¥ 0 then delete (x);
if tour (down, NA+x) then;
end equals ;
Edit Tape
FL pro
FC (
DC 2
IS x
FL begin
DL s
DE complete line has been deleted
FC ; (
co last command equivalent to : FL if tour (
DC]
IS down, NA+x
RE

flssue 2)

22322,
LPRINT S

CHAPTER 22: 503 LINE PRINTER OUTPUT

(Common Program)
CODE LPRINT S

FUNCTION

A. To convert one 503 tape code character to a code suitable for printing on the line printer and
store it in a buffer (120 characters); printing one line on the line printer when the converted char-
acter makes the buffer full or is one which has been converted from a tape code character ‘new
line’ (decimal 2). For this function LPRINT is used as a S.A.C. common program (see 2.1.2.4).

B. To read a tape punched in the 503 paper tape code and print it on the line printer until either
the paper tape is exhausted or a halt code character (decimal 76) is read.

STORE USED
About 300 locations, including data.

METHOD OF USE
The tape LPRINT (lssue 2) cannot be translated using SAP Mk.1 ISSUE 1 because it uses the
RAP word facility included in SAP ISSUE 2.
Entry Points
For A. A standard 5.A.C. common program entry is made, with the character to be printed in
the accumulator, either to the first or second trigger point.

COMP, LPRINT, | for the first entry to LPRINT. (This clears the buffer and sets
pointers so that the character accepted is output at the begin-
ning of a ling,)

COMP, LPRINT, 2 for all subsequent entries.

A standard exit is made.

For B. Entry is made 1o the third trigger point by typing LPRINT; 3.
Operating Instructions (for function B only)
(i) Enter LPRINT at the third trigger point by typing LPRINT; 3.
(ii) Clear the keyboard.
(iii) Set the required value of n on the N2 keys (see FORMAT OF OUTPUT), then, after
loading the tape to be printed in reader 1, change the sign of the word generator.
(iv) To print the last line of a tape which does not end with a new line, type LPRINT; 4.

Error Indications
The message:—
LINE PRINTER NOT AVAILABLE
is displayed if the line printer becomes unavailable for any of the following reasons:—
(i) The line printer is in the manual state or is switched off.
(ii) The paper supply is exhausted.
(ili} The paper is torn or jammed in the feed mechanism.
(iv) The throat (cover door) is open.
(v) The paper runs away, i.e. a character is called which is not on the control loop (see 1.4.3.).
{vi} The hammer drive fuse is blown,
If the error state can be cleared the run will continue automatically.

FORMAT OF OUTPUT

The standard number of characters to a line on the line printer is 120; for function A this is
assumed. For function B, however, the number of characters to a line, say n, may be set at any
desired value provided n = 120, If, however, N, is zero, the standard size line of 120 characters is
used.

1
(Issue 2)

22322,
LPRINT S

If more than n characters are accepted between two new line characters (decimal 2), then the
remaining characters will be printed on subsequent lines. The last overflow line will be shifted as
far to the right-hand side of the page as possible, to indicate that it is an overflow of characters from
the previous line,

CONFIGURATION
The basic 503 computer with a line printer.

TAPE
The program is in S.A.C., suitable for translation by SAP. A tape is provided to installations
with a line printer.

PROCESS USED

A number of characters are available in the 503 tape code which are not in the line printer code.
The list below shows how the 503 tape code characters are represented in the line printer code if
other than normal.

503 tape code line printer code

R s

P A

B A

H A

-~ A

E ignored

a-z A-Z
A-Z A-Z *

| |
L causes the content of

the buffer to be output
on the line printer,

i 8 tabs are assumed to
be set at 6-space inter-
vals.

u minus sign on the

second line, *

* Two lines are printed on the line printer for each line of characters accepted. In each of the
120 positions of the 2nd line either nothing or one of the following characters will be printed:—

| (vertical bar) the character above is an upper case letter.

— {minus) the character above is underlined.

4+ (plus) the character above is an underlined, upper case
letter.

N.B.—For function B, the 503 tape code character R is ignored and H causes the word ‘wait’ o
be displayed on a new line and reading and printing to stop. To continue, change the sign digit.
If on continuation the B digit is 1 then the last line is printed and control is returned to RAP.

{.. 1. Hamilton.
P. Howell. February, 1964.

2
(Issue 2)

2.2e3423,
BAIRST A

CHAPTER 23: ROOTS OF A POLYNOMIAL

CODE BAIRST A (Issue 2)
FUNCTION
To calculate the roots of an equation
aax“ + aixn”1 + ienessensaeaota, X4a =0
STORE USED
LB8 locations.

CONFIGURATION

The requirements are as for 503 ALGOL.

A mnemonic tape is provided.

TIME

The time taken depends on the degree of the polynomial
and the number of iterations taken to find each pair of roots.
For a well-conditioned, 6th degree polynomial, the time taken is
about 1 second.

PROCESS USED

The procedure is based on the Bairstow-Hitchcock iterative
method of determining quadratic factors of a polynomial, If the

(Issue L)

2.2.3.23.
BAIRST A

degree of the polynomial is odd, a zero root completes one pair
of real roots. The procedure is not reliable for a polynomial
with several non-zero equal roots, and when such a problem is
attempted the values of K, eps 1, eps 2 and eps 3 may well have
to be larger than usual (see next paragraph).

SUMMARY OF PROCEDURE

procedure BAIRSTOW(n,a,epsO,epsi,eps2,eps3,K,m,x,y,nat,ex);

value epsO,eps1,eps2,eps3,n,K;
array 8, X, ¥;

integer array nat, ex:

real eps0, epsi1, eps2, eps3;
integer n, m, K;

n is the degree of the polynomial whose coefficients
are held in a one-dimensional array a.
n

al 0] holds the coefficient of x,

al 1] holds the coefficient of x 1

al n] holds the constant term

eps O is an accuracy parameter (see below)

eps 1 is an accuracy parameter (see below)

eps 2 is an accuracy parameter (see below)

eps 3 is an accuracy parameter (see below)

K is the maximum number of iterations to be

performed in calculating each guadratic factor.

(Issue L)

2.2.3.23,
BAIRST A

On exit from the procedure
m holds the number of pairs of roots found

x[i],y [A] are the roots of the polynomial, where
1 =4, 2, veee M.

nat [1] indicates the nature of the i th pair of roots.
If nat{i1=1, x[i], y[1] are a pair of real roots.
If nat{ 1] = -1, x[1], y[(1] are real and imaginary
prarte, respectively, of a
complex pair of roots.

ex[1] indicates which of the following conditions caused
exit from the iterative loop in finding the i th pair
of roots:-

ex(i]=1 The absolute values of the remainders r0O, r1 became

less than eps 1

= 2 The absolute values of the corrections incrp, incrg
became less than eps 2, This gives an indication
of' the accuracy of the roots.

= 3 The absolute values of the ratios incrp/p, inerg/q

became less than eps 3, This givee an indication
of the accuracy relative to the size of the root.

= L The number of iterations reaches K. The pair of
roots formed are not reliable and no further effort
to find additional roots is made.

For 1 > m the values of x([1i], y[i], nat[i] and ex[i] are undefined.

eps O is used as a lower bound for the denominator in the
expressions from which inerp and incrq are found. The recommended

-3._
(Issue i)

D8R B,
BAIRST A

value of K is 50, and this will suffice for a well-conditioned

polynomial.

E.K. Ney April, 1964.
L.J. Hamilton June, 1965.
P. Simmons

Py T
(Issue L)

2.2.3.24,
LPRALG A

CHAPTER 24 : 503 ALGOL LINE PRINTER PROCEDURES

CODE LPRALG A

FUNCTION

Note:

To allow the use of the line printer for output in a 503 ALGOL program.

Since these procedures modify the standard ALGOL system, care must be taken when
using them (see Note 3 below),

STORE USED

Total storage less than 550 locations
of which the arrays buffer and tab take 141 locations

METHOD OF USE

There is one main procedure ‘lineprinter’, and four supplementary ones. The procedure,

‘lineprinter; is a device setting procedure and is used as below,

lineprinter

A call of ‘lineprinter’ sets the line printeras the current output device, For example,
the instructions:

punch(1);
print £TOM £5L77, punch (2), £DICK?,
lineprinter, EHARRY £L77:
print £EWHO £L.77;
will produce the words “*“TOM WHO'" on punch 1,
“DICK" on punch 2, and
“HARRY" on the line printer

Thus, the line printer can be used by an ALGOL program as a serial output device.

However, actual printing only takes place when a new line character is output, or
when the line printer buffer is full of characters.

Tabulating Facilities

If a tab character is output, the next character is printed in a position governed by
the tab settings. The effect is exactly the same as on any typewriter.

There are 120 columns on the line printer page. These are numbered 1 to 120,
There is an array called *‘tab’ which is 20 elements long, containing integers which
indicate columns. In the event of a tab character being output, spaces are placed in the
line printer buffer up to the next column specified.

The elements of the array tab must be in ascending order; any element which is
less than an earlier element is ignored. Thus the lists 6,12,10,24...; 6,12,12,24...; and
6,12,24...; have identical effects.

It is not necessary to set every element of the array. The number of elements set
will be the number of tabs required.

2.2.3.24.
LPRALG A

The presumed tab settings are six spaces aparl in columns 6, 12, 18-114, 120 and
will remain so unless altered by the program. i.e. tab [1] = 6, tab [2] = 12,.... tab [20] = 120

e.g. Under the presumed settings if the last character was output in column 7,
tab will place spaces in columns 8-11 and the next character will be placed
in column 12.

Example:
tab [1] := 8;
print lineprinter, £these £17 words £t7 are £17 tabbed £L?
So £t7 are £17 these?;
will output:

THESE**WORDS***+** ARE***TABRED
Where * indicates ‘space’
SO***x*x ARE*THESE

(The other tabs remain at 12, 18, 24 etc.)

The tab settings are automatically restored to 6, 12, 18, etc. at the beginning of a
run of a program.

When outputting, if there are no tabs left on a line and a tab character has just
been produced, then the line printerwill print the subsequent information on the next line.

When using the other line printer procedures mentioned below, remember that
printing and other operations are not performed on the line printer until a new line charac-
ter is encountered or until the buffer is full.

topolform

This procedure causes the line printer to search fora hole in the top of form channel
of the line printer vertical formatcontrol loop and print on that line. It is the responsibility
of the programmer or operator in charge to see that the control loop is correctly placed
before the program is run.

find (M)

This causes the line printer to search for a character of value M on the control
loop and print on the corresponding line. M must take values from 0 to 30. If M is negative
or greater than 30 then the words ‘‘Errcall LP"" are displayed on the output typewriter.
The line printer executes a top of form and the program is allowed to continue.

lines (M)

This causes the line printer to throw M lines. The call ‘lines (1)' has no effect.
The same range and error action apply as with ‘find (M)".

overprint

This will cause the line printer to overprint as soon as a new line character is
encountered or the buffer is full. In this case the effect of a new line character is to

2.2.3.24,
LPRALG A

print on the same line all the characters formed since the last new line character. It is
the responsibility of the programmer to determine proper page layout.

Notes

1. All lower case letters are converted to upper case. No account is taken of U
and V.

2. If “lineprinter’ is cancelled by means of a ‘punch(n)’ statement, the characters
in the buffer are retained so that when ‘lineprinter’ is called again, the next characters
are placed in the buffer as if no ‘punch’ statement had been made.

Any characters left in the buffer at the end of a program using the line printer
will be output, even if ‘lineprinter’ is cancelled and not reset. This is done by detecting
the words “End of program’ or ““Space oflo’ or *‘Int oflo’ or “*Subscr oflo®* on the output
writer; the remaining characters will then be output immediately afterwards. Thus, no
characters are lost,

3. If the program is stopped other than by output of an error message or “'End of

program’’, then the next message to be typed in must be CANCEL. or RESET. or one of
the standard 503 ALGOL messages.

This calls for special care before input of a precompiled program (which is
input by typing the RAP message, IN.). Proceed as follows:

(i} Press the tape reader MANUAL button.
(ii) Type ALGOL.
(iii) When the HOLD-UP lamp lights, press the MESSAGE button.
(iv) Read in the precompiled tape by typing IN.
Error Print outs

All error prints are produced on the output typewriter.

1. *LP Manl" is printed if the line printer is switched off or in the
Manual state. A wait ensues until the condition is rec-
tified.

2. “LPerr1™ is printed if the yoke is open or paper nearly out. A wait

ensues until the fault is rectified.

3. “LPerr2” is printed if the paper in the line printer is torn or has
run out or a line printer error has occurred. A wait ensues
until the fault is rectified.

4, "Errcall LP” is printed if M in a call of one of the procedures “find (M)*
or ‘lines (M)’ is outside the range of 0 to 30. The pro-
gram continues.

2.2.3.24.
LPRALG A

TAPE
A mnemonic tape is provided to installations with a line printer. This ends
@ lineprinter; @ precompile;
It can be used to produce a precompiled copy. Whichever version is used, the tape is read in
before the ALGOL program and the ALGOL program must terminate with an extra end to correspond
to the begin at the start of the procedures tape.
Reading the tape up to
(1} the first @, gives no special effects
(2) the second @ makes the lineprinter the presumed output device

(3) the very end, makes the lineprinter the presumed output device and gives a
precompiled copy

(4) the first @ and then moving the tape along to just beyond the second H ,
gives a precompiled copy which leaves punch 1 as the presumed output device.

J. W, D, Stubbs November, 1964,

2.2.3.25
BATCH S

CHAPTER 25: PROGRAM BATCHES ON MAGNETIC TAPE

CODE BATCH &

FUNCTION

The programs comprising this package (DUMP, BRING and LOAD,
igsue 2) enable the user to create batches of programs on magnetic tape
(DUMP) and subsequently to retrieve the programs, & batch at a time, and
re-store in their original positions (BRING and LOAD). A batch is defined
as the contents of the main store (apart from the program DUMP and the
Reserved Area) or the contents of the main store and the core backing store;
this option may be taken at the time the batch is created. There 1is an
optional facility in issue 2 which allows the user to write LOAD on to the
magnetic tape with the batch.

Programs are dumped in exactly the same form in which they
are stored at that time.

These programs provide an alternative to binary output of
compiled programs to paper tape.

N.B. Batches prepared using DUMP Issue 1 may not be brought to
store using BRING & LOAD Issue 2. Batches which must be
preserved should be brought down using BRING & LOAD Issue 1
and re-dumped using DUMP Issue 2.

STORE USED

DUMP occupies 350 locations
BRING occupies 95 locations
LOAD occupies 127 locations (+512 data locations)

-1 -
(1ssue 2)

2.2.3.25
BATCH S

METHOD OF USE

1. Naming Batches

Each batch is assigned a name at the time the batch is created.
If the name "BATCH 1" is given to the first batch on a reel, all subsequent
batches on that reel will follow in order after the first, thereby creating
a multi-batch reel. If the first batch has any other name all subsequent
batches for that reel will overwrite the previous batch, creating a single-
batch reel.

2. Loading

All the programs to comprise one batch must be in store (usually
they will have been assembled) before the program LOAD issue 2 (optional) and
DUMP issue 2 are loaded. These programs are coded in binary for input by RAP.

(i) If the user wishes to have LOAD issue 2 written onto
magnetic tape with the batch, then he must input it
immediately before reading in DUMP issue 2,

(ii) If the free store area is not large enough to contain
LOAD issue 2 and DUMP issue 2 then the 512 data
locations allocated to LOAD may be deleted by entering
LOAD at its 2nd entry point before reading in DUMP.
This will not affect the running of LOAD.

The reel of magnetic tape to contain the batch must always be loaded on Handler 1l.

-2 -
(Issue 2)

2.2.3.25
BATCH S

3. Entry Points

There are five entry points to DUMP, which have the following
effects:

DUMP ;1.BATCHIIAME. To dump the contents of main store and
backing store. The first action taken by
dump is to remove itself from the RAP
program list (so that it will not itself be
dumped). The main store is then dumped in
two sections: the area up to the RAP FF
pointer and the area between the LF pointer
and the Reserved Area. The core backing
store is then dumped.

DUMP ;2 . BATCHIANE. As entry 1 excent that the core backing store
is not dumped.

DUMP;3.BATCHUAME. and

DUMP 3 i . BATCHNAME.. are reserved for future extensions to the
Trogram. At present they have the same
effect as entry 2.

DUMP35. Prepares the reel mounted on Handler 1 for
dumping by writing a dummy label at the
beginning of the reel.

Example
——ee e

The following typewriter output would be obtained from reading
in programs A and B and writing them as a batch called "TRIAL" (all messages

to the computer are underlined):

i
(Issue 2)

2.2.3.25
BATCH 5

DUMP;5. (to prepare the reel)

DUMP;2.TRIAL (dump main store including LOAD)
END

LIST.

7881 (store now empty)

L. Retrieval of Programs

To retrieve the programs batched, as in the above example,
and restore them to their original position in store, the programs BRING
and LOAD are used, The typewriter output would be:

-l-l-'
(Issue 2)

output

2.2,3.25

BATCH &

RESET.

IN.

BRING TRIAL. (half the binary tape is read in. BRING
is self-triggering. LOAD is read from
magnetic tape and entered and the batch
1s now brought into main store. The rest
of the binary tape is ignored.

END

LIST.

A

B

e o

If LOAD has not been written onto magnetic tape the typewriter
would be:

RESET.

IN. (the lst half of binary tape is read in)

BRING TRIAL.LOAD (the rest of the binary tape is read in
automatically and the batch is brought
into main store.)

END

LIST.

A

B

- B
(Issue 2)

2.2.3.25
BATCH 8

N.B. LOAD issue 2 possesses the additional feature (required for
the STAR system) that after loading the batch into store it

searches
one then

message,

for a program called STAR, If it does not find
it transfers to RAP to display END and wait for a
If it does find a program called STAR then either

STAR is in SAPl binary and must be stored from location 5

onwards, or STAR is a SAP2 program and starts at a higher

address,

point.

e Error Messages

H1MNL

NO WRT PERMIT

PTYERR

CANT WRITE

X REEL

CANNOT READ

TP

RP,P

CONFIGURATION

In either case, LOAD enters STAR at its 3rd entry

Handler 1 set to "LOCAL".

File protected when an attempt made to dump a
batch, Continue, once the situation has been

remedied, by typing CONT.

Parity error has occurred on reading the reel
label. This could happen if the wrong density
has been selected on the handler. Continue,
once the situation has been remedied, by typing
CONRT.

Unable to write a block after 5 attempts,

Ho continuation possible,

Wrong reel loaded by mistake when attempting to
bring a batch to store.

Unable to read a block after 5 attempts,

llo continuation possible,

Output each time a parity error occurs when writing.
This gives an indication of the reliability of the
reel and/or handler.

The same as TP but output when reading down a batch.

One magnetic tape deck is required, in addition to the basic 503.

-6 -
(Issue 2)

2.2.3.,25
BATCH 8

TAPES

The tapes are coded in binary for input by RAP, Two tapes
are provided, one containing DUMP and one containing BRING and LOAD, The
programs on the latter tape are self-triggering. The tapes may also be
supplied as three separate tapes, DUMP, BRING and LOAD; in this case,
BRING and LOAD are not self-triggering.

C.F.DEAL February, 1966
C.M.STONES

- T-
{ Issue 2)

CHAPTER 26: ALGOL (MK 1) PLOTTER PACKAGE

CODE PLOT A

INTRODUCTION

The package is a set of procedures to facilitate the use of the digital
plotter in an Elliott 503 Algol Mk 1 program. Contained in the package are
procedures for moving the pen in a raised or lowered state, drawing axes and
the writing of strings and numbers.

It is desirable when using the plotter to specify distances in the units
of the particular problem being programmed rather than in plotter steps.
Therefore the procedures have been written with their parameters in units and
two scaling factors 'scabscissa' and 'scordinate' are used within the
procedures to transform the units to plotter steps. 'scabscissa' and
'scordinate' are real variables which take the form of the number of plotter
steps or fraction of a plotter step corresponding to one unit.

The position of the pen is noted by three variables 'abscissa', 'ordinate'
and 'penmerker' which are updated in the procedures. ‘'abscissa' and 'ordinate'
are integer variables which record the co-ordinates of the pen position in
plotter steps relative to a preset origin and 'penmarker' notes whether the
pen is raised or lowered. If the pen is raised then 'penmarker' is set to
zero else 'penmarker' is set to greater than zero. To set the directions of
'abscissa' and "ordinate' a variable 'page' has been introduced. If page=l
then "abscissa' and 'scabscissa' refer to the plotter's east-west direction
and "ordinate' and 'scordinate' to the plotter's north-south direction. If
page=3, this has the effect of rotating all directions through ninety degrees
in an anti-clockwise direction, 'abscissa' now referring to the plotter's
north-south direction and 'ordinate' and 'scordinate' to the plotter's east-
west direction.

The above global control variables may be set independently or by using
the procedure 'setorigin'.

i R
(Issue 1)

2:2.3.26
FIOT A

FUNCTIO5S

procedure setorigin (e,scaa,scao,way);
value e,scaa,scac,way;

integer e,way;

real scaa,scao;

The pen is moved to a position 'e' steps from the left margin of the
plotter. 'pare' is set egual to the parameter 'way' which must be 1 or 3.

If 'way' is not set to 1 or 3 then 'page' will be set equal to 1.
'scabscissa' is set to 'scaa' and 'scordinate' to 'scao'. 'abscissa' and
'ordinate' are set to zero at this point. The scaling factors are stored
as floating point numbers shich may be either integers or mixed numbers. Tt
is therefore necessary to choose the sceling factors, so that when calling
procedures with parameters in units, the distance obtained by multirlying
the number of units by the scaling factor, when rounded to an integral 1
number of plotter steps, is actually the distance required. A& plotter step
may be either 1/100th inch or 1/200 inch depending on the particular
installations.

The procedure aligns the setting of the pen, the pen position marker
in the plotter logic and the variable 'penmarker' in the pen-up position.

procedure penraise;

If ‘+he pen is down then it is raised else nothing happens.

procedure penlower;

If the pen is up then it is lowered else nothing happens.

[It is possible in certain circumstances when the plotter is Tirst
switched on, for the pen position marker in the plotter logic to differ from
the actual state of the pen. This can be corrected in the case of 'Fe?raise‘
by first giving a 'penlower' and in the case of 'penlower' by first giving a
'penraise'.]

procedure line (c,d);
value c,d;
real c,d;

This is a procedure which causes the pen to be moved in a straigh? line
from its present position indicated by 'abscissa' and 'ordinate' to a point(ec,d)

I
[Issue l}

2.2.3.26
PLOT A

where 'c' and 'd' are in units and are the co-ordinates of the point relative
to the origin. 'c' and 'd' may be positive or negative. 'abscissa' and
'ordinate' are updated during the pen movement. This procedure is used in
'drawline' and "movepen'.

procedure drawline (e,f);
value e, [

real e,f;

A line is drawn from the present pen position given by 'abscisesa' and
'ordinate' to a point (e,f) where 'e' and '"f' are in units and are the co-
ordinates of the point relative to the origin.

'e' and 'f' may be positive or negative. 'abscissa', 'ordinate' and
'‘penmarker' are updated during the pen movement. The pen is in the pen
down position on exit from the procedure. This procedure uses the procedure
'line'.

procedure movevpen (e,f);
value e,f;
reanl e,f;

The pen is moved in the pen un vposition from its present position
indicated by '"abscissa' and 'ordinate' to a point (e,f) where 'e' and 'f' are
in units and are the co-ordinates of the point relative to the origin. ‘'e'
and 'f' may be positive and negative. 'abscissa', 'ordinate' and 'penmarker'
are updated during the pen movement and the pen is in the pen-up position on
exit from the procedure. This procedure uses the procedure 'line'.

procedure axes (xwidth,ywidth,px,nx,py,ny);
value xwidth,ywidth,px,nx,py,ny ;
real xwidth,ywidth;

integer px,nx,py,ny;

Axes are drawn with the pen commencing and finishing at the origin of
the axes. 'abscissa' and 'ordinate' are not affected. 'px' and 'nk' are the
number of divisions required on the positive and negative axes of the x-axis,
each division being "xwidth' units in length. Similarly, 'py' and 'ny' are
the number of divisions on the positive and negative arms of the y-axis, each
division being 'ywidth' units in length.

(Issue 1)

procedure cencharacter (number);
value number;

integer number;

To facilitate the plotting of points on graphs, an extra procedure
has been included for drawing centred symbols about a point. The following
symbols may be drawn, by calling the procedure with the parameter 'number!
equal to the corresponding code number.

1 -+
2-0
3 =-X
h - pd
5 =X
6 = A
T = »
i o= 4
0 = *
10 - ¢

The characters are drawn starting from the ending at the centre of the
character or in the case of arrows, at the tip of the arrow, 'abscissa' and
'ordinate' are not affected during the procedure. Fach character is ten
plotter steps in width.

procedure plotter (width,dir);
value width,dir;
integer width,dir;

By calling this procedure it is possible to use the plotter as an
additional output device for printing strings and numbers. It is only
necessary to call punch(l), punch(2), punch(3), lineprinter or plotter
(width,dir). plotter (width,dir) may be called globally or locally in a
print statement whichever is desired.

In the case of the lineprinter, output is in the same form as from
the lineprinter procedures LPRALG A, Contained in the package are the
procedures 'top of form' find (on)', lines (on)' and 'overprint' to be used
onthe lineprinter.

o
(Issue 1)

2.2.3.26

+2.3.2
FLOT A

plotter(width,dir), sets plotter as the current output device by
seFting a marker for output on theplotter and by calling a procedure ‘output'
which modifies the Algol dynamic routines to allow theplotter and the line-
printer to be used as additional output devices, the two parameters set the
character size and the direction of writing.

If page=1 then by setting 'dir' equal to 1,3,5 or T writing is drawn
in the plotter's W-E, S,N, I-W or N-S direction. If page=3 this has the
effect of rotating all directions through ninety degrees and by setting
"dir' equal to 1,3,5 or T writing is output in the plotter's S-N, E-W, N-S
or W-E direction. If the parameter is given any other value than these then
the value is reduced by one and writing is output in that direction e.g. if
'dir' is set to 6 then writing is in the 5 direction.

Characters are constructed on a 6x5 grid. The size of the character
is specified by the parameter 'width' which is the width of the base of the
character in plotter steps and must be a multiple of five, If 'width' is
given any value other than a multiple of five then the size will be rounded
down to the nearest number which is a multiple of five. The smallest size
of character permitted is therefore five plotter steps in width. The
legibility of characters depends on the type of pen used and the length of
the plotter step of the particular installation. In the case of a plotter
with a 1/100 inch step using a ball-point pen, the smallest characters may
be drawn but in most other cases it is advisable to use a larger width.
Each character is started and finished at points 2/5 width from the base of
the character. 'abscissa', 'ordinate' and 'pemmarker' are updated during
the procedure 'scabscissa' and 'scordinate' have no effect on the size or
shape of the characters.

All telecode characters may be drawn except 10, 11, underline, and
vertical tr. It is also not possible to implement newline, paper thrown,
tab or backspace. If any attempt is made to output these characters then
they are ignored by the procedure, If a newline, tab, backspace or paper
throw is required then it is necessary to use the procedure 'movepen',
Lower case letters are written in the form of cursive script to eliminate
the raising and lowering of the pen between each character,

It must be remembered that output on the plotter will be in the same
form as output on & punch and therefore it is necessary to set the format
of numbers using the Algol format setting procedures.

-5 -

(Issue 1)

) The procedure 'output' modifies the standard Algol dynamic routines,
which are reset on reaching 'end of program' or on the output of an error
message.,

If the program is stopped other than by an error message or ‘end of
program' then the next message to be typed must be CANCEL, or RESET or one
of the standard 503 Algol messapges. If a precompiled tape is to be read
in, then the following procedure must be followed:

a. Press the tape reader manual button.

b. Type ALGOL.

Ce. When the hold-up lamp lights, press the MESSAGE button.
d. Read in the pre-compiled tape by typing IN.

EXAMPLE OF THE USE OF 'plotter'

begin

real a,b,c;

integer 1i;

comment The program reads in 15 readings of temperature against time and
draws a table of wvalues on the plotter. The square and square root of the
temperature are output on punch (1) for each set and the square and the
square root of the time output on lineprinter.

setorigin {300,100,100,1);

comment The origin is set at a distance of 300 plotter steps from the left
margin of the plotter. The two scaling factors are set to 100 steps/unit.
'page' is made equal to 1.

The main title of the table is drawn by making the plotter the current output
device and outputting the title as a string. The pen is then moved to the
beginning of the next line, and the second line of the title is written. The
punch and lineprinter titles are output in the usual way;

-6 =

(Issue 1)

2.2.3.26
PLOT A

movepen (1,10);

print plotter(20,1),fTABLE17;

movepen (0,9,5);

print plotter(15,1),£Tempgs157Time?;

print punch (1),££1?TABLE2(Temp)£1?Square Squareroot?;
print lineprinter,££1?TABLE3(Time)£17Square Cuberoot?;

comment The values of temperature and time are now read in and output on
the appropriate device;

for i:=2 step 1 until 15 do
beEln
read a,b;
c:=9 - (i*0.5);
movepen (O,c);
plotter (10,1);
print aligned (3,1), a;
movepen (2.85,¢);
print aligned (3,1), b
rint punch(1l),aligned(8,1),a*a,sameline,sqrt(a);
print lineprinter,aligned(8,1),b*b,sameline,sqrt(b);

end;

end;

end the extra end is required since the plotter package which precedes the
program begins with a begin;

EXAMPLE OF THE USE OF 'axes'

begin
integer i;

real temp;

comment A graph is to be drawn of temperature against time, The temperature
range 1s from D C to IDD C and readings are plotted every 25 secs, for 300 secs;

setorigin (200,2,5,1);
comment The origin is set 200 plotter steps from the left margin. The

scaling factors are set at 20 steps/sec and 5 steps/degree. Labelled axes
are now drawn with divisions every 50 secs and 10 degrees;

- -

(Issue 1)

2.2.3.26

+2e3e2
PLOT A

axes (50,10,6,0,10,0);

plotter (10,1);

for i:= 50 step 50 until 300 do
begin —
movepen (i-10,0);

print digits (3),i;

end;

movepen (100,-10);
print plotter(15,1),ftime(secs)?;

movepen (-75,20);
print plotter (15,3),ftemp(deg.cent.)?;

for i:=10 step 10 until 100 do
begin movepen(-20,i);
print digits(3),i;

end;

comment Readings of temperature are read in and the points plotted on the
graph;

for i:=25 step 25 until 300 do
begin

read temp;

movepen (i,temp);
cencharacter(l);

end;

end;
end;

RESTRICTIONS

(i) No precautions are taken to prevent the pen moving off the
edge of the paper.

(ii) If the user's program is to output check print then
precautions must be taken to ensure that the current
output device at the time of the check print is a
punch and not the plotter.

-8 -
(Issue 1)

2.2,3.26
PLOT A

ERROR INDICATIQNS

(i) If the plotter is in the MANUAL state, the plotter instructions
will be held up by the "busy' state. If the plotter is
switched off ERRINT 4 will occur when the first instruction is
issued to the plotter,

(ii) The normal Algol print errors will be displayed in the event
of an error occurring.

(iii) Lineprinter errors will be the same as those described for the
lineprinter procedures LPRALG A.

TIME
During all pen movements the pen moves at maximum speed.

SUMMARY OF PROCEDURES

setorigin (e,scaa,scao,way) - sets the origin 'e' steps from the left
margin, 'scaa' and 'scao' set the scaling factors and 'way'! sets the
variable 'page'.

penraise = the pen is raised

penlower - the pen is lowered

movepen (e,f) - the pen is moved to the point (e,f)
drawline (e,f) - & line is drawn to the point (e,f).

axes (xwidth,ywidth,px,nx,py,ny) - axes are drawn with 'px'
and 'nx' divisions on each arm of the x-axis, each division being 'x-width'
units in length. Similarly for the 'py', 'ny' and 'y-width' on the y-axis.

cencharacter(number) - to draw any one of the ten centred characters
about a point , the character being specified by the parameter 'number'.

plotter (width,dir) - allows the use of the plotter as an additional

output device to draw characters of size 'width' steps in width and in a
direction given by 'dir'.

M.Atkinson September, 1965,

B
(Issue 1)

Ledo 3,20
PLOT A

CHAPTER 26 ALGOL (MK 1) PLOTTER PACKAGE

CODE PLOT A

INTRODUCTION

The package is a set of procedures to facilitate the use of the digital
plotter in an Elliott 503 Algol Mk 1 program. Contained in the package are
procedures for moving the pen in a raised or lowered state, drawing axes
and the writing of strings and numbers.

It is desirable when using the plotter to specify distances in the units
of the particular problem being programmed rather than in plotter steps.
Therefore the procedures have been written with their parameters in units
and two scaling factors 'scabscissa' and 'scordinate' are used within the
procedures to transform the units to plotter steps. 'scabscissa' and
'scordinate' are real variables which take the form of the number of plotter
steps or fraction of a plotter step corresponding to one unit.

The position of the pen is noted by three variables 'abscissa', 'ordinate'
and 'penmarker' which are updated in the procedures. 'abscissa' and 'ordinate'
are integer variables which record the co-ordinates of the pen position in
plotter steps relative to a preset origin and 'penmarker' notes whether the
pen is raised or lowered. If the pen is raised then 'penmarker' is set to
zero else 'penmarker' is set to greater than zero. To set the directions
of 'abscissa' and 'ordinate' a variable 'page' has been introduced. If
page=1 then 'abscissa' and 'scabscissa' refer to the plotter's east-west
direction and 'ordinate' and 'scordinate' to the plotter's north-south dlrectmn
1 page = 3, 05 or 7, this has the effect of rotating all directions through 90°
180° or 270" in an anti -clockwise direction.

The above global control variables may be set independently or by
using the procedure 'setorigin'.

-] =
(Issue 2)

Lo by Jda &0

PLOT A

FUNCTIONS

procedure setorigin (e, scaa, scao, way);
value e, scaa, scao, way:

integer e, way;

real scaa, scao;

The pen is moved to a position 'e' steps from the left margin of the
plotter. 'page'is set equal to the parameter 'way' which must be 1,3,5 or
fi

If 'way' is not set to 1,3,5 or 7 then 'page' will be set equal to 1.
'scabscissa' is set to 'scaa' and 'scordinate' to 'scao'. 'abscissa' and
'ordinate' are set to zero at this point. The scaling factors are stored
as floating point numbers which may be either integers or mixed numbers.
It is therefore necessary to choose the scaling factors, so that when calling
procedures with parameters in units, the distance obtained by multiplying
the number of units by the scaling factor, when rounded to an integral 1
number of plotter steps, is actually the distance required. A plotter step
may be either 1/100th inch, 1/200 inch or 0.1 mm, depending on the
particular installations.

The procedure aligns the setting of the pen, the pen, the pen position
marker in the plotter logic and the variable 'penmarker' in the pen-up
position.

procedure penraise;

If the pen is down then it is raised else nothing happens.

procedure penlower;

If the pen is up then it is lowered else nothing happens.

[:It is possible in certain circumstances when the plotter is first
switched on, for the pen position marker in the plotter logic to differ
from the actual state of the pen. This can be corrected in the case of
'penraise’ by first giving a 'penlower' and in the case of 'penlower’' by
first giving a 'penraise’.

i
(Issue 2)

2.2.3.26
PLOT A

procedure line (c, d):
value ¢, d;
real ¢, d;

This is a procedure which causes the pen to be moved in a straight line
from it's present position indicated hy 'abscissa' and 'ordinate' to a point
(c,d) where 'c' and 'd' are in units and are the co-ordinates of the point
relative to the originf 'c' and 'd' may be positive or negative. 'abscissa'
and 'ordinate' are updated during the pen movement. This procedure is
uscd in 'drawline' and 'movepen’.

procedure drawline (e, f);
value e, [
real e, f;

A line is drawn from the present pen position given by 'abscissa'
and 'ordinate' to a point (e, f) where 'e' and 'f' are in units and are the
co-ordinates of the point relative to the origin.

'e' and '{' may be positive or negative. 'abscissa', 'ordinate' and
'penmarker' are updated during the pen movement. The pen is in the pen
down position on exit from the procedure. This procedure uses the
procedure 'line'.

procedure movepen (e, f);
value e, {;
real e, f;

The pen is moved in the pen up position from its present position
indicated by 'abscissa' and 'ordinate' to a point (e, f) where. 'e' and 'f'
are in units and are the co-ordinates of the point relative to the origin.
'e' and 'f' may be positive and negative. 'abscissa', 'ordinate' and
'penmarker' are updated during the pen movement and the pen is in the
pen-up position on exit from the procedure. This procedure uses the
procedure 'line’'.

procedure axes (xwidth, ywidth, px, nx, py, ny);
value xwidth, ywidth, px, nx, py, ny;

real xwidth, ywidth;

integer px, nx, py,ny:

Axes are drawn with the pen commencing and finishing at the origin
of the axes. 'abscissa' and 'ordinate' are not affected. 'px' and 'nx' are
the number of divisions required on the positive and negative axes of the
x-axis, each division being 'xwidth' units in length., Similarly, 'py' and 'ny’
are the number of divisions on the positive and negative arms of the y-axis,
each division being 'ywidth' units in length.

- % -
(Issue 2)

A A
PLOT A

procedure plotchar (n, size, angle);
value n, size, angle;

integer n, size:

real angle;

All characters to be plotted are output hy the procedure. Characters
are formed by stating the co-ordinates which are to be joined, by the
procedure line, in the pen up or down position as specified. The characters
are constructed on a grid, the maximum size being 15 x 15. If a user wishes
to alter or replace any of the standard characters, they can construct the
character as required, then substitute the new 'elliott' orders in the required
places. If there are more or fewer 'elliott' orders then the lookup table

should be altered accordingly.

The lookup table is in the form 'elliott (0,0,0,0,0,0,n);' where 'n’
is the address of the character -1.

The characters are in the form:

m p(x, y) p(x, y) p(x,y) p(*, y)
m=0o0r 1 Ifm= 0 then the next 'elliott’ order is to be plotted

but if m = 1 then this is the last elliott order.
p=0or 1l Ifp=0then raise peneclse if p = 1 then lower pen.
0 £ x €15 This is the x co-ordinate that the pen must be moved to
0<y< 15 This is the y co-ordinate that the pen must be moved to.

The character in 'elliott' form will look like:

Bit 39 Bit 1

lll p111 farrza |1 fpaxan ofaranoyorofriil o111l of1 f1111 | 1111 | 0O
MIP x y Fl x Yy P x y P| x y

Example of Producing Characters

The co-ordinates for the character

G "
; /' \ ! would be as follows:-

» g d 0 0(1,0) 1(1,8) 1(3,10) 1(7,10)
. ; 0 1(9,8) 1(9,0) 1(9,5) 1(1,5)
b 1 0(10,0) 0(10,0) 0(10,0) 0(10,0)
] |
Q - " ‘;-

START < A I ¢ N = 4 -

(Issue 2)

P
PLOT A

These co-ordinates canthen be converted to 'elliott' orders by the program
CONVERT CO-ORDINATES TO ELLIOTT ORDERS (Appendix 2) which is
written in ALGOL.

A test program 'PLOT CO-ORDINATES' (Appendix 3) is also
available which reads the co-ordinates in the above form and plots them.
This enables the user to test various characters without editing the package
every time.

procedure cencharacter (number);
value number;
integer number;

To facilitate the plotting of points on graphs, an extra procedure
has been included for drawing centered symbols about a point. The
following symbols may be drawn, by calling the procedure with the
parameter 'number' equal to the corresponding code number.

— D 00 =1 O N W N
]
+¢e$yqix¢+

The characters are drawn starting {rom and ending at the centre of
the character or in the case of arrows, at the tip of the arrow. These
characters are drawn on an 8 x 8 grid, and maybe varied in size by
altering the global variable 'censize'. A standard setting of 10, is
made by the plotter package, which then constructs characters on a
grid of size 10 x 10 plotter steps.

procedure plotter (height, dir);

value height, dir;

integer height, dir;

By calling this procedure it is possible to use the plotter as an
additional output device for printing strings and numbers. This

-5 =
(Issue 2)

2. 2:3:26
PLOT A

procedure may be called globally or locally in a print statement whichever
is desired.

'plotter (height, dir)', sets the plotter as the current output device
by calling the procedure 'output' which modifies the ALGOL dynamic routines
to allow the plotter to be used as an additional output device. The two
parameters set the character size and the direction of writing.

If 'dir' is set equal to one then this has the effect of writing from
W-E by increasing dir by 1 then this has the effect of rotating the plotter
through 45 degrees in an anti-clockwise direction. This increase may be
done for 14 dir £ 8.

Characters are constructed on a 10 x 10 grid, starting at point
(0, 0) and ending at point (0, 10), The size of the character is specified by
the parameter 'height' which is 4/5 the height of the character in plotter
steps. The legibility of characters depends on the type of pen used and the
length of the plotter step of the particular installation. 'abscissa', 'ordinate'
and 'penmarker' are updated during the procedure. 'scabscissa' and
'scordinate' have no effect on the size or shape of the characters.

All telecode characters may be drawn except 10, 11, underline, and
vertical bar. It is also not possible to implement newline, paper thrown,
tab or backspace. If any of these characters are given to the 'output' procedure
then a space is left. Lower case letters are converted into upper case,
since it is assumed to be satisfactory for most users. There is however an
edit provided (Appendix 1) which will insert lower case letters, which are
constructed on an 8 x 15 grid. If a user wishes to continue to use the
character set from issue 2 of the plotter package, then a tape containing
the co-ordinates for these characters is available on request.

Sl
(Issue 2)

£.2.3.26

PLOT A

It must be remembered that output on the plotter will be in the same
form as output on a punch and therecfore it is necessary to set the format
of numbers using the ALGOL format setting procedures.

The procedure 'output' modifies the standard Algol dynamic routines
provided MOD 3 is in store; if it is absent then the result is undefined.

EXAMPLE OF THE USE OF 'plotter'

begin

real a, b, c:

integer 1i;

comment The program reads in 15 readings of temperature against time
and draws a table of values on the plotter. The square and square root of
the temperature are output on punch (1) for each set and the square and
the square root of the time output on lineprinter.

setorigin (300, 100, 100, 1);

comment The origin is set at a distance of 300 plotter steps from the left
margin of the plotter. The two scaling factors are set to 100 steps/unit.
'page' is made equal to 1.

The main title of the table is drawn by making the plotter the current
output device and outputting the title as a string. The pen is then moved
to the beginning of the next line, and the second line of the title is written.
The punch and lineprinter titles are output in the usual way;

movepen (1, 10);

print plotter (20,1), £TABLE1?:

movepen (0,9, 5):

print plotter (15,1), £Temp£s15?Time ?:

print punch (1), ££1?TABLE2(Temp)£1 ?Square Squareroot?;
print lineprinter, ££1?TABLE3(Time)£1 ?Square Cuberoot?:

comment The values of temperature and time are now read in and output
on the appropriate device;

(Issue 2)

Z.2.3.26
PLOT A

for i:=1 step 1 until 15 do

begin

read a, b:

c:=9 - (i %0, 5):

movepen (0, c);

plotter (10, 1);

print aligned (3, 1), a;

movepen (2. 85, c);

print aligned (3, 1), b;

print punch (1), aligned (8, 1), a%*a, sameline, sqrt(a);
print lineprinter, aligned(8, 1), b*b, sameline, sqrt(b);

end;
end:

c¢nd the extra end is required since the plotter package which precedes the
program begins with a begin;

EXAMPLE OF THE USE OF 'axes’

b:._giu
integer 1;
real temp;

comment A graph is to be drawn of temperature against time. The
temperature range is from 0°C to 100°C and readings are plotted every
25 secs. for 300 secs;

sctorigin (200, 2,5, 1);

comment The origin is set 200 plotter steps from the left margin. The
scaling factors are set at steps/sec and 5 steps/degree. Labelled axes
are now drawn with divisions every 50 secs and 10 degrees;

axes (50,10,6,0,10,0);
plotter (10, 1);

for i:=50 step 50 until 300 do
begin

movepen (i-10, 0);

print digits (3), i:

end;

movepen (100, -10);
print plotter (15, 1), £time (secs) ?;

e
(Issue 2)

PLOT A

movepen (=75, 20);
print plotter (15, 3), £temp(deg. cent.) ?;

for i:=10 step 1- until 100 do
begin movepen (-20, i);
print digits (3), i

end:

comment Readings of temperature are read in and the points plotted on the
graph;

for i-=25 step 25 until 300 do

begin

read temp;

movepen (i, temp);

cencharacter (1);

end;
end;
1

o
b

|

RESTRICTIONS

(i) No precautions are taken to prevent the pen moving off the edge
of the paper.

(ii) If the user's program is to output check print then precautions must
be taken to ensure that the current output device at the time of the
check print is a punch and not the plotter.

(iii) MOD3 must be in store when using the plotter package. (see
Appendix 4).

(iv) Procedure 'output' must not be segmented.

ERROR INDICATIONS

(i) If the plotter is in the MANUAL state, the message 'PL man' is
displayed on the typewriter and the plotter instruction will then
be held up by the 'busy' state. If the plotter is switched off
ERRINT 4 will occur when the first instruction is issued to the
plotter.

(ii) The normal Algol print errors will be displayed in the event of an
error occurring.

- g’ -
(Issue 2)

TIME

2.2,3.26
PLOT A

During all pen movements the pen moves al maximuim speed.

- 10 =
(Tesue 2)

General Purpose Software Group.

(with acknowledgements to the
G.P.O. for their development
work in connection with Issue 3)

NAME

FUNCTION

METHOD OF USE

s by S &0

PLOT A

APPENDIX 1

EDIT TO PLOTTER PACKAGE
FOR LOWER CASE CHARACTERS.

To edit the PLOTTER PACKAGE (either the ALGOLI
or ALGOLS3 version) in order to produce a version
for users who require lower-case cursive script.

A new PLOTTER PACKAGE tape should be produced
using the program EDITS8 (see description in
section 2. 2.3.27 of the MANUAL).

Appendix 1
« I
(Issue 1)

NAME

FUNCTION

METHOD OF USE

OPERATING

TAPE

M S
PLOT A

APPENDIX 2

CONVERT CO-ORDINATES TO ELLIOTT ORDERS.
To modify the character set of the plotter package.

This program will convert the character format, as
specified in the plotter package description, into
the correct 'elliott' orders,.

There is also a print-up on the lineprinter of the
co-ordinates together with the produced 'elliott’
orders.

(i) The program is compiled under ALGOL.
(ii) Load the data tape i.e. co-ordinate tape, in
reader 1 and change the dwait key (key 19).
(iii) Output occurs to punch (1) and the lineprinter.
The data tape should be terminated with a halt
code (decimal 76) which will cause a 'dwait' at
the end.

No tape is issued but the text of the program is as
follows:

CONVERT CO-ORDINATES TO ELLIOTT ORDERS:

begin

integer ¥F11,F12, N1, BLINE, F21,F22,N2,1i, P, X, ¥, m;
switch ss:=convert;

sameline:

convert: read m;

digits(2):

print punch(4), ££4? ?, m;
for i:=1 step 1 until 4 do

begin

read p,x,y:

print punch(4), ££s2??,p, £(?,x, £, ?2,v, £)7;
elliott (3,0, m,0,5,5,1):

elliott (0,4, p, 0,
elliott (0, 4, x,
elliott (0,4, y,

5,5,4)
5,5,4)
2,0, m):

8
"

Appendix 2
-1 -
(Issue 1)

2.2.3.26
PLOT A

end;

p:=7:

elliott (3,0, m, 0,5,5,2):
elliott (5,0, 36,0, 0, 3, p):
elliott (1,6,F11,0,5, 4, 3);
elliott (1,6,F12,0,5,4, 13):
elliott (1,6,N1,0,5,4,1):
elliott (1, 6, BLINE, 0, 5, 4, 3);
elliott (1,6,F21,0,5,4, 3):
elliott (1,6,F22,0,5,4, 13);
elliott (1,6,N2,0,0,0,0):
elliott (7,3,p,1,4,3,1);

digits(4):

print £ £f?elliott (?,F11, £, ?,F12, £, ?,N1, £, ?, BLINE, £, 2. F2), 5,7,
F22, %, 7,N2,£);7;

E_E_iil_!.punch(é}, fft?elliott (?,F11,£,7?,F12,£, ?,N1, £, 72, BLINE,F, ?,
F2):%: 7. F22; 5. VN2, &)

if F11=3 then print ££2? ?, punch(4), £ £8? ?;

g(}t(} convert:

end:

Appendix
-2 =
(Issue 1)

NAME

FUNCTION

METHOD OF USE

OPERATING

TAPE

punch(3):

&.8.3.26
PLOT A
APPENDIX 3

PLOT CO-ORDINATES
To plot characters direct from a data tape.

This program uses the plotter package and plots

the co-ordinates read from paper tape. This is
done by the procedures 'movepen' and 'drawline’.
The size of characters may be altered by the

setting of the origin which is typed in every time the
program is run.

(i) Compile the plotter package under ALGOL.
(ii) Load the program tape in reader l and change
the sign bit.

(iii) Load the data tape in reader 1 and change the

dwait key.

(iv) 'setorigin' is output to the typewriter.

(v) Type the values for the parameter for procedure
setorigin as follows

e (8 scaa (g scao(s) way @

This will set the origin (see procedure 'setorigin'
in the plotter package description) and character
will then be read and plotted. By changing the
values of 'scaa' and 'scao' the size of character
can be varied.

No tape is issued but the text of the program is
as follows:-

print £ £¢?PLOT CO-ORDINATES?;

begin

integer m, p, %, y, i, xstart;
switch ss:=repeat, start:

print £ £¢?setorigin ?;

read reader(3), m, x, y, p;
setorigin(m,x, vy, p):
start:xstart:—abscissa/scabscissa:

repeat:=read m;

for i:=1 step 1 until 4 do

Appendix 3
il
(1ssue 1)

2.2.3. 20

PLOT A

begin
read p,x, y:!
if p- 0 then movepen(xixstart, y) else drawline(xixstart, y):

end;
if m=0 then goto repeat else poto start;
end:
ﬂ.d_l

Appendix 3

(Issue 1)

APPENDIX 4

TRANSLATION TO OWNCODE ON PAFPER TAPE

If this ALGOL 1 facility is being used with the PLOTTER PACKAGE
a special PLOTTER MOD is required (the tape is issued to basic
installations). Operating instructions are as follows:

a) TO PRODUCE OWNCODE

Step Action Message Output Tape in reader
1 Type RESET.
2 Type IN. ALGOLI ALGOL (Tape 1)
3 Change Sense Key 39 ALGOL2 ALGOL (Tape 2)
swait
4 Press message button
5 Type OWNOUT.
6 Change key 39 swait PLOTTER PACKAGE
7 Change key 39 swait Users program
8 Owncode tape is output

on punch l.

b) TO INPUT OWNCODE AND RUN THE PROGEAM

9 Type RESET.
10 Type IN. OWNIN ALGOL2 ALGOL (Tape 2)
11 Press message button
12 Type IN. ALGOLZ UN-CHEK PLOTTERMOD
(first half)
13 Type IN. OWNIN UN-CHEK PLOTTERMOD
(second half)
14 Type OWNIN. Owncode tape
15 PROGRAM NAME
FREE STORE a-b
Dwait
16 Change key 19 Data tape
Appendix 4

-1 -
(Issue 1)

2.2.3.2T

EDITS S

CHAPTER 27: EDITS

CODE EDIT8 S

FUNCTION

To produce a modified copy of an eight-hole tape (the input tape)

by means of deletion, insertion and replacement of strings of characters.

The alterations are specified by means of an "edit tape".

STORE USED

Program 208 locations

Workspace 56 locations

METHOD OF USE

The program has 6 entry points.

Entry 1

This entry is the normal entry point to the program and requires
the input tape to be loaded in reader 1 and the edit tape to be loaded in
reader 2.

The edited tape is output on punch 1l.

If the edit tape ends with an RE command (see COMMANDS), the
editing must be stopped by pressing the MANUAL button and then pressing RESET.

2.2.3.27
EDIT8 S

Entry 2 Type:- EDIT8;2.

This entry is for checking the edited tape for punching errors

and requires the tape to be loaded in reader 1.

The messame ERRSUM indicates an error.

Entry 3 Type:- EDITE;3.

———————

This entry performs in the same way a5 entry 1 except that
no edited tape is produced. The edit can ther=fore L: tested without using
computer time producins an edited tane which may be incorrect. If the edit

tape ends with an RE command, the input tape will shoot throush the reader.
Entry b (Reserved for future use for typing in edit)

Entries 5 and 6

These are used to enable EDIT8 to be used as & common profgran.
Entry 5 is used to set up the system to act in this way and Entry 6 causes
the characters to be supplied to the calling program rather than be output

to paver tape.

COMHMAIDS

Each command occupies & sinple line of a print-up of the edit
tape (with the exception of command IB). The first two non-ignorable
characters on the line specify the function; the remaining characters up to,
but not including the next "new line" form the "edit string". If a line
contains no function characters or an invalid command the remainder of the

line is copied onto the output writer (See Note 1).

2.2.3.27
EDIT8 S

FL (Find Line)

The edit string is read. The input tape is then copied until
a line beginning with this string is found. The last character copied is

the last character of the edit string., (See notes 3 and k).

DL (Delete to Line)

The edit string is read, The input tape is then skipped until
a line beginning with this string is found. The last character skipped is
the last character of the edit string. (See notes 3 and L4).

FC (Find Characters successively)

If the characters of the edit string are Cl C2 C3...Cn, then
the input tape is copied until Cl has been copied, then further until C2 has

been copied and so on until Cn has been copied.

pc (Delete to Characters successively)

1f the characters of the edit string are Cl1 C2 C3 ... Cn, then
the input tape is skipped until Cl has been skipped, then further until C2

has been skipped, and so on until Cn has been skipped.

FE (Find Fnd of Line)

The input tape is copied up to, but not including, the next
"ew line". The "new line" character is read and stored in a buffer, and is
held whilst insertions, if any,are made from the edit tape. If the next
cormand after the insertions is & "find" command, then the buffer character
is output; if it is a "delete" command, the buffer character is ignored.

The edit string is ignored.

2.2.3.27
EDIT8 S

DE (Delete to End of Line)

The input tape is skipped up to but not including the next
"new line". The treatment of this "new line" and of the edit string is

the same ag for FE,

1S (Insert on Same Line)

The edit string is copied (See lNote 1).

IL (Insert on New Line)

A "new line" is output, and then the edit string is copied.

IR (Insert Runout)

L™ of blank tape is output.

IB (Insert Block)

The first line of the edit string is read and stored. The
edit tape is then copied until a line beginning with this stored string is
found. The last character copied is the last character of the stored string.

EIEISI?T
EDIT8 S

e.g. To insert:-

begin MAIN;
SUBR, INOUT

COMP, TAX
40 start

end;

on the output tape, it is necessary to punch:-

IB end;

begin MAIN;
SUBR, INOUT
COMP, TAX
4O start

end;

On the edit tape.

C0 (Comment)

The edit string is copied to the output writer, starting with
the first character after CO. The comment appears on a new line and the

terminating "new line" character is ignored.

RE (Remainder)

The remainder of the input tape is copied. The copying must

be stopped manually,

2-2-3&2T
EDIT8 S

ST (Stop)

The message EOWait is displayed on new line and the program
then enters a number generator loop. VWhen the sign digit (Key 39) of the

number generator is changed, the program continues as if CO had been read.

Ignorable and Compound Characters

The characters erase and blank, and also space and tab, when
not underlined are ignorable, in the sense that they can be removed from or
inserted into a string of characters without changing the value of the
string, (e.g. "SOREPEAT*MAIN" and "LO REPEAT * MAIN" are equivelent strings).
Thus these characters cannot be used as "tarpets" for FC and DC commands.
They are copied, lowever, if they occur in the edit string of an IL or IS

command (See Note 1).

A character preceded by an underline or & vertical bar (or both)
is regarded as a single character. Thus, for example, FCb will not find
the b in begin. 1In combination with either of the non-escapable characters,

space and tab are not ignorable.

Checking the Edited Tape

During editing, & checksun is formed of all the characters sent
to the output punch, During checking, the characters are read and subtracted
successively from the checksum. When the checksum becomes zero, the next ten
characters are read from tape. If these are all blank, it is assumed that
the edit has been successful, END is displayed. If not, or if the checksum
ever becomes negative, the check has failed and ERRSUM is displayed.

2.2.3.27
EDIT8 S

The check has also failed if the tape shoots through the

reader whilst being checked.

The checksum is preserved, so that the check can be repeated

after a failure, in case the error is caused by the reader.

If the editing is stopped manually, then this is normally done
when some of the blanks at the end of the input tape have been copied. If,
however, editing is stopped whilst non-blank characters are being output this
must be done by depressing the MANUAL button, then the RESET button, so that
it is not possible for a character to be output and yet not be added into the

checksum.

lotes

1. To make the print up of the edit tape more readable, a space
may be punched between the function letters and the edit
string. Therefore, if the first character after the function
letters is a space, it is ignored. This means that to
insert a space on the output tape one must give the command

IS fellowed by two spaces,

2. The edit string can occupy one line only, with the exception
of the IB command., If several consecutive lines are to be
inserted one can use the IB command or precede each line by
the command IL; alternatively, one can use a ST command to

halt the editing and change the input tape in the reader,

2.2.3.27
EDIT8 S

3. In treating FL and DL commands, space is allowed for 30 non=-
ignorable characters in the edit string. If the edit
string of a FL or DL command exceed 30 characters, the effect

of the command is undefined.

L, If the first line of a program is to be the 'target' for a
FL or DL command, the program tape must begin with a

"new line'.

5 Since the EDIT8 program modifies itself during running, it
is essential that key 35 be depressed during translation of

the SAP program tape.

CONFIGURATION

The basic 503 computer with two paper tape readers.

TAPES

The program is written in SAP.

PROCESS USED

The editing takes place in steps; in each step a command is
read from the edit tape, and then an appropriate amount of the input tape is
processed. The commands of the edit tape must therefore be written in the

same sequence as they are to be obeyed.

2.2.3.28
NPRINT S

CHAPTER 28: GCENERAL NUMBER PRINT PROGRAM

CODE NPRINT S

1. FUNCTION

To output on punch 1, punch 2, directly connected typewriter
or line printer, in 8-channel (or line-printer) code, the number in the
accumulator, interpreting it either as a number in standard automatic floating

point form, or as an integer.

2 STORE USED

About 500 locations, including data.
Auxiliary register - affected.
Overflow indicator - affected.

Accunulator contents random on exit.

3. METHOD OF UGSE

Normal format

(a) Every number is preceded by + or -

and is followed by S S

(b) Non-significant leading zeros are
suppressed and Spaces are output in
their place., The sign is printed
immediately before the first digit
or the point.

2.2.3.28
NPRINT S

ENTRY

A standard S.A.C. common program entry is made to one of §
trigger points. The entry is followed by a parameter word determining
mode of output. The number to be printed must be in the accumulator.
This program must be used with SAP Iesuve 2 as it uses facilities not

available in Issue 1.

COMP, NPRINT, P
a0 m B P n

A standard exit is made to 2 words after entry (i.e. directly following

the parsmeter word).

PARAMETER

For output on PUNCH 1 get a =0 p = 00
For output on PUNCH 2 a=1]1 p= 00
For output on DIRECTLY CONNECTED TYPEWRITER a=2 p = 00
For output on LINE PRINTER a=3

p = 6 bit number (written in octal) to be stored in the first
word of the line printer buffer whenever a new line is started. p controls
vertical format (see 503 Manual 1.4.3, page 2).

2.2.3.28

NPRINT S5

Octal p Decimal Value Action
00 s p s 36 0 S p £ 30 Move (p + 1) lines and print
p=3T orp= L0 p=3lorp= 32 Overprint (no line feed)
bl s p s 76 33 s p <62 Look for configuration

(p - 32)

on paper tape control

p=TT p = 63 "Top of form"
B - DIGIT If B = 0 the number is punched on the same line as the preceding

number (or stored further up in the same buffer in the case of the line

printer). The buffer has 120 locations.

If the buffer is full it is printed

and the buffer is stored at the beginning of the new buffer.

If B =1 the program will punch L before the number. In the

case of the line printer, if B = 1 the buffer will be printed as a single

line and p from the parameter word will be set in the first location of the

new buffer. The new number is then stored at the beginning of the buffer.

ENTRY 1
COMP, NPRINT, 1

a0 0 B p n

(parameter word)

To print a signed floating point number as a decimal fraction of n digits

followed by ;o and a decimal exponent consisting of a sign and 2 digits.

Altogether (n + 8) characters appear on the line.

e.g. number + 123.456 with parameter word 00 0 : 00 &
produces output on punch 1 in the form + . 1235 ;p + 035 8

2-2. 3428
NPRINT S

Error Action

If n is zero, output will be as for n = 9.

ENTRY 2
COMP, NPRINT, 2
a0 m B P n (parameter word)

To print a signed floating point number with m digits before and n digits
after the decimal point. Altogether (m + n + L) characters appear on a
line. If n = 0 the decimal point is replaced by a space.

e.g. number + 123.456 with parameter word 10 b : 00 2

produces output on punch 2 in the form § + 123.46 88

Error Action

If the number A is such that |A| 2 10% or
|a| 2 10™ then L 7 is output followed by A
as printed by entry 1 with n = 9,

ENTRY 3
COMP, NPRINT, 3
al 0 B P n

To print a floating point number of n digits with a decimal point in the
appropriate position. Altogether (n + L) characters appear on the line,
If the number is such that it contains exactly n significant decimal digits
before the point, the decimal point is replaced by a space.

22328
NPRINT S

e.g. number 123.456 with parameter word 00 O : 00 L
produces output on punch 1 in the form +123.5 S S
but if parameter word is 00 O : 00 3 output is

12388 8
Error Action

If a number A is such that |A| 2 10™ or |A| 2 10!!, then
L ? is output followed by A as printed by entry 1 with
n=09. If n=0 is set the fcrmat of entry 1 is used

with n = 9.
ENTRY 4
COMP, NPRINT, L
al 0 B D n

To print an integer with n digits. A total of (n + 3) characters appear

on the line.

e.g. integer 1234 with parameter word 3¢ 0 / 10 6

produces output on the line printer. The buffer is printed (because B = 1).
After printing the paper is moved 9 lines (p=8) and S S + 123k 88 is
stored at the beginning of the buffer.

Error Action

If the integer I is such that |I| 2 10", then L 7 is output
followed by I with n= 12, Ifn =0 is set then n = 12 is

used.

2.2.3.28
NPRINT 5

LINE PRINTER

Care must be taken when the line printer is being used. to
ensure that the final buffer is printed. To do this, after the last
nunber has been stored in the buffer in the usual way, clear the accumulator

and enter NPRINT with the instruction.

COMP, NPRINT, 5
30 0 / 00 0

Error Trndication

The message:= LINE PRINTER NOT AVAILABLE is displayed if

the line printer becomes unavailable for any of the following reasons:-

(i) The line printer is in the manual state or

ewvitched off.
(ii) The paper supply is exhausted.

(iii) The paper is torn or jammed in the feed
mechanism.

(iv) The throat (cover door) is open.

(v)

(vi)

2.2.3.28
NPRINT S

The paper runs away i.e. a character is
cell-d which is not on the control loop
(see 1.4.3).

The hammer drive fuse is blown.

If the error state can be cleared the run will continue automatically.

FORMAT

lNormal format for output is

(a)

(v)

Every number is preceded by + or - and is
followed by S S.

Non-significant leading zeros are suppressed
and spaces are output in their place. The
sign is printed immediately before the first
digit or the point.

The format can be changed from normel in several ways. The modified

format will be used in all subsequent outputs using NPRINT (N.B. These

modifications corrupt NPRINT so that it no longer sum checks. To

preserve the sum check the format must be set back to normal by entering:

COMP, NPRINT, 6

2.2.3.28

NPRINT S
llo parameter is needed and the
to the instruction following its entry. The format can be set back
to normal by the instruction COMP, NPRINT, 6.)
MODIFICATIONS

(a)

(b)

(e)

2.

(a)

(b)

To print £ instead of +

before integers : Enter COMP, NPRINT, 7
lio parameter. Exit to instruction following entry.

before floating point numbers : Enter COMP, WNPRINT,

Ho varameter. Exit to instruction following entry.

before exoponent in form produced by entry 1:
Enter COMF, WPRIUT, 9

No parameter, Exit to instruction following entry.

To suppress sign altogether,

before all numbers: Enter COMP, NPRINT, 10

o paremeter. Exit to instruction following entry.

before exponent in the form produced by entry 1:
Enter COMP, NPRINT, 11

No parameter. Exit to instruction following entry.

8

242-3-25
NPRINT S

3. To priot character of value K instead of ..

Enter COMP, NPRINT, 12
Parameter +K. Exit to instruction following
parameter,

b, To print characters of value K, L instead of S 8
at the end of the number:

Enter COMP, NPRINT, 13
Parameter 1) +K
Parameter 2) +L

Exit to instruction following parameter 2.

Se To suppress S 5 at end of number: Enter COMP, NPRINT, 14

No parameter. Exit to instruction following entry,

M.PADMORE , NOVEMBER, 1965,
COMPUTER RESEARCH
LABORATORY .

CHAPTER 29: THE FORTRAN TO ALGOL TRANSLATOR
CODE FEAT A (Core Backing Store Version)

MTFEAT A (Magnetic Tape Version)

CONTENTS

l. Function of the Translator ...useeiececennaes 10
2. General Description........o.o0uu... voew e e e R
B ICOIEII R RARTON o xwnsmi o i v i o T A 58 B S B R T R

Fok FERATL s i 0w 0 60 a0 b o vy

4. Ahe:FORTRAN Program. cveimcovsseee e i A e
4.1 The Requirements of a FORTRAN Program «iv
4.2 The FORTRAN Tape...... S R e e Aol S

nomnn g

6. To Translate a FORTRAN Program P T
6.1 Method of Operating with FEAT g
6.2 Method of Operating with MTFEATc0vuununnnn.
G0 DD v oo smimie v o wmie g miie o e e R e

7. Process Used to Translate a FORTRAN Program

B: BError MEBBREGE i eu el 3w e e e e R R R e

G, Bestrictions and NoOtesvier e oe o onsansessans o S AP

Appendix I To Translate and Run the ALGOL Version of a
Translated FORTRAN Program

Appendix II Subscript Overflow
(i)
(Tssuc 2)

@ m o= om

FFWN_%
<
|
H
=
>
H

Standard Procedures Tapes .cviiviveneoasesvsassssais
5.4.]1 General Description........0o0vuuvu. C e e
5.4.2 FORTRAN Field Descriptors..c.coucueueeas S
LY SRR o o e i N R A B S SR
Bk Betor MOeBBAGEE vy iivevkiae dsvdevs et
5. 4,5 ReBErictions and WOLER .ou s s amsoesine s @i s

CR Y

o o om

a8 @ o®

CE

LR

2. 8,329
FEAT A

o

[S ¥

LR

O o s s B D W (¥

o= O o

e

2-2-3-29-
FEAT A

CHAPTER 23: TFORTRAN TO ALGOL TRANGLATOR

1. FUNCTION OF THE TRANSLATOR

!mafmmﬁﬂnnftm;ﬁMEmwtuAHmLTnmﬂﬂmriatotnmﬂﬂmi1
working PFORTRAN program into its ALGOL equivalent in a form which is accepiable
to the Elliott ALGOL Compiler. FEAT (or MIFEAT) translates into ALGOT, 60 and
FORTRAN programs translated in this way may, therefore, be run on non-Elliott

machines, since input and output is effected by procedures.

FEAT (or MTFEAT) will handle the majority of routines written in
FORTRAN IT or FORTRAN IV with a few restrictions (see Restrictions and Notes) and
tapes are provided to cater for both.

It is assumed that the reader is familiar with both the ALGOL and
FORTRAN languages.

2. GENERAL DESCRIPTION

There are two versions of the translator program:-—

(1) FEAT which uses core-backing store to store the FORTRAN programs.
(i1) MTPEAT which uses magnetic tape to store the FORTRAN programns,

All following references to FEAT or MIFEAT apply specifically to that

particular version of the translator.

The translator program is written in ATGOL and is input and translated
accordingly by ALGOL 3 or ALGOL 1. When FEAT (or MTFEAT) has been translated, il
program reads in the Standard functions and Decode Tables nas data. The FORTRAN
sub-programs are then input, written to baecking store (cornuhacking store in the
case of IEAT and magnetic tape handler 4 in the case of MITEAT), processed and
output as an equivalent series of ALGOL statements. Certain other information is

also output (see 7).

The mnemonic tapes which comprise a translated FORTRAN program must
be input in a specified order, followed by the requisite data (see Appendix I).
The FORTRAW program when translated is an ALGOL program and is, therefore, read in
and translated by the ALGOL compiler.
Note MNTFEAT has been segmented to allow larger arrays for dictionaries. If ALGOL 1
is used to translate MTFEAT, 140D 8 or MOD 9 must, therefore, be in store. A maymelic

briper routine MTSTORE is alao required.

FEAT A

3. CONFIGURATION

341 FEAT

The use of FEAT requires storage comprising the 503 Main Store
plus one unit of Core Backing Store. To translate FEAT itself the ALGOL tapes
must be in store. These will occupy part of the main store and locations O to 8192
of Core Backing Store. FEAT is read into the main store occupying approximately
6000 locations. The remaining area of free main store is used by FEAT as space for
dictionaries, leaving locations 8192-16384 of Backing Store for the FORTRAN program.
FORTRAN sub-programs are read in singly and this therefore allows a FORTRAN sub-
program of approximately 48,000 characters to be translated without disturbing FEAT
or the ALGOL compiler and to be subsequently translated and run without disturbing
the ALGOL compiler. A FORTRAN program or sub-program is stored automatically from
location 8192 upwards unless a different location is specified (see 6.1)

3.2 MTFEAT

MTFEAT requires one magnetic tape handler on which to store the
FORTRAN programs. In addition, since MIFEAT is segmented, it is necessary to have
either a second tape handler or one unit of core-~backing store to hold the segments.

4, THE FORTRAN PROGRANM

4«1 Requirements of a FORTRAN propram

It is essential that FEAT (or MTFEAT) should be used only to
translate working FORTRAN programs, since in general the translator does not
perform checking functions. It is possible, therefore, that a FORTRAN program will
translate despite the fact that it contains an error, and produce a corrupt ALGOL

versiom,

Before translation the FORTRAN sub-programs must, if necessary,
be reordered to ensure that all Functions and Subroutines precede the main sub=
program and that no sub-program is referred to by any other before it has been
translated.

It is not possible ‘o turn certain FORTRAN operations into correct
ALGOL and a few restrictions must be observed (sea Hestrictions and Hotes}.

(Issue Z)

2.2.3.29.
FEAT A

4,2 The FORTRAN Tape

With the exception of NO FORWAT, errors relating to mistakes in
the FORTRAN listing are not detected, and it is advisable, therefore, to run a
program punched from the FORTRAN listing through a FORTRAN precompiler, before it
is translated. It is important that the version punched is an exact copy of the
MPORTRAN listing, inecluding the correct number of initial gpaces and spaces in the
middle of a line. A group of six spaces may, however, be replaced by a tab.
facility is particularly useful at the beginning of a line, whenever the first six

columns are blank in the FORTRAN listing.

This

Blanks occurring after the final non-blank character may be

omitted unless they are part of a Hollerith string. This comprises an integer 'n'
followed by an Hy e.ge. 36H, and n other characters. The n characters must in this
cnge he punched even if they are all blank, unless the next line is a continuation

statement when the trailing blanks need not be punched.

5. TAPES (Supplied only on request)
5.1 TFEAT
The following tapes are required:
(a) FEAT
(h) Standard Procedures Tape 1
(e) Standard Procedures Tape lc
(d) sStandard Procedures Tape 2
(e) FORTRAN II Standard functions and Decode Tables
[f) FORTRAN IV Standard functions and Decode Tables
5«2 MTFEAT

The following tapes are required:

(a) MTFEAT

(b) Standard Procedures
{c) Standard Procedures
(d) Standard Procedures
(e) FORTRAN II Standard
(£f) FORTRAN IV Standard

(&)

MTSTORE

Tape 1

Tape 1c

Tape 2

functions and Decode tables

functions and Decode tables

FEAT A

5.3 Standard Functions and Decode Tables

There are two tapes of Standard Functions and Decode Tables which
provide for the translation of FORTRAN II and FORTHAN IV functions into their ALGOL
equivalentss; They are data tapes for FEAT and the appropriate tape must be input
after FEAT has been translated (see 6.1). When FEAT is translating a FORTRAN sub-
program the functions included on a Standard Functions and Decode tape are accepted
as the following standard ALGOL functions:

FORTRAN II FORTRAN IV ALGOL Functions

ABSF ABS abs

SQRTF SQRT sqrt

SINF SIN sin

COSF Ccos cos

ATANF ATAN arctan

LOGF LOG 1n

EXPF EXP exp

FLOATF FLOAT -

The function used to convert integers into floating point form in
FORTRAN is not necessary in ALGOL, since it is possible to write a mixed expression.
There is no equivalent ALGOL function to FLOATF and FLOAT, and FLOAT and FLOATF are
therefore ignored.

If any additional FORTRAN functions are required they must be
included on a FORTRAN Standard Procedures tape as type procedure declarations and
input when the mnemonic ALGOL version of the original FORTRAN program is being
translated (see Appendix I).

5.4 Standard Procedures tapes

54,1 GENERAL DESCRIPTION

{a} Tape 1 and Tape l1¢

The procedures are written in ALGOL and are used, by
the translated FORTRAN program, to input and output data in standard FORTRAN format.
Tape 1 reads data from tape reader one and tape 1ic reads data from an Elliott Card
Reader punched in the format specified by the original FORTRAN program. The bhasic
difference between the two tapes is that a different procedure "fill buffer" is used.
If input is required from a different device, then 1t is necessary to replace the

procedure "fill buffer",
4

(Issue 2)

2:2.3.29.
FEAT A

(b) Tape 2

The tape has on it the following functions:

XINTF, INTF, TANHF, XABSF and TANH
It will be required, therefore, whenever oneor more of these functions is used.

In addition to the above functions, the tape also caters
for the FORTRAN IF(SENSESWITCH n) which will be replaced by if ng (n) then

5+4.2 FORTRAN FIELD DESCRIPTORS

The descriptors E, F, I & H are allowed and operate as
described by the ECMA Standard on Fortran.

Other descriptors which are allowed are as follows?

A This allows alphanumeric characters to be input or output to
or from a specified location. The characters are packed 6 or
less to a word. If more than 6 characters are to be read then -t

first 6 are packed in the location and the remainder ignored.
0 This causes input or output of a number in octal form,

X This causes, on input, n characters to be skipped and on output,
n spaces to be punched.

/ This causes a new card to be read or a new line to be output.
5e4.3 OPERATING

See appendix I.
S5.4.4 ERROR MESSAGES

Message output to typewriter Heason

card oflow An attempt has been made to acecess the
81st character from the input buffer.

line oflow (this message is On filling the input buffer, from the
only displayed by tape 1) paper tape reader, there were more than

80 characters on one line,

INCORRECT FORMAT A field descriptor, not listed under

section 3, has been used in a format

statement.

data error 'n! An error has occurred in the input of

2.2,3.29

FEAT A
data under descriptors A, E, F, I and 0.
Where n is the position of the next
character to be accessed from the input
buffer.,

5.4,5 RESTRICTIONS AND NOTES

1. Tape 1, data is read into an 80 word buffer until a
new line is read. If the data begins with a new line
then this is treated as if a blank card had been read.
After the new line is read then the remainder of the
buffer is cleared. The characters blank and erase are

igﬂﬂred -

2. Logical field descriptors are not allowed and will
give INCORRECT FORMAT error.

3. PField descriptor A packs a maximum of 6 characters stari-
ing from bit 36 down to bit 1.

4, If on output the number before the field descriptor H
is a 1 then a new line is output and the next char-

acter is omitted.

6, TO TRANSLATE A FORTRAN PROGRAM

6.1 Method of Operating with FEAT

FEAT is an ALGOL program and may be input and translated by the
usual methods (se¢ 2.1.3 of the Manual), Operation will normally be as follows:

1. Type RESET.

2 Read in ALGOL tapes 1 and 2 from core backing store (read
in the leader tape by typing IN).
- Translate FEAT by changing the sign digit (to clear the

Swait) or typing ALGOL.
4. (a} Set key 3 of the word generator if the lowest location of
core backing store to be used is to be specified.
Clear the Dwait (by changing the leftmost F2 digit) and
type the lowest location of backing store to be used.
or (b) Key 3 will normally be left clear - FEAT will then use
locations 8192 upwards of core backing store automatically.
5., (a) if the FORTRAN program is to be read from cards clear key 2

of the word generator.
b

or (b) If the FORTRAN program (sub-program) is to be read in from
(18sue 2)

paper tape, set key 2 of the word generator.

6.

7.(a)
or (b)

8.

9.
(a)
or (b]

Note If ALGOL 3 is used

2.2.3.29
FEAT A

Change the leftmost F2 digit to clear the Dwait and read
in the STANDARD FUNCTIONS AND DECODE TABLES tape for either
FORTRAN II or IV as appropriate.

Clear key 1 of the word generator if a complete program is
to be translated.

Set key 1 of the word generator if a single sub=-program is
to be translated.

Load the FORTRAN program in the card reader or tape reader
(as specified at step 5) and clear the Dwait. The program
is processed sub-program by sub-program and output as its
ALGOL equivalent.

To translate a further program or sub-program:

Clear the Dwait and repeat from step 7.

If a different setting of keys 2 or 3 is required, type
REPEAT.

Operation will be repeated from step 4.

for translation (see 2.1.5 of the MANUAL) it will probably

be necessary to segment FEAT and allocate arrays to core-backing store.

6.2 Method

of Operating with MTFEAT

Operation with ALGOL 1 will normally be as follows:

1. type RESET.
2+ Read MTSTORE type IN,.

3« Head ALGOL 1 tape 1 issue 1 type IN.

4., Read ALGOL 1 tape 2 issue 1 change sign.
5. Read either MOD 8 or MOD 9 type IN.

6. Translate MTFEAT type ALGOL.

7. a) If the Fortran program is to be read

from cards clear key 2.

b) If the Fortran program is to be read

from paper tape set key 2.
8., Read in Standard functions and decode

tables tape change dwait.
9., a) If a complete propram is to be

translated clear key 1.

b) If a single sub-program is to be
translated set key 1.

T
(Issue 2)

2.2.3,29
FEAT A

10.

1.

Load Fortran program (as specified at

step 7).

To translate a further program or sub-

program

a) repeat from step 9.

b) interrupt and type REPEAT. to start
from step 7.

change dwait.

At the end of step 5, a magnetic tape bhatch can be made which can
e retrieved, when ever necessary, using RAPMT (see DUMP2M and RAPMT descriptions).

{ote If ALGOL 3 is used for translation, core-backing store should be available to
10ld the CBS arrays.

a
(Isune 2)

Operation with ALGOL 3 will normally be as follows:

1.
2.

Je

4

5e

8.

input an ALGOL 3 batch from magnetic tape

type ALGOTM.C. or ALGOLB.C. (depending on the type of ALGOL 3
batch - see 2.1.5 of the MANUAL) to translate MTFEAT
when "dwait" is displayed, interrupt, load MTSTORE in reader 1

and type IN.

(a) If the FORTRAN program is to be read from cards clear key

2.

(b) If the FORTRAN program is to be read from paper tape set

key 2.
Read in Standard functions and decode tables
tape

a) If a complete program is to be trans-
lated clear key 1.

h) If a single sub-program is to be
translated set key 1.

Load Fortran program (as specified at step
4.)

To translate a further program or sub-
program

a) repeat from step 6.

type ALGOLM.R. or
ALGOLB.R. (see
step 2)

change dwait.

b) interrupt and type ALGOLM.R. or ALGOLB.R. to start

from step 4.

2.2.3.29.
FEAT A

Et31 Dl.ltE'!.lt

The local declarations and ALGOL statements corresponding to the
original FORTRAN are output on Punch 1. FORMAT statements are not translated but
nre copled and output as encountered between string quotes on Punch 2,

After the last sub-program has been translated a length of blank
tape isoutput on both punches. This is followed by the output of a format count
on Punch 1, the global declarations and a routine to read in the strings on Punch Z.
These four tapes must be input for translation in the order specified in Appendix 1.

T« PROCESS USED TO TRANSLATE A FORTRAN PROGRAM

The FORTRAN program is input, one sub-program at a time. SUBROUTINES
nnd FIINCTIONS precede the main sub-program. During input, lists are compiled of
COMMON,, EQUIVALENCE, DIMENSION, GOTO and DO statements, and of any variables which
nre declared as REAL, INTEGER or ILOGICAL. FORMAT statements are not stored but
immedintely output between string quotes.

A list of all identifiers used is compiled for the local declarations.
(Tdentifiers appearing in COMMON are naturally declared globally). The declarations
of local variables are then output followed by the labels in the form of a switch
declaration, Arithmetic Statement Functions are searched for, translated and oubjiii.
The aub=program is output order by order after the standard substitutions have hern
made. Thus for example goto replaces GOTO, and
A:=C*sin(D);
replnces

A=C*3INF(D)

When the final instruction has been output, the next sub-program is
input and the process repeated. When the final (main) sub=-program has been
processed, a declaration of the COMMON variables is output followed by a set of
orders to reinput the FORMAT string.

B. ERROR MESSAGES

Cortain operations which are permissible in FORTRAN cannot be translated
into ALGOL. When such an operation is encountered, the translator (FHAT or MIFEAT)

takes alternative action and outputs a warming message on the output writer:

24243429,
FEAT A

FORTRAN operation
1« Two COMMON lists

contaln entries of
different type or
dimensions in the same

part.

2. A formal parameter
which also appears in
n COMMON list.

3, Reference is made
to a FORMAT statement
whooe label cannot be

found.

Action taken
The translator allocates

separate storage locations.

When the warning message
has been output the
translator searches the
list of items which have
been rejected from previous
COMMON lists. If 1t finds
another item which had been
in the same part of a list,
of the same type and
dimensions as the newly
rejected one it places them
in the same location and
outputs:

The translator does not
common the parameter with
the other variables in
the COMMON list.

The translator stops.

Message output
INCONSISTENT

COMMON A, B
Where A and B are the
names of the two entries

COMMONED WITH C

FORMAL PARAMETER IN
COMMON COMMON
FACILITY IGNORED

NO FORMAT

Note 1. Error 3 might occur for example as a result of a label being punched

inaccurately and appearing in the continuation column on the FORTRAN

card.

2, If an array is called with the wrong number of dimensions this will
not be detected until the ALGOL version of the translated FORTRAN
progrem 1is being run (see Appendix I).

Error No, 27 will be displayed.

10

2.2,3,29
FEAT A

9. RESTRICTIONS AND NOTES

When FEAT or MTFEAT is used to translate a FORTRAN program the following

points must be observed:

1.

3

4a

Te

9.

A label which appears in more than one COMPUTED GOTO in FORTRAN
will be doubly declared in the ALGOL block and cause an error

when the ALGOL version of a FORTRAN program is being translated

by the Elliott ALGOL compiler. The error is most easily eliminated
by attaching a second label to the ALGOL statement and using the
new label in the switch declaration.

Integer division is rounded not truncated.

The FORTRAN statements REWIND and ENDFILE are ignored by the
translator,

The FORTRAN statment BACKSPACE is output as a procedure call.

READ TAPE n, LIST and WRITE TAPE n, LIST are translated as a

call of setB and a call of Bout for each element in the list.
Procedures for Bout and setB are not provided in FEAT or MTFEAT,

A global variable boole is set to false or true according to which

astatement was used.

When FEAT is used IF (A.EQ.B) is not translated into correct ALGOL
and will give an error on translation. This will occur when any
Boolean IF is used. With MTFEAT, however, logical IF is translated
correctly.

Boolean constants are not recognised.
EQUIVALENCE statements are ignored.

Named common lists are not correctly translated, therefore, all
common data should be unnamed.

11

fr o Yy

242+3.29
FEAT A

APPENDIX 1

TO TRANSLATE AND RUN THE ALGOL VERSION OF A TRANSLATED
FORTRAN PROGRAM

The FORTRAN program is translated by FEAT or MTFEAT into standard ALGOL 60.
Its ALGOL equivalent may, therefore, be translated by the normal operating procedure
for an ALGOL program, except that the ALGOL program and its data are punched in
parts which must be input in the order specified:

(I) To_translate the ALGOL version of the FORTRAN program

1« The global declarations and initialisation statements which comprisec

the second part of the output on Punch 2 during translation of the
FORTRAN program.

2, The requisite FORTRAN standard procedures tape(s). Any additional
procedures that are required must also be input at this point.

3. The translated FORTRAN program which forms the first part of the
cutput from Punch 1.

(II) To run the translated ALGOL program, data should be input in the following
order:

1. The format count which formed the second part of the output on Punch 1,

2, The format statements which were output as strings forming the first
part of the output from Punch 2.

3. Any data required by the FORTRAN program.

Appeowdix 1
1

. -

2.2.3,29
FEAT A

APPENDIY I1

SUBSCRIPT OVERFLOW

During the translation of a FORTRAN program into ALGOL it is possible that

subscript overflow may occur as a result of declaring arrays of inadequate size
in FEAT.

The mnemonic FEAT tape comprises its title followed by array declarations
separate from the rest of the tape by a few inches of blanks. If the set of
declarations on the tape does not meet the requirements of the FORTRAN program to
be translated, subseript overflow may occur during translation into ALGOL. If this
i% 80 a new set of declarations must be typed or the existing set altered.

The number of statements of each type allowed on the standard master tape is
#siven in the table below. For each additional statement of any type that is
riquived, the upper bound of the appropriate FEAT array declaration must be increaser
by the number indicated in the final column of the table, except for the statements
FUNCTION and SUBROUTINE where the lower bound of the array should be decreased.

Statement array standard increases
1. DIMENSION arrd 2 1
Ja COMMON arrec 2 1
5 EQUIVALENCE arre 2 1
4 GOTO feot 11 1
Y. all identifiers id 147 2
e FORMAT fortab 48 2
7. DO ddo 1 1
i, commoned identifiers table 1 10 3
P o tune 14 o bawnd, iy
10. arithmetic statement Earrd 2 f
functions arrc 2 1
114 for each label in a trad 20 1
computed GOTO
12, Do trad 10 3

Whenever one of the error conditions listed above is detected, the message
SITB35CR OFLO will be displayed.

B s ' d e TP

During input of a FORTRAN sub-program an indication of subscript overflow can
oceur due to error conditions 1-7 and 9. Errors of types 5 and 9 only may be
caused by sub-programs previously input, since in Error 5, the number of identifiers
is the total for a whole program and Error 9 is caused by the total number of sub-

programs in any one program.

If overflow occurs during input of the FORTRAN statements, the subsecript over-
flow statement will have been caused by the last statement read. Examination of
this will, therefore, give the error type.

After a sub-program has been read in, SUBSCR OFLO can then be caused by error
type 8. begin is then output on Punch 1, and SUBSCR OFLO can then be caused by

'Error' type 10, ir¢ .= g €t oFe & L el

5 Lo

Declarations of the standard identifiers are then output on Punch 1 and SUBSCR
OFLO can then be occasioned by 'Error' 11.

When the program or sub-program is being output on Punch 1, the message SUBSCR
OFLO will be due to 'Error' 12.

Note SUBSCRIPT OVERFLOW should not occur in the case of MTFEAT since the arrays
are considerably larger.

trnmarndds TT

2.2.3.30
PlML B

CHAPTER 30: POST MORTEM LISTING ON LINEPRINTER

CODE PML, 5§ Issue 2
FUNCTICH

A.a) To output the contents of a group of consecutive

main store or Core Backing Store locations via the lineprinter as pseudo-

instruction pairs, integers or octal numbers,

b) To display on the typewriter the address held by the
Sequence Control Register at the time of the last Manual or Error Interrupt
(with 1st/2nd half indication).

B. To provide the facilities of Aa) as a Common Propgram,

STORE USED

353 locations.

METHOD OF USE

FUNCTION A: Operating Instructions

(i) Enter PML by typing PML.

(ii) Either (a) Specify the style of output by typing &;
where S = 0, 1, or 2 [pseudo-instruction, integer

and Octal respectively].

or (b) Type MAN, or ERR. to obtain the address held by
the S.C.R. at the time of the last Manual or
Error Interrupt. If the interrupt occurred in

the 2nd half of a location a colon ":" is placed

-1 -
(Issue 2)

2.2.3.30
PML B

infront of the address (which is a Lk-figure
integer with no suppression of leading zeros).

Go to step (iv).

(iii) Set the area of the store to be ocutput by typing

F = L.,
where F & L represent the addresses of the first and last
locations of the area [see STORE ADDRESSES].

(iv) Once the required area or S.C.R. addr has been printed a
newline is output on the typewriter and the process may be
repeated from step (ii). If a full-stop is now typed
control will return to RAP.

Messages

LP MAN is displayed on a newline on the typewriter and the
program waits if the lineprinter is in a manual
state when printing is about to start, or if the
"paper low" warning is given during the run.

The program will continue automatically when the
lineprinter is taken out of the manual state, or the
paper reloaded.

NOPROG is displayed if a non-existent main store address is
typed. It is then necessary to re-enter the
program.

CBS is printed on the lineprinter page whenever backing

store locations are to be output.

2
(Issue 2)

2.2.3.30
L S

Eigre Addresses

F and L represent the addresses of the first and last locations of the

output area.

a) Main Store: F and L are the usual main store addresses.
b) Core Backing Store: F and L are each of the form

"x + A" ["+" separates x & A]

where x is an integer 0 £ x 5 15

representing the number of complete blocks of 8192
backing store locations before locations F and L.

A is the remainder 0 £ A < 8191,

e.g. (i) Location O of backing store is expressed as 0 + O
(if) Location 8192 as 1 + O
(iii) If the required area is 5197 to 17980 then

F =0+ 5197 and L = 241596

Note: "+" is the only separator allowed between x and A.

Style Parameter S (Function A)

STYLE 5
Pseudo-instruction pair 0
Integer
Octal 2

il s

(Issue 2)

2.2,330
PML S

FUNCTION B: Common Program

Entry write COMP, PML in the calling program, and set the

accumulaetor as below,

Exit a standard exit is made with the accumulator clear.

Accumulator on entry:-

39 w1 '53 2132019 18 1 13)

~ : 3 1

T ' P I

L~ ! of [

i — S e -
,’4 15&—————- ¥ E; = :ﬂr—~— L_ e
]

- : M [SEyle ;

bit 39: Backing Store Indicator If set F and L are interpreted as

backing store addresses.

37-21

bits 17-1 ° F and L the first and last addresses of the
output area, Backing store addresses
can extend over a maximum of 17 bits.
bits 19-18: Style 19 18
0 0 (i.e. <:00 0>) Pseudo-instruction
0 1 (i.e. <:20 0>) Integer
1 0 (i.e. <:40 0>) Octal.
bit 20 (B-digit): Top of Form Marker If the B-digit is set the lineprinter

top of form will be called on
entry [see below].

Note: If F> L only location F will be printed.

L
(Issue 2)

2.2.3.30
ML 8

Top of Form and Alignment of Printing

Top of form will be called on entry if:

a) the B-digit is set in the accumulator,
or b) more than 50 locations are to be printed,
or c) if there is insufficient room to contain the area

in the space left on the page.

Thus, if the B=digit is set on the first entry only, then on subsequent
entries the program will automatically align the printing to avoid the page
perforations. In the absence of a top of form call a L-line gap is left

between consecutive entries,

Examples of Common Program Fntries:-

(1) To print locations 700 - 1500 of main store in Octal style enter

with the accumulator set as:-

<00 700 : LO 1500>

(ii) locations 8000 - 9000 of backing store as pseudo-instructions:-

<4o Booc : 01 B08>

(iii) locations 30 to 40 of backing store (first entry) as integers:-

<ko 30/20 hLo>

5
(Issue 2)

2.2.3.30
PML S

FORMAT OF OUTPUT

200 consecutive locations are printed per lineprinter page in U
columns of 50. A 2-line gap is left after every tenth location to form
4 groups in each column. The first location in each group has its
address attached; a backing store address will be of the form "x + A"

[see note below].

The lineprinter "top of form" is called at the start of each run
(but see Function B) and at the end of each page.

Note: Octal Style Since the Octal format on the lineprinter page
leaves room for 4-figure sddre: s only, the
"x+" portion of backing store addresses is suppressed

during print-out.

RESERVED AREA

There is no need to 1lift the protection from locations 7936 - 8191

when printing their contents.

PROCESS USED

The backing store is accessed by single-word transfer. Any attempt
to read from non-existent backing store addresses yields zero for the

contents of the locations.

The S.C.R. values for MAN.and ERR. are obtained from locations T909
and T905 respectively.

6
(Issue 2)

2.2,3.30
PHML S

CONFIGURATION

Basic 503 computer plus lineprinter (core backing store optional).

TAPE

A sum-checked relocatable-binary tape is provided which places the
program from the first free location upwards.

TIME

2.5 minutes to print 8192 locations (at 1000 lines/min).

R. Gorden December, 1965,

(Issue 2)

2.2.3.31
CESA A

Chapter 31: CORE BACKING STORE ARRAY PROCEDURES

(Version 1)

CODE: CBSA A

GENERAL

On the tape are the following procedures:

procedure bs array

- integer procedure takei
- integer procedure seti
- real procedure taker

- real procedure setr

- procedure clear
- Erncedure tobs

in the above order. The tape is intended to be read in before the main
program. It should be noted that the title of the main program should be
given in the form of a comment, except when using the precompiled version.

One extra end must be included at the end of the program.

The tape ends with:

EEEEEEE
procedures

®

print punch(3),LEL?Type base?;
read reader(3),base;

®

precompile;

®

2.2.3.31
CHSA A

The integer "base"™ is the backing store address from which the backing store
is intended to be used. In general, the value of base should be given in the
main program, before the first procedures call, in which case the tape is not
read between the first and second Halt-characters. If, however, it is
required that the value of "base" is given though the typewriter, read the
tape ur to the second Halt-character. In this case, after the message

"Type base" has been displayed, type the value of "base" (as an unsigned
integer) and a semicolon, when the execution of the program continues. The
instruction "precompile" enables a precompiled version of the tape to be made.

In this case the tape is read to the end.

STORE USED

The whole procedure package occupies about 263 locations. If all the
procedures are not used in the program, only the necessary parts need be

copied from the tape. For this reason the procedures are separated by blanks.

PROCEDURE bs array

procedure bs array (B,lowl,highl,low2,high2);
value lowl,highl,low2,high2;
integer B,lowl,highl,low2,high2;

FUNCTION

The procedure specifies a 2-dimensional backing store array, and reserves the
necessary space for it from the backing store. The specification and space-

reservation of every array must be performed separately by the procedure bs array.

PARAMETERS

2.2.3.31
CBSA A

Avu b foer

B The becking store array cedeword, which must be declsred as an

integer variable in the main program before procedure calls.,

lowl lower bound of the
highl upper bound of the
low2 lower bound of the

high2 upper bound of the

After the procedure call,

integers. Restrictions:

first subscript.
first subscript.
second subscript.

second subscript.

the integer B contains the following (underlined)

(a) =512<lowl<512

(b) O<high? - low? +1<1638k

(e) 0<16384 + base - low2<32768

PROCEDURES takei and taker

integer procedure takei (B,inxl,inx2);

value B,inxl,inx2;

integer B,inxl,inx2;

real isteger taker (B,inxl,inx2);

value B,inxl,inx2; b

integer B,inxl,inx2;

angLe _'j_u.n,

2.2.3.31
CESA A

FUNCTION

These procedures are function procedures which take the value of the element

with subscripts inxl and inx2 of the backing store array B.

PARAMETERS

B codeword of the backing store array

inxl first subscript of the required element

inx2 second subscript of the required element

The time taken to get one element from backing store is about 620 micro-seconds.

EXAMPLE

The following integer array has been defined by the procedure call bs array
(ABC,1,3,1,3) (i is the first subscript, j the second):

o wn (1% I T
0 oW J

i b
L

The instruction x:=takei (ABC,2,3);
puts the integer variable x equal to 6.

2.2,3.31
CBSA A

PROCEDURES seti and setr

integer procedure seti (E,inxl,inx2,R);

value B,inxl,inx2,R;

integer B,inxl,inx2,R;

real procedure setr (B,inxl,inx2,R);

value B,inxl,inx2,R;
integer B,inx1,inx2;

real R;
FUNCTION

These procedures are function procedures which place the value of the integer
or real expression R in the element with subscripts inxl and inx2 of the
backing store array B. At the same time the called procedure takes the value
of R,

PARAMETERS

B the é;é;ﬁéfd of the backing store array

inxl first subscript of the array element

inx2 second subscript of the array element

R a number, variable or expression, to the value of* which

the element is set.

2,2.3.31
CESA A

The procedures check the operation so that the element is placed in the
backing store array at position [inx1,inx2], and is then immediately after
this extracted, and if the two values differ,

CBS error x vy R

is displayed, where x = 8,16 or 2L.

The meanings of these values are:

8: backing store is "busy"

16: parity error

2k: both

¥: specifies the absolute address being used in

the backing store.

After the message, the CBS parity error lamp goes out and the operation is

tried again.

The time taken to store one element in backing store is about 750 micro-seconds.

EXAMPLE

The instruetion:
mi=setr (XYZ,1,7,3.4);

places in the element with subscripts 1 and T of the backing store array XYZ,

the value 3.4, and the real variable m is given the same value.

2.2.3.31
CBSA A

PROCEDURE clear

procedure clear (B,length,low2);
value B,length,low?;
integer B,length,low2;

FUNCTION

The aim of the procedure is to clear an array in the backing store, or in

general to clear backing store, from the beginning of an array onwards.

PARAMETERS
T T T A
B the cedeword of the array to be cleared (or the codewerd of

the array from the beginning of which backing store is to

be cleared).

length number of words to be cleared
low?2 the lowerbound of the second subscript of array B (the same
as in a call of bs array).

To clear more than one sequential array, give the parameter B of the array
with the lowest required backing store address, its associated low2, and a
sufficient value of "length".

2.2.3.31
CESA A

EXAMPLE

If the integer variable base was given the value O at the beginning of the
program, and the first backing store array specification was, for example

bs array (A,0,10,1,20);
then the procedure call
elear (A, 1638L4,1);

clears the whole one-unit backing store.

PROCEDURE tobs

procedure tobs(B,ARR,low2,DIRECT)
value B,low2,DIRECT;

array ARR;

integer B,low2;

boolean DIRECT;

FUNCTION

The procedure transfers an array from main store to backing store and vice

VOTER,

2.2.3.31
CBEA A

PARAMETERS
B the eedeword of the backing store array
ARR the main store array

low2 the lower bound of the second subscript of array B (the same
as in a call of bs array)
DIRECT +true or false

If DIRECT has the value true, ARR is transferred from main store to backing
store, if false the transfer is in the opposite direction.

The procedure tobs can transfer both integer and real arrays.

If at the time of transfer a parity error occurs, the procedure extinguishes

the CBS parity error lamp, displays "BS parity" and tries to transfer again.

GENERAL NOTES

(a) The integer base is declared at the beginning of the

procedure tape, and must not be declared in the main

program again.

(b) The procedures are also suitable for use with one=-
dimensional arrays. In this case, at the places
vhere low2, highl or inx2 appear in the procedure
calls, they are set to zero. (The parameters must
not be omitted).

2.2.3.31
CBSA A

(e) When using the procedures, care must be taken that
the subscript parameters of the procedure calls do
not exceed the subscript bounds specified for the
procedure bs array (because the ranges of the
subscript are not checked in the procedures).

(d) Since the ALGOL compiler is placed in the beginning
of backing store (about 8 k.), the integer variable
base should be given the value 8192 unless the
wvhole backing store is needed.

M. BEAT NOVEMEER, 1965,
FINNISH CABLE WORKS

- 10 =

EXAMPLE PROGRAM

comment examples of using the procedures;

begin integer one,two,three,four,a,b,c,i,y;

comment array codewords declared;
real x;

array AA [1:20];

base:=8102;
comment the procedure tape was only read as far as the
first Halt-charsacter;

bs array(one,1,25,2,30);

bs array(two,1,50,-25,25);

bs array(three,1,20,0,0);

bs arrsy(four,1,100,0,0);

comment backing store array bounds specified;

clear(one, k000,2);

comment backing store area cleared;

x:=setr(one,7,29,sin{sqrt(34T+L5.31%0.03)));

y:=(two,1,2,entier(1In(abs(x))));

for i1:=1 step 1 until 20 do
b:=seti({three,i,0,a);

end;
c:=seti(two,1,3,takei(three,19,0)
+takei(three,20,0)};
for i:=1 step 1 until 2 do
AA[i] :=saqrt (i);

lineprinter;

print ££77,digits(8),y,b,c,freepoint(8),x,taker(four,20,0);

end

end
end;

- 11 -

2.2.3.31
CHSA A

2.2.3.32
CBSB A

CHAPTER 32: ALGOL 1 CORE-BACKING STORE PROCEDURES: CESB
(Version 2)

CODE CHSE A

GENERAL

The package contains the following procedures:

- procedure bsoflo

- procedure arrbs

- integer procedure tekeil
- procedure setil

in the above order. The title of main program is given in the form of a
comment, except when using the precompiled version. At the end of the

program must be an extra end to go with the begin at the beginning of the
procedure package.

The tape has the following form:

begin integer base;

e]

procedures

o ——

®

print punch(3),££17Bs address?;
read reader(3),base;

®

precompile;

®

[

" a2e3e32
CESB A

The integer "base" is the backing store address from which the backing
store is intended to be used. In general, the value of base should be
given in the main program, before the first procedure call, in which case
the tape is not read between the first and second Halt-characters. If,
however, it is required that the value of base is given through the
typewriter, read the tape up to the second Halt-character. In this case,
after the message "BS address" has been displayed, type the value of "base"
(as an unsigned integer) and a semicolon, then the execution of the

program continues. The instruction "precompile;" enables a precompiled

version of the tape to be made, in which case the tape is read to the end.

STORE USED

The whole procedure package occupies about 101 locations.

PROCEDURES

1) procedure bsoflo; print punch(3),££17Bs oflo?,stop;

A parameterless procedure which is used to display a subseript overflow
message., After the procedure the program comes to a "stop".

2) procedure arrbs(ARR,LOW,HI);
value LOW,HI;
integer ARR,LOW,HI;

P

2.2.3.32
CBSB A

Function

The procedure specifies a one-dimensional backing store integer array and
reserves the necessary space for it from the backing store. The
specification and space-reservation of every array must be performed

separately by the procedure arrbs.

Parameters

ARR The backing store array codeword, which must be declared as
an integer variable in the main program before the procedure
calls.

LOW Lower subscript bound

HI Upper subscript bound

"Bs oflo" is displayed if:

(a) base < O
() LOW>HI
(c) base>16383

After the procedure call the integer ARR contains the following information:

(a) lower subscript bound
(b) upper subscript bound
(e) the absolute address of the first element of

the backing store arrsy.

2.2.3.32
CBSB A

3) integer procedure takeil (ARR,INX);
value ARR,INX;

integer ARR,INX;

Function

This is a function procedure which takes the value of the element with
subscript INX of the backing store array ARR.

Farameters
ARR The array codeword
INX The element's subscript

"Bs oflo" is displayed if the subseript is out of the range specified in

the procedure arrbs.

The time taken to get one element from backing store is about 580 us,

L) procedure setil(ARR,INX,WORD);
value ARR,INX,WORD;
integer ARR,INX,WORD;

2.2-3-32
CBSB A

Funetion

The procedure places the value of the integer expression WORD in the element
with subscript INX of the backing store array ARR.

FParameters

ARR The arrsy codeword

INX The element's subscript

WORD An integer constant, variable on expression

whose value is put in the element.

"Bs oflo" is displayed if the subscript is out of the range specified in the

procedure arrbs.

The time taken to store one element is about 550 us.

Notes

(a) The integer "base" is declared at the beginning of the
procedure tape, and must not be declared again in the
main program.

2.2.3.32
CHGE A

(b) Since the ALGOL compiler is placed in the beginning of the
backing store (about 8 k.), the integer variable base
should be given the value 8192 unless the whole backing

store is needed.

(e) These procedures are not to be confused with the procedure
package CES A,

Backing store array codewords defined using the procedure errbs must never
be used as parameters of the procedures takei, taker, seti or setr, and

vice versa. If both packages are to be used in the same program, then a
copy of the tapes must be made such that the integer base is only declared

once.

M. KAISTI NOVEMBER, 1965,

FINNISH STATE,
COMPUTER CENTRE

2-2-3432
CESE A

Exsmple

comment examples of using procedures;
begin integer namel,name?2,i;
integer array aa [1:20], bb [1:10];

comment declaration of the array codewords;

arrbs(namel,1,20);
arrbs(name2,1,10);
comment specification of the subscript bounds;

for i:= 1 step 1 until 20 do

LA |
read aa i);

for i:= 1 step 1 until 20 do

setil(namel,i,aa [i]);

comment main store array aa stored in backing store;
setil(neme?,1,3);
setil(name2,2,entier(sart(31.113%15.7.43.33)));
setil(name2,3,takeil(namel,3)*takeil(namel,7));
lineprinter;

digits(5);

semeline;

for i:=1 step 1 until 20 do

print takeil(namel,i);
for i:=1 step 1 wntil 3 do
print takeil(name2,i);
E_r}_d_
En_d

end

The procedure tape was read up to the second Halt-character, so that the
value of base is given through the typewriter;

2.2.3.33
DADD
DSUB

CHAPTER 33: DOUBLE-LENGTH ADD AND SUBTRACT

(Subroutines)

CODE
DADD
DSUB
FUNCTION

To add or subtract two double length floating point numbers held
in the manner described below in METHOD OF USE.

STORE USED

Program 111 locations

Workspace 5 locations

METHOD OF USE

i) The programmer must declare globally

3. Block names 'DADD' and 'DSUB' when using either 'DADD’
or 'DSUB'.

2. data X1, X2, X, Y1, Y2, Y.

The data identifiers EX1, EX2, SIGN, DIFF have been declared
globally by DADD and DSUB.

2.2,.3.33

DADD
DSUB
ii) Entry:

The numbers to be added or subtracted should be held in locations
X1, Y1 and X2, Y2 upon entry. The respective exponents must be held in bits
1-9 of X1 and X2. The mantissa of X1, Yl must be held in bits 39-10 of X1
and bits 38-1 of Y1 inclusive. The sign bit of Y1 must be clear upon entry.
The numbers must be standardised.

The same holds for X2, Y2.
The instruction '"SUBR, DADD' causes entry to 'DADD'.

The instruction 'SUBR,DSUB' causes entry to DSUB which will subtract
X2, Y2 from X1, Yl.

Exit:

On exit the required result is in location X,Y in the form described
above.

PROCESS USED

DADD

The exponents are compared and if there is a difference of less than
67, the numbers are adjusted until their exponents are equal. The nev mantissa
are added together to form the mantissa of the result. The exponent is
replaced and the number is standardised. If the difference in exponents is 67
or more, no significant addition can be performed and the larger number is taken
as the result.

2.2.3.33
DADD
DSUB

DSUB

The number in X2, Y2 is negated and DSUB uses DADD as a subroutine
to add X1, Y1 and the new X2, Y2. Exit is made from DSUB with the result in

locations X,Y.

Should the result of the addition or subtraction be too large to be
represented in the manner described above in METHOD OF USE, a floating point
overflow will be caused (See ERROR INDICATIONS). Should the number be too small

to be represented or zero, X and Y will be cleared and exit made.

ACCURACY

67

The maximum error in the mantissa of the result is X2~ .

ERROR INDICATIONS

ERRINT 1 : Caused by floating point overflow. IHo continuation

possible.

TAPES

The library tape is punched for input by SAP.

R, Gordon

H, Fingland

December, 1965S.

2,2.3.3h
DMULT S

CHAPTER 34: DOUBLE-LENGTH MULTIPLICATION

(Subroutine)

CODE
DMULT S

FUNCTION

To multiply two double-length floating point numbers held in the
form described below in METHOD OF USE.

STORE USED
Program 69 locations

Workspace 5 locations,

METHOD OF USE

1) The programmer must declare globally

(i) Block name '"DMULT'
(ii) data X1, X2, X, Y1, Y2, Y

2) Entry: The numbers to be maltiplied must be held in locations
¥X1,Yl and X2,Y¥2 upon entry. The respective exponents must be
held in bits 1-9 of X1 and X2, The mantissa of X1, Yl must be
held in bits 39-10 of X1 and bits 38-=1 of Yl. The sign bit of
Yl must be clear upon entry. The numbers must bte standardised.
The same holds for X2,Y2,

The instruction 'SUBR, DMULT' causes entry to DMULT.

Exit: On exit, the required result is in locations X,Y in the

form described above,

2.2.3.34
DMULT S

PROCESS USED

The exponents of the numbers to be multiplied are added together
and the mantissas contained in X1, Y1 and X2, Y2 are multiplied in 3 stages:

(i) X1 is multiplied by X2.
(ii) X1 is multiplied by Y2.
(1ii) X2 is multiplied by Yl.

These solutions are added together in the appropriate way to form
the mantissa of the result and the exponent is rerlaces The number is

standardised and exit is made.

Should the result of the multiplication be too large to be
represented in the manner described above, a floating point error will be
caused (See ERROR INDICATIONS below). Should the number be too small or be

zero, & and ¥ will be cleared and exit made.

ACCURACY

The maximum error in the mantissa of the result is * 2-67.

ERROR INDICATIONS

ERRINT 1 : Caused by floating point overflow. No

continuation possible.

TAPES

The library tape is punched for input by SAP,

R. Gordon
He Finglﬂ-nd

December, 1965,

2.2+3.35

DDIV S

CHAPTER 35: DOUBLE-LENGTH DIVIDE

(Subroutine)

CODE
DDIV S

FUNCTION

To divide two double-length floating-point numbers held in the
form described below in METHOD OF USE.

STORE USED

Program 6T locations

Workspace 9 locations

METHOD OF USE

1) The programmer must declare globally

(i) Block name 'DDIV'.
(ii) data X1, X2, X, Y1, Y2, Y

2) Entry: The numbers to be divided must be held in locations
X1, Y1 and X2, Y2 upon entry. X1, Y1 will be divided by
¥2, Y2. The respective exponents must be held in bits 1-9
of X1 and ¥X2. The mantissa of X1,Yl must be held in bits
39-10 of X1 and bits 38-1 of Y1 inclusive.
The sign bit of Y1 must be clear upon entry. The numbers
must be standardised. The same holds for X2, Y2.

The instruction 'SUBR, DDIV' causes entry to DDIV,

2.2.3.35
DDIV 5

Exit: On exit, the required result is in locetisne X,Y in the
form described above, though ¥ bolds only 9 bits aftar the sign
bit - the rest being cleared.

PROCESS USED

The exponent of murder X2, ¥2 is subtracted fron the exporent of
numher ¥X1,Yl. The mantissas are modified to Form rovnded 3G bit mantiises in
¥1 ard X2. X1 is then divided by X2 to give the 39 bit mentissa of the resuit.

The exponent is replaced ard the number is standardised.

Should the resul” be too large to be rep . sented ir thke menner
described in METHOD OF USE, a floating point error is caused {See LERROR
INDICATIONS)., If the result is too small to be represented or is zerc, X erd

Y are cleared and exit is made,

ERROR INDICATIONS

ERRINT 1 Caused by flosting-point overflow. To

continuaticn possible.

ACCURACY
; o am)
The maxirum 2rror ir the mantisse of the result 38 - 2 T .
TAPES
The library tape is punched for imput Ty SAP,
ACKNOWLEDGEMENT

These subroutines were produced by converting Algol routines
sutmitted by Mr. C. Plews of Reading University.

e Gorlon

H, Pingiand

2.2.3.36
AUTALG A

CHAPTER 36: ELLIOTT AUTOCODE TO ALGOL TRANSLATOR

CODE: AUTALG A

FUNCTION

To convert programs written in Elliott Autocode into ALGOL,
The ALGOL programs produced may be run on the 503 or 803 with 8-channel paper
tape equipment. After conversion to 4100 code, they may also run on 4100

ALGOL (issue 2}, or, with manual editing, on issue 1,

PROGRAM AND MACHINE

The translator has been written in ALGOL and will run on the
503 ALGOL Mark I compiler, The computer must have 5 and 8 channel paper
tape input and 8 channel paper tape output facilities.

SOURCE PROGRAM

The input text for the translator is an Elliott Autocode program
which must be punched in 803 S~hocle telecode,

FORMAT OF OBJECT PROGRAM

The output from the translator is ALGOL punched in 503 8<hole
paper tape code. The layout of the translated progrem is:=-

EJE-SGBE
AUTALG A

Title;
begin (declarations)
procedure program (ref); value ref; integer ref;
comment ref holds the reference number at which
mrogram should be entered;
begin switch 2% := (list);

®

procedure READ;
end READ;

(translated Autocode)

end of procedures program;

(initialisation)

®
2
f="
-

® |2

switch lists of labels introduced during translation.

®

N.B. The 503 and 803 ALGOL compilers require that all
labels be declared in switch lists - see METHOD
OF OPERATION, P.L.
(a) Some Autocode errors will be detected by the Translator -

however many errors may be converted to incorrect ALGOL.
Other errors might not be detected until the converted

program is actually running.

(b)

(e)

(a)

(e)

(f)

2.2.3.36
AUTALG A

Certain machine dependent functions cannot be
translated; in particular machine code blocks,
MODIFY, VERIFY, FILM, INPUT or OUTPUT instructions.
If any of these are detected a halt code (:) and
blanks will be inserted in object tape and a message

output on the typewriter.

Integer arithmetic must not lead to results outside
the range -223 < I < 223 .1, if the object program
is to be run on the 4100 ALGOL.

Care must be exercised if tests for equality of
floating point numbers are used when running the
object program on the 4100. Floating point numbers
on L4100 are stored to 12 decimal places approximately,
compared with 8} decimal places on the 803/503.

A CYCLE Type 2 instruction (CYCLE A = p,q,r) is
translated by an ALGOL for statement - hence it is

not permitted to jump into the body of the loop.

There are no such restrictions on the other VARY
and CYCLE Type 1 instructions.

The SUBR instruction is translated by a recursive
call on the procedure 'program'. For use on
4100 ALGOL (Issue 1) the statements used in the
subroutine must be moved to the beginning of the
program by editing manually and declared as a
procedure. The recursive procedure call is then
replaced by a normal procedure call. (This
restriction will be relaxed with a later issue of
4100 ALGOL.)

2.2.3.36
AUTALG A

(g)

(h)

(i)

METHOD OF OPERATION

Triggers from data tapes and JUMP instructions leading
to labels, specified at run time, are translated using
switches, For use on 4100 ALGOL (Issue 1) the dynamic
jumps (translated to "goto 2& [i];") should be replaced
by "ref:= i; goto trig;".

The switch following trig: "goto 2% [ref];" should be
replaced by the statement:-

if ref = 1 then goto %1
else_i{ ref = 2 then goto 22

1

(ete. for all reference numbers)

Data tapes must be punched in the telecode of the
object program and should obey the conventions of
ALGOL, However nll Autocode data tape facilities
are available except the use of ? to cancel

incorrectly punched numbers.

Labels on data tapes should be surrounded by = £ and
? instead of = and blank in Autocode,

The trenslator produces an equivalent ALCOL object
program. However it may be found that the object
program cen be improved by the programmer. For
example, if none of the Autocode READ facilities except
number input, then the procedure calls READ may be
replaced by read statements.

The Translator is compiled in the usual way by the ALGOL

system.

2.2.3.36
AUTALG A

The source Autocode program is provided as data to the compiled
program. The Autocode instructions are read in a line at a time and equivalent
ALGOL statements output. Information for the programmer is ocutput on the
control typewriter during translation, After translation the computer will

output switch lists containing any labels introduced during translation.

The object program may be compiled directly by the ALGOL system.
During compilation of the declarations a systems wait will occur caused by a

halt code (:) on the object tape. At this point any switch lists output after

translation must be compiled before continuing the compilation of the program.

The object program is run as any other ALGOL program.

EXAMPLE

This example shows the Algol that is produced by translating
a small Autocode program whose function is to read in a set of number pairs,
AO and Al, and print out a table of

e ———

Ya02 + A12

2.2.3.36
AUTALG A

Autocode

:: EXAMPLE PROGRAM
SETV A(1)c
SETS NI

SETF SQRT
SETR 1l
1)READ N
CYCLE I=1:1:H
READ A

READ Al
A=p%p
Al=A1%A1
C=A+A1

C=SQRT C

LINE

PRINT AO
PRINT Al
PRINT C
REPEAT X

STOP

START 1

E

E'2I3'36
AUTALG A

EXAMPLE PROGRAM;
begin integer I,N;
real Cs
real array A [0:1];

(STANDARD DECLARATIONS)
procedure program (ref); value ref; integer ref;
begin switch £2:=01, t0, exit, trig;

(DECLARATION OF procedure READ;
trig: goto 22 [ref];

L1: READ(N,0,true,trig);

I:=];

L pl: READ(0,A [0], false, trig);

READ(0,A [1], false, trig);

A [0]):= A [O] *A [0];

A [1]:= A [1] *A [1];

C:= A [0] +A [1];

C:=sqrt (C);

print ££277;

print A [0], ££5277;

print A [1], ££5277;

print C;

I:=I+41;

if I # N then goto pl;

stop;

tO:exit: end of program;

STANDARD INITIALISATION STATEMENTS

read reader(3), start;

if start = 0, then program(1)
else program(start);

end of translated Autocode program;

K.G. Robey
January, 1966

APPENDIX 1

2-213-36
AUTALG A

Elliott Autocode and equivalent ALGOL

Note in examples below,

A,B,C,D
s 0 95 9 5
m,n
D1Q,T

Ky¥ s

Elliott Autocode

Arithmetic

A=3B
A=1B+C
A = B/C
I=J*%K

Functions

= SIN B
= ARCTAN B
= LOG B
= EXF B

= SQRT B
INT B
= INT B
= FRAC B
= MOD B
= MCD J

= STAND I

= H P o H = P = =
i

represent
reprasent
represent
represent

represent

floating point variables
integer variables
positive integer constants
any integer constants

floating point constants

ALGOL

A: =B + C;
A: = B/C;
I:=J % K;

A: = sin (B*pi);

A: = arctan (B) / pi;

A: = 1n (B);

A: = exp (B);

A: = sart (B);

A: = INT (B);) procedures INT
I: = INT (B); g and FRAC inserted
A: = FRAC (B);)

A: = abs (A);

I: = if J<O then - j else Jj

A = Iy

by translator

- (i) =

2+2.,3.36
AUTALG A

Elliott Autocode

Setting and Start

SETS I J (m)

SETV A B (m)

SETF INT TFRAC

SETF (other)
SETR n

START n

JUMP € n
JUMF n

JUMP € I
JUMP I

T T B e St

JUM:PIFA=E@:1§
JUMPIF A =B @ n)

- (ii) -

ALGOL
inteﬁer L3
integer array J [O:m];
real Aj
real array B [0:m];

integer procedure INT(X);

value X; real X;
INT := sign(X) * entier (abs(X));
real procedure FRAC (X);

value X; real X3

FRAC := X- sign(X) * entier(abs(X));

(ignored)

procedure program (ref);

value ref ; integer ref;

begin switch f8:= 21, £2... &n, tO0;
goto L [ref];

t0: exit: end of procedure program;

(initialisation statements)

read reader(3), start;

if start = O, then program (n)
Eliﬂ prngramfstart};

end of translated program;

goto Enj

goto RL[I];

if A = B then goto fin;

Elliott Autocode

JUMPIF A/ABETI
JUMPIF A # B I

JUHPUFILESSASE@ng
NO JUMP A B € n

Other Controls

SUBE n
EXIT
STOP
WAIT

Initial Values

SET A [m:n] = PyQess

VARY and CICLE

VARY A =

REFEAT A

2.2.3.36
AUTALG A

ALGOL

if A > B then goto 22 [I];

if not A < B then goto &n;

program (n);
goto exit;
stop;

wait;

goto ttm;
tm: for pi:= p,q... do
begin A [var] := pi;
var:= var + 1;
end;

ttm:

ctn: = ctn + 1;
if etn # L then
begin A: = A + C;

goto ±
end;

- (iii) -

242-3-36
AUTALG A

Elliott Autccode

Input

CYCLE I = J:K:L

REPEAT I

CYCLE A = B:C:D

REPEAT A

CYCLE A = X,Y3240n

REPEAT A

READ A
READ I
INPUT I
RFADER I

ALGOL

I: = J;

Lpm;

if T4 1 then

begin I: = I + Kj
goto fpm;

end;

: = B

e

Lrm;
if A # D then
begin A: = A + Cj
if abs (D+D-A-A) < mbs (C)
then A: = Dj
goto &nm;
end;
for A: = X,¥,%... doO
begin

end;

READ (0, A, false, trig);
READ (I, O, true, trig);
(not allowed)

reader (I); rdr: = I;

- {iv) =

2.2.3.36

AUTALG A
Elliott Autocode ALGOL
Cutput
PRINT A print A, £ ?;
PRINT A,I freepoint (I); print A, £ 7;
PRINT A,n/ scaled (n); print A, £ 7
PRINT A,m:n aligned (m,n); print A, £ 7
PRINT I print I, & T3
PRINT I, n digits (n); print I, £ 7;
OUTPUT I (not allowed)
LINE print ££877;
LINES n print ££e¢n?7?;
SPACES I for s&:= 1 step 1 until I do
print ££s77;
TITLE AEB?C bl. EEint £EA EqTBEu?C?;
PUNCH I punch (I);
TELEPRINTER punch (3);
Check
CHECK A A: = checkr (A);

CHECK I

checki (I);

- (¥) =

24243.37

EDITBI S

Chapter 37 : EDIT8 INTERFACE

CODE EDIT8I ©

FUNCTION

To combine the functions of both EDIT8 and LPRINT so as to
produce simultaneously an edited program tape and a listing of the new tape
on the lineprinter, The alterations to the original tape are specified in
exactly the same way as for EDITY. LPRINT and FDIT8 are emnloyed as common

programs through the EDIT8 INTERFACE.

STORE USED

L locations.

METHOD OF USE

The facilities provided are controlled by means of certain
keys on the number generator. The keys are chosen so as to be adjacent to
those used during translation of programs by the SAP assembler since EDITS

may be used as a common program by SAP.

2.2.3.37

EDITEI S

EDIT8 INTERFACE must be input after EDIT8. However, it

need not be input immediately after EDITS,

EDIT8 INTERFACE may be used in exactly the same way as
EDIT8 inasmuch as entry points 1 and 2 have the same effect, There are,

however, the following two differences when attempting normal operation:

1. Unless Key 32 is depressed, the edited tape is not
produced., This enables the edit itself to be

checked at high speed.

2. The edited tape is produced on punch 2 and not on
punch 1 as is the case with EDIT8. Thie facilitates
the parallel production of both binary and mnemonic

copies of a tape using SAP (see COMMON PROGRAM USE).
The effects of the control keys are as follows:

Key 32 : Controls output to punch 2.

Output only occurs if the key is depressed.

Key 33 : Controls output to the lineprinter through
LPRINT. Output only occurs if the key is

depressed.

2:243.37

FDITBI S

COMMON PROGRAM USE

Both the SAP and ALGOL compilers may be used in conjunction
with the EDIT8 INTERFACE in the same way as FDITB., With neither control key

depressed the effect is exactly the same,

When either or both of the control keys are depressed the

effect is as defined above.

SPECIAL NOTES

1e When EDIT8 INTERFACE is used as a common program,
in order to obtain output of the last line of

text on the lineprinter the operator must type:
LPRINT ; 4 .

2. If Key 33 alone is depressed there must still be
an edit tape ('RE') in reader 2 in order to obtain

a lineprinter listing.

24243.37

EDIT8I S

ERROR INDICATIONS

MEHE&EE
ERRSUM

NoLPRINT

TAPES

Interpretation

The tape produced has been mis-punched or has
been mis-read when entry 2 is used to check
the tape produced (see EDIT8 description).

It is advisable to repeat the check
read process to cater for the possibility of
a mis-read rather than attempt to produce
another tape immediately.

The common program LPRINT is not in store
when Key 33 is depressed.

The program tape is coded in a sum-checked binary form

produced by SAP.

A. Woodcock (U.R.L.)

AW. Porritt

May, 1966

2.2.3.38

INTERN S

CHAPTER 38 : MAGNFTIC TAPE SORT (FIXED LENGTH)

CODE INTERN S

FUNCTION

To sort and update information written on a reel of
magnetic tape into alvhabetic or numeric order as determined by the
user, This information must consist of standard length items packed
into fixed length magnetic tape blocks. The magnetic tapes are handled

using PCPP (see 2.5.3, Appendix 3).

CONFIGURATION

The hasic 503 must be supplemented by a minimum of three

magnetic tape handlers,

STORE USED

This varies with the code added by the user, but will be

of the order of 1400 locations.

METHOD OF USE

1

(Issue 1)

2.2.3.38

INTERN 8

(1) Entry Points

Entry to INTERN is a common program entry of the form:-

COMP, INTERN

:00 A

:00 B

:00 C
where A, B and C describe details of the layout of the tape (see (5) below
for the general form of data on the tape). This entry initiates the
sorting process and control will not be returned to the user until the
process has been completed. The user is, however, required to write
certain blocks for inclusion in INTFRN itself (see below, TAPES) which
will cater for the particular effects desired by the user. These SAP1
blocks are:-

COMPARE

ENDTEST

PREWRITE

FINAL

ENDFILE
and the first two are commulsory, while the others can be included as dummy
blocks in many circumstances, ‘The five blocks are all entered as subroutines
at the appronriate stares of sorting, and their purvpose and use will be

described in (3) below.

2

(Issue 1)

2.2.3.38

INTERN 5

It should be noted that an entry to INTERN is an indirect

entry to PCPP, which is used in the transfer of buffers.

The nrocedure for running INTERN is to load PCPP, INTERN

(complete), WAME (the user's program), and other programs required into
main store, and type:-

PCPP, NAME: n.
where n defines the program entry vpoint required. At this point handlers
1, 2 and 3 should be loaded with the original file and two scratch tapes,
respectively., The original tape should be vositioned immediately before
the first vhysical block of data. At the end of the first pass, the
message

END OF PASS 1
is outout on the typewriter and a sign wait occurs. Handler b should be
loaded hefore continuing: the original tape will not be used aesain, Ir
only three megnetic tave handlers are available, then the number on the
handler containine the oripinal data should be chanred to 4 at this point,
and the reel chanesed if the original data is required. A messare

SORTED DATA ON H 'N'
is displayed at the end of the sorting process: 'N' is the number of the
handler onto which the sorted data has been finally output (i.e. N = 2,3 or i),

This interer N will be held in the accumlator on exit from INTERN.

3

(Issue 1)

2.2.3.38

INTERN 5

(2) Parameters

The parameters following entry to TINTERN have the following

significance:-

A = HNumber of items mer block on original unsorted reel.
B - Number of items per block on the sorted reel.

C = TNumber of words per item.

These fipures are expected to remain valid throurghout the

length of a tane, and so must be constants.

(3) Writing the Supnlement to INTERN

The existing blocks of TINTFRN deal with the mechanism of
sorting, and not with the actual information content of items of data,
which is presumed to be known only to the user. For this reason the
user must supply the code for the blocks deseribed, according to the

followine specifications:-

(n) Rlock "COMPARE".

Some mart of each item contains the information forminge
the criterion for the item's position on the sorted tape (e.m. author,
serial number, ete): this is known as the 'key' of an item. In order

to function, INTERN must be told which of anv two items should precede

h

(Issue 1)

2.2,3.38

INTERN S

the other. The addresses of the first words of the items to be compared
will be in two locations with global identifiers "add1" and "add2" on
mtry to this subroutine, On exit, which should be made by the macro

"EXIT,1", the accumulator should be set as follows:-

Positive = the item indicated by addl is least.
Wegative - the item indicated by add? is least.
Zero - both have the same key.

This routine may reset the contents of any item but must

not reduce the value of the key of any item.

(n) Block "ENDTEST."

INTERN incornorates a test for the end of the information
written in the file, which should be indicated by a special item avvearing
at the end of the unsorted data. On entrv to ENNDTEST, the address of the
first word of the item being considered is in the accumulator. The user's
routine checks the item, settins the glohbal variable "lastst" to +1 if the

item is the last one on the file, then exits via the macro "EXIT,1".

5

(Tssue 1)

2.2.3.38

INTERN S

(e) Block "PREWRITE."

Outrut of any item onto the sorted tape can be prevented
during either pass (internal or merge, see bhelow, PROCESS USFD) by the
block PREWRITE, which is entered each time an item is to be nlaced in an
output buffer. As before, the address of the first word of the item is
held in the accumulator on entry, so the user can check any relevant
sections in the item (e.z. a marker written during the internal pass by
COMPARE) in order to decide whether or not to output the item. The
appropriate action is achieved by making one of two exits from PREWRITE :
"EXIT,1" if the item is not to be written onto the sorted tave, or

"EXIT,2" if it is to be written.

(a) Rlock "FINAT."

Before the last merge pass, FINAL is entered and may write
a header block onto the new tape (whose handler number is in the accumulator
on entry). If this facility is used, the block FINAL should include a
declared v ctor as a buffer for the header block and output it using a
PCPP macro instruction, before obeying "EXIT,1". On exit, the reel is
assumed to be positioned immediately after the header block. If FINAL

writes a block, it mist inerease the global variable "RLNO™ by 1.

6

(Issue 1)

2.2.3.38

INTERN S

(e) Block "ENDFITE.,"

Vhen INTERN reaches the end of the sorted data, this
routine is entered and, if used, can ensure that nothing appears on
the tape after the final item which may be confused with a genuine item,
by writing end of file markers (e.g. -1's), either in the remaining
locations of the last output buffer, or in an extra buffer sbould there
be no such unused locations. The contents of the accumlator on entry
will be 00 D:00 E, where D is the number of words required to fill the
last buffer or part of buffer, and E is the address of the first location
after the final item in the file (i.e. the first unused location of the

buffer). The usual exit is made.

(1) Error Indications

If there is not sufficient room in main store for the
necessary buffers, the messape
TROOM
is output on the typewriter. Any other errors occurring will be PCPP

magnetic tape errors and are defined in 2.5.3 Appendix 3.

(5) Data Tares

Four reels of magnetic tape are normally required during

the operation of the promgram. Three of these are scratech tapes used to

7

(Issue 1)

2.2.3.38

INTERN S

atore the contents of the file temporarily and of which one will be

selected to hold the sorted information: the fourth is the original

file,

The following points should be observed concerning the

format of the data within a file:=

(a)

(v)

(c)

(a)

The information is written in blocks of a standard

length.

Each block is composed of a number of complete items
as specified by parameter A or parameter B (see
METHOD OF USE above), with the exception only of the

header block and the final block.

Each item contains a standard number of complete words

(parameter C).

The tapes loaded on handlers 2, 3 and 4 should all have
at least one block written on them, which could serve as
a header block. Its content is ignored by both passes

of the sort program.

8

(Issue 1)

TAPES

2.2.3.38

INTERN 5

INTFRN is supplied as a SAP1 mnemonic tape, including a1l

the necessary global introductions, but excluding certain component

gsections as indicated by the stored entries in the following table,

Position

on tape
1

2

e Y, |

9

10*

1+*

Section

INTERN

WAIT

&

&

PREWRITE

COMPARE

ENDTEST

ERDFILE

B

FINAL

Trigeer list

Description of Contents

Declarations and main blocks

Last block of INTERN's own
routines

"Wait" marker for the assembler

"Wait" marker for the assembler

Specialised routines used
during the testing of INTERN.
They should be repunched by
the user.

As for 3.

User's block.

trigger MAIN;

Secticns 5 to B inelusive are unlikely to be of pgeneral use: their effect

is to output all items on the original file, to treat -1's as end of file

markers, and to take the first word of each item as its key with bits 1 to

T of the sixty-third word as a sub-key.

contain at least sixty-three words.,)

9

(Issue 1)

(Note that an item is expected to

2.2.3.38

INTERN S5

The user will probably need to substitute his own blocks
in sections 5 to B, as well as incorporating sections 10 and 11 on the

tape, before assembling and running INTERN,

PROCESS USED

The original data is sorted inteo ordered strings by an
internal pass, usineg handlers 1, 2 and 3, by a replacement-selection
technique, After the kevboard wait, a merge pass is entered, using
handlers 2, 3 and b, which writes the sorted reel by a polyphase merge
technigue. (See the Communications of the Association of Computer

Machinery, May 1963, for further details.)

10

(Tssue 1)

2.2.3.39
NIODE A

CHAPTER 39: NUMERICAL INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS

CODE NIODE A

FUNCTION

NIODE is an Algol procedure to perform one step of a step-by-step
integration of a system of n simultaneous first order differential equations.
dy.
Flfd.x = fi (x*}rlg Yz illli}rn}
1i® 1,25 sens D

Any nth order differential equation can be written as a system
of n first order differential equations - please see EXAMPLES OF USE at the

end of this specification.

The method is a modification of a method based on Taylor Series
to provide the best results possible with optimum stability (Taylor series
itself is unstable) and applies to any system of differential equations with
derivatives continuous or piecewise continuous with finite jumps in the range

considered,

As own arrays cannot have variable bounds n, n has been
restricted to n £ 20. However, should the user require to solve N equations
where § > 20, he has only to change the bounds of the own arrays in the
setting instructions at the head of NIODE from 20 to the numerical wvalue of N.
The only bound on N is the available store size.

2.2.3.39

NIODE A
STORE USED

Aporoximately 1900 + 13xn locations
CONFIGURATION

The requirements are as for 503 ALGOL
TAFPE

A mnemonic tape of the procedure is provided.

SUMMARY OF PROCEDURE

Ernceﬂure

NIODE (n,X,Y,E,H,start);

value H,H, start;
boolean start; array Y;

real

the
the
the
the
The

E B m M 2

pre
start

X,H; integer n,E;

The parameters are:

number of equations

initial value of x=X for this step.

array ¥ [l:n] which holds the initial values of ¥ at x=X.
number of significant figures accuracy required.

maximum interval i.e. give initial values at x=X, then the

cedure finds values at x=¥+H.

start must be true on first entry to NIODE and then the starting

process in NIODE sets up all initial values and also integrates

one

step from X to X+H. It is advisable to choose H such that

there is no discontinuity in any of the derivatives in this
interval H.

start must be false for subsequent entries and each entry integrates

just one step from X to X+H.

2.2.3.39
NIODE A

On exit from the procedure:

X has been updated, and is now the initial value for the next entry
Y [i] holds the result y; at this new value x=X
n,e,H start

are unchanged in the procedure.

For subsequent entries, for ex, in tabulating results of one function,
start must be false and there must be no discontinuity in the values of n,X
or Y. H may vary for different entries, but if the sign of H 1s changed,
the starting process must be re-entered i.e. start must be true. It is
advisable to keep E constant for all entries, in fact, an increase in E may
not be possible, since the wvalues at the end of the first step are to the
accuracy of E significant figures, and these form initial values for the next
step.

METHOD OF USE

The user must declare globally
Y [1:n] on entry ¥ [i] holds the initial wvalue of ¥;

on exit Y [i] holds the result y; at the new X

Yf[1:n]
F£[1:n] These are used in procedure function
and

procedure function; relating the values of Ff [j] to ¥f [i] for
j,i=1,2, ... n according to the differential equations

ﬂyi!dx - f, (X ¥ 172 won yni

2.2.3.39
NIODE A

For examples of how to write procedure function etec.,
please see EXAMPLES OF USE at end of this specification.

RESTRICTION ON DISCONTINUITIES

The method used applies to any system of ordinary differential
equations with derivatives continuous or piecewise continuous with finite
Jumps in the range considered. There must, however, be no discontinuity in

Ff [i] when Yf [i] = O in the range H, when start is true or false,since

then the accuracy test has no real meaning. Also, it is advisable to choose
H such that there is no discontinuity in the range H when start is true, since
the starting process assumes that the functions are all well-behaved in this

range.

ERROR MESSAGES

The following output is on channel 3, followed by a data wait.

(i) "Sign H changed".

This occurs if start is false, but the sign H has changed. On
continuing, start is put to true in NIODE itself and the starting

process is entered with this walue of H.
(ii) "Discont. in n,X or Y"

This occurs if start = false, but the values of n,X or Y have been

changed from those held at the end of the last entry to NIODE, On
continuing, the new values are used, start is put to true in NIODE

itself and the starting process is entered. This is equivalent to
assuming that this is a different function,

2.2.3.3%

NIODE A

(iii) "h tends to 0".

The elementary interval h used in increased or decreased

during computation to provide the required accuracy in the minimum
number of steps. Should h become very small compared with X, this
warning is output, followed by a data wait. It is possible to
continue, and such a case could occur arcund a discontinuity in one
of the derivatives and by continuing the results should soon resume
normal values and h increase apain, but each time h is decreased

such that |h| <5 * 1078 * |X| the message is output.
(iv) Discont. FatY =0

This occurs if there is a discontinuity in one of the derivatives

Ff [i) at ¥f [i] = O, in which case the accuracy test has no real
meaning. On continuing, the message is output each time the accuracy
test is entered until a value of h has been found to satisfy both tests.
Results are not always possible, in which case "h tends to O" will be

output, or if results are possible, they may not be good.

ACCURACY

The user specifies the number of significant figures accuracy
he requires. No instabilities are introduced by the method, but instabilities
in the subject differential equations are reflected in the solution, and then
the accuracy obtained is not necessarily the accuracy required. A
discontinuity in any of the derivatives in the interval H when start is true
or a discontinuity in Ff [i]when ¥Yf [i] =0 in the range H may lead to

inececurate results.

2.2.3.39
NIODE A

The 5th degree polynomial approximating the solution corresponds
to a truncation error of the order of h’, where h is the elementary interval

size, The discontinuity error is bounded by

Bn (£lx,) - £(x_))]

The iteration error is of the order of h® and the roundoff

error is minimised in the calculations.

TIME

—a

The time taken depends on number of equations and also the

equations themselves - see next paraeraph.

PROCESS USED

The method is based on the article "On Numerical Integration of
Ordinary Differential Equations" by Arnold Nordsieck, published in
"Mathematics of Computation" January 1962, It is a "memory" method,
operating with current values of the derivatives of a 5th degree polynomial
approximating the solution. The method was obtained from a Taylor Series
with the coefficients of the correction terms modified for the best accuracy
possible with optimum stability. In actual fact, the method turns out to be
a reformulation of Adam's method, because it uses effectively the same

quadrature formula.

he method applies to any system of n first order differential
equations with derivatives continuous or piecewise continuous with finite
jumps in the range considered. It is thoroughly stable under all conditions,
incorporates automatic starting and choice of elementary interval size. Any
integration is started off given only the essential initial conditions
i.e. values of X and ¥ [i]and the procedure function relating the Y3 and fi
by the differential equations

2+2.3.39
NIODE A

dyifix = f‘i (x,:ql"l..:fz Illiyn}

i=1,2,... 1

The svarting process in NIODE (entered when start = true) chooses
a slightly conservative value for the elementary interval size h, which is
increased or decreased during computation to provide the specified accuracy of
solution in the minimum number of steps. 1In fact, there are 2 tests in the
procedure - one on the accuracy of that result just obtained and the other on
the stability of the method as applied to the equations, and failure of either

of these leads to a decrease in h to h/2.

EXAMPLES OF USE

1) An nth order differential equation to be written as n

simultaneous first order equations.

let y; = y(x)
Y2 = dy,
fdx = fl
Y2 = dy2
fﬂx = f2
b =
n n-1/dx fh*l
and then

dyn!dx = fn{x, ¥ls ¥2 sss .Yn}

3 n-1)

2 “
Vlas" Ham v 0

n
dy jq,0 = fn{x,

2.2.3.39
NIODE A

The y; ... ¥, are held in the array Yf [l:n] and the f; ... fn

are held in the array Ff [1:n], and for this example, the procedure function

is

procedure function;
begin integer i, nl;
n l:=n=1;
for i:=1 step 1 until nl do Ff [i] := Yf [i+1];
Ff [n]:= the differential equation itself;

end;

2) The non-linear 2nd order differential equation
ay?, dy, 42 _ .. &, -
xy .-’dx+x{ "'dx} 3y Vil =0
is taken as an illustration of 1) above, and also to show a
typical program using the procedure NIODE. Tabulate the
values of y at x=1,1.5,2,2.5,3 to 5 significant figures

given that at dy! i (The actual solution

=1y Y2, -, SR i i
is yz = 5x* -1, and from tge initial conditions, We require

the positive y values.)

2.2.3.39
NIODE A

Example of Use of NIODE;

begin real X; array Y, Ff,Yf [1:2];
switch ss:=loop;

procedure funection;
begin Ff [1]:=Yf [2];

Ff [2):=(3%YT[1]*YF[2]-X*YL[2]*Y£[2])/(X*Y£[1]);

end;
(:){fEEd in procedure NIODE here)

sameline, freepoint(5);
X:=1; Y[1]:=2; Y[2):=5;
print £L17HIODE results £12s10? X Values £s5117
¥ Values £12s8?77,X,8£5977,Y[1];:
NIODE (2,X,Y,5,.5,true);
rint ££1s8??,X,££5977,¥[1];
loop : if (X=2.99999995) <O then
begin NIODE (2,X,Y,5, .5,false);
orint ££1s827,X,££5977,Y[1];
fgoto loop;
snd;
end of this example;

The results obtained were

NIODE results

X Values Y values
1.0000 2.0000
1.5000 4.9308
2,.0000 8.8882
2.5000 13.940
3.0000 20.100

and the time taken was about 6.3 secs, including punchtime,

2.2,3.39
NIODE A

Example 2) was repeated with the data x=1, y =-2,

dyfﬁx = =5 successfully.
3) The function with a discontinuous derivative (singular point),
2
d:'r,’dxﬂx for x<5, x>5 i.e.:,r=xf2+cnnstantl
2
ﬂy! =1l-x for x =5 i.,e, y =x =X
dx

KE + constant 5

was run successfully, with initial conditions x=3, y=4.5 and

E=5 (i.e. 5 significant figures accuracy required), giving

results
X Values Y Values
3.0000 L ,5000
L, 0000 8.0000
5 .0000 12.500
6.0000 18,000

The values of h, the elementary interval size taken, vary
from & maximum permitted of 1.0 to approximately l#:,‘l-'I+ at

¥=5, increasing again as X>5.

For this example, procedure function is
procedure function;
if X=5 then Ff[1]:=1-X else FP{1]:=X;

- 10 =

k)

5)

2.2,3.39

NIODE A
The function with a discontinuous derivative (step
discontinuity),
2
dyfdx = x for x <5 ie.y=m™ /, + constant,
2
dyfdx =] -x for x 2 5 f.aiy mxr g * constant,
2

was run successfully, with initial conditions x=3, y=L.5,
E=5, giving results to 5 figure accuracy,

X Values Y Values
3.0000 L ,5000
L ,0000 8.0000
5.0000 12.500
6.0000 8.0000

The values of h vary as in example 3) above, and for this

example L), procedure function is
rocedure function;
i; X<5 then Ff[l]:=X else Ff[1l]:=1-X;

N Simultanecus lst order equations.
For example, theequations

dyl; = y1 =by2

dx

dy 2

{dx".‘fl - 2¥2

212-3' 39'
NIODE A

with initial conditions x=0, y=-2, y,=3, were run successfully
over the range x=0 to x=3. For this example, procedure
function is

procedure function;
begin Ff[1]:=YF[1]-L*YF[2];
Ff[2]:==Yf[1]-2%Yf[2];

end;
The actual solutions are

¥y = 2”3 2%

Y2 = EE-EX + EEx

P. Simmons

February, 1966,

- 12 -

2.2.3.k0
MTX02 A

CHAPTER 40: ALGOL MATRIX PACKAGE, MARK 2

FUNCTION

This package of procedures performs all the standard operations
of matrix arithmetic.

COMPATIBILITY WITH MTXOlA

This package is very similar in use to the 503 Libary Program

MTXOlA, but there are several differences namely:-

1) Procedures invmx and mxquot in MTXOlA use Gaussian elimination
with partial pivoting, whilst this package uses Crout
reduction to reduce & matrix A to the form A = L (U+I), where
L is a lower triangular matrix, the diagonal elements of L
being the pivots of the reduction, and U is a strictly upper
triangular matrix. Thie new method had, in some cases lead
to more accurate results, but in most cases there is no
difference in the results obtained. Using this new method
introduces a few extra procedures, which are not recommended

for use separately, but are called by invmx and mxquot ete,

namely =

erout which performs the Crout reduction
permrovs necessitated by Crout

innerprod performing the innerproduct of 2 vectors.

(This is also called by mxprod).

2.2.3.k0
MTX02 A

2) solvmx is a new procedure which solves the equation AX=B,
writing the result in B. A is also destroyed in the process.
mxquot also solves the equation AX=B but it calls A by value,
uses mxcopy to write B into X and then calls solvmx (A,X)
working the result in X, thus both A and B are preserved at

the expense of time and storage.

3) The determinant of the matrix being reduced by the Crout

reduction can be calculated if the user wishes.

L) mxaux no longer exists, but is absorbed into procedures

mxneq, mxcopy, mxsum and mxdiff.
5) The error messages given out are more explanatory.

6) This version is written in pure Algol and contains no
optimization - MTXOlA eliminates all actual array accesses
by the use of Algol procedures address, size and loecation
and hence is a lot quicker. However, this version does use
Algol procedures lowbound and range and procedures formmx

and innerprod use Jensen's Device.

For further details of the 5 main differences, please read
the paragrapii DCTAILS OF PROCEDURES.

PARAMETERS

The parameters of the routines are, in general, arrays. The
vectors and matrices which are used as actual parameters must have been

declared in the main program as 2-dimensional arrays with appropriate

subscript bounds. e.g. a column (or row) vector A should be declared as
A [1:m, 1:1] (or A [1:1, 1:m]), and it is assumed that m > 1.

2.2.3.40
MTX02 A

DETAILS OF PROCEDURES

Each procedure performs the tests for compatibility etc.,
which are necessary for the performance of the matrix operation intended.

Error messages are displayed on punch (3) - the on-line typewriter.

The package has 2 global variables EEEL_dEt, innsum;
innsum is used as workspace by procedure innerprod. det is used in procedure
crout to calculate the determinant of the matrix being reduced by Crout's
method. The calculation of det is optional - if det is zero on entry to the
procedure crout, the calculation of the determinant is suppressed, but if
det has any non-zero value on entry to crout the calculation is performed.
det 1s set to zero by the package, so the calculation of the determinant is
not performed unless the user sets det to any non-zero value in his program

before calling invmx, solvmx or mxquot.

If the matrix being reduced is singular, a message to that
effect is output on the on-line typewriter and the program enters a data
wait. On continuing, the determinant is set to zero, and the actual

calculation of it is not performed.

N.B. It is advisable when inverting large matrices with very large
elements to leave det=0, and thus suppress the calculation of
the determinant, because otherwise abs(det) could well be greater
than 1077, and cause floating-point overflow.

2.2.3.k0
MTX02 A

MATRIX PACKAGE:
begin real det,innsum;

procedure error; comment can be altered to suit users needs;
stop;

procedure printl;
print punch(3),EDIMENSIONS NOT COMPATIBLEL1?DIMENSIONS?;

procedure print2;
print punch(3),EMATRICES NOT DISTINCTE£1?DIMENSIONS?;

comment These 3 procedures are called when an error has been detected

in the call of one of the procedures in the package.

for example 1

the call mxdiff (A,C,B) with the declarations
array A[0:2,0:2], B[1:3,2:4], C[1:4,032)]

i.e. C has been declared of the wrong size for the matrix operation to be
performed. This results in the following message output on the on-line

typewriter.

MX{DIFF ERROR DIMENSIONS NOT COMPATIBLE
DIMENSIONS 3%3, L¥#3, 3%3

and the procedure error is entered.

The dimensions are output in the order of the parameters in the procedure

call - i.e. in this example, in the order A,C,B.

N.B. mxgquot calls mxcopy and solvmx, and thus the error messages are those

of mxcopy or solvmx.

2.2.3.40
MTX02 A

for example 2
the call mxquot (B,A,C)

where (1) B is a 3*4, A is a 3*) and C is a L*l matrix

or
(2) B is corrected to be a L*h matrix like C, but A is still not square and
hence has no inverse. The error messages given out will be
case (1) MXCOPY ERROR DIMENSIONS NOT COMPATIBLE
DIMENSIONS 3%, L#}

(these are the dimensions of B then C)

case (2) SOLWX ERROR DIMENSIONS NOT COMPATIBELE
DIMENSIONS 3%L, L*L
(these are the dimensions of A then B)

In both cases procedure error is called after the messapge has been output;
procedure mxdiff(a) becomes: (b) minus: (e);

array a,b,c;

comment The result of subtracting array ¢ from b is stored in a.
a may be the same as either b or ¢. If the arrays are
incompatible "MXDIFF ERROR" is displayed, and the procedure
then calls procedure print 1, then prints the dimensions of

a,b,c in that order, and finally calls procedure error;

procedure mxsum(a) becomes: (b) plus: (c);
array a,b,c;

comment The result of adding array b to array c is stored in a.
g may be the same as either b or ¢. If the arrays are
incompatible "MXSUM ERROR" is displayed, and the procedure
then calls procedure print 1, then prints the dimensions

of a,b,c in that order, and finally calls procedure error;

2.2.3.h0
MTX02 A

procedure mxcopy(n) becomes: (b);

array a,b;
comment This procedure copies a matrix b into a . a may be the
same as b. If the matrices are incompatible "MXCOPY ERROR"

is displayed, procedure nrint 1 is entered, the dimensions
of a and b printed out in that order and finally procedure

error 1s entered;

procedure mxneg(a) becomes minus: (b);
array a,b;

comment This procedure negates a matrix b and writes the results
in array a. a may be the same as b, If the matrices are
incompatible "MXNEG ERROR" is displayed, print 1 is entered,
the dimensions of a and b output in that order, and finally

procedure error is entered;

real procedure innerprod(sk,tk,k,a,b);
value a,b; real sk, tk; integer k,a,b;

comment This procedure calculates the sum over unit positive
increments of k from & to b of sk¥tk. This procedure is

used by mxprod, crout, invmx, solvmx and mxquot;

procedure mxprod(a) becomes: (b) times: (c);
array a,b,c;

comment This procedure performs the matrix product of b and e,
working the result in a, a must not be the same as either b
or ¢. If the matrices are incompatible, "MXPROD ERROR" is
displayed, print 1 entered, the dimensions of a, b and c
output, in that order, and finally the procedure error is
entered. Also if a is not distinet from both b anli ¢ then
MXPROD ERROR is output, print 2 entered, the dimensions of
a,b,c in that order output and then procedure error entered.

The procedure calls innerprod;

2.2,3.40
MTX02 A

procedure formmx(a) becomes: (X) with respect to: (I) and: (J);
real X; array a; integer I,J;
comment This procedure forms & matrix a, where each element

a[I,J] is a function X of I and J. This forming is
performed by rows. This is done by use of Jensens device
which allows a procedure to treat a formal parameter X as a
function of the actual parameter corresponding to another
formal parameter I. (see E,W, Dijkstra's "A Primer of Algol
Programming", Academic Press 1962 P. 57T).

The actual parameters are:-

a a 2-dimensional array
X any real expression defining the value of the element
alI,J].

r 8 | two integer parameters which epecify resp., the row and column
subscripts of the array element. The range of values of I
and J are thus from lowbound (a,l) to range (a,l)-l+lowbound(a,l)
and from lowbound(a,2) to range (a,2)-l+lowbound(a,2) respectively.

N.B. formmx (A,I+J,I,J) where A is declared as A[0:3,2:5] will result in a
different matrix A from the same call of formmx where A is declared as
[1:4,1:4] since in the 1lst case I,J range from O to 3 and 2 to § resp.
and in the 2nd case, I,J range from 1 to 4 and 1 to U resp;

procedure mxtrans(a) becomes transpose of: (b);
array a,b;

comment This procedure forms the transpose of & matrix b and writes
the result in a. a may not be the same as b. If the matrices
are incompatible then MXTRANS ERROR is output, procedure print 1
is entered, the dimensions of a then be output and finally
procedure error is entered. If a is not distinct from b,
MXTRANS ERROR is displayed, procedure print 2 entered, the
dimensions of & then b output and finally procedure error entered;

2.2.3.40
MTX02 A

procedure scprod(a) becomes a times the scalar: (X);
value X, array a; real X;
comment This procedure multiplies a matrix by a scalar X in situ;

procedure permrows(a,r,lbal,lba2,n,m);
value lbal,1ba2,n,m;
b TR 5
integer a; integer array r;
comment This procedure is necessitated by the procedure crout,

and is called by invmx, solvmx and mxquot. No description

of it is given because it is not recommended for use separately;

procedure crout(a,entry,lbal,lba2,n,r);
value 1lbal,1ba?,n;
array a; integer array r;
string entry; integer lba1l,lba2,n;
comment Performs as in situ reduction of a matrix into quasi-

triangular matrices, U,L, by Crouts method with partial
pivoting - the pivots being along the diagonal of L - such
that a=L(U+I). No permutations of rows are performed and
the pivotal row subscripts are recorded in the vector a

[1:range(e,1)]. Because of this, this procedure is not

recommended for use separately but it is called by invmx,

solvmx, and mxquot. (See P2 and 3 for remarks on det);

rocedure invmx(a);

array a;

comment This procedure inverts a matrix a in situ. The method
used is Crout reduction with partial pivoting. i.e. searching
for pivots by columns only., The procedure calls the
procedures innerprod, permrows and crout., If at any stage
the ratio of the least pivot to date to the greatest pivot to
date is less, in magnitude, than 10-®, the following error

message is output.

2.2.3.k0
MTXO02 A

"INVMY SINGULAR STAGE p SIZE n PIVRATIO q" and a data wait is
entered, It is possible to continue after the data wait, but
the results obtained are unlikly to contain any correct
sipgnificant figures. (Also, floating-point overflow may
possibly occur on continuing.) Failure at the lst stage is
specially distinguished. If a is not square, INVMX ERRCR is
displayed procedure print 1 is entered, the dimensions of a
ovtput, and procedure error entered. To use the faecility to
calculate the determinant of a, it is necessary to give any
non-zero value to the real global variable det on entry. It
is advisable in the case of large matrices with large elements
to leave det=0, otherwise abs(det) could well become greater

77
than 10 and cause floating-point overflow;

procedure solvmx (a,b);
array a,b;

comment Solves the equation ax=b working the result (x) in b, hence
b is overwritten. a is destroyed too, being left in the crout
reduction form. a may not be same as b. The procedure calls
innerprod, permrows and crout and is itself called by mxquot.
If a is not square, or if a and b are not compatible then
SOLVMX ERROR is displayed, print 1 entered, the dimensions of
a then b output and finally procedure error entered. Also, if
a is not distinect from b, then SOLVM{ ERROR is displayed,
print 2 entered, and the dimensions of a displayed and finally
procedure error entered. If at any stage, the ratio of the
least pivot to date to the greatest pivot to date is less, in
magnitude, than 10-°, the following message is output and a

data wait entered.

2.2.3.k0
MTX02 A

"SOLVMX SINGULAR STAGE p SIZE n PIVRATIO q." It is possible
to continue but the results obtained are unlikely to contain any
correct significant figures. (Floating-point overflow may
possibly occur on continuing.) Failure at the 1st stage is
specially distinguished. If the user wishes to have the
determinant of a evaluated then he must set the global real

variable det equal to any non-zero number before calling solvmx,
However, it is advisable in the case of large matrices with

large (positive or nepative) elements to lggve det=0 otherwise
abs(det) could well become greater than 10 , and cause floating-

point overflow;

procedure mxquot (b,a,c);

value a;
array 8,b,c;
comment This procedure solves equation ab=c, It enlls a by value and

uses mxcopy to write ¢ into b thus a and ¢ are preserved, and
the result is in b. The procedure uses solvmx and thus crout,
permrows and innerprod and also mxcopy. If b has not the same
dimensions as ¢, then the message MXCOPY ERROR is output and
print 1 entered, the dimensions of b then ¢ output and finally
procedure error is entered. If a is not square, or if a and b
are not compatible then "SOLVMX ERROR" is output, print 1 is
entered, the dimensions of a then b output, and finally procedure
error is entered. If the user wishes to have the determinant of
a calculated, then before calling mxquot it is necessary to give
any non-zero value to the global real variable det, However, it
is advisable in the case of large matrices with large (positive
or negative) elements to leave det=0 otherwise abs(det) could well
become greater than 1077 and cause floating-point overflow;

Please read comment in solvmx on a being singular;

- 10 =

2.2,3.40

MTX02 A
procedure readmx(a);
array a;
comment This procedure reads any sequence of real numbers and places

them in the array a. Successive elements are placed in the same
row of a until that row has been filled, and then in following
rows until array a has been filled. Data must be punched as
described on P.6. Section 2,3.3.1 of the 503 Technical Manual,
Reading takes place on the current device. The device setting

may be altered before readmx is called:-

e.f. reader(2)
readmx(a);

procedure printmx(a);
array a;
comment This procedure prints an array a by rows, Each element is
printed on the device and in the format current when the
procedure is called. The format is specified before the

procedure call.

e.f. punch(2)
prefix(£,£s5277)
freepoint (k)
printmx(a)

Fach rows is printed on a new line, No row or column numbers
are printed,nor is there any facility included for printing
large matrices. However, there are now some Additional
Procedures on a separate tape to do this, ﬁlease see

mxoutput ete.

P o

2.2.3.40
MTX02 A

METHOD OF USE

The package of procedures ends with the one instruction
det:=0.0; and a H haltcode (telecode value T6) sign. The master program
requires an extra end; and if it is fed in directly after the packagze of

procedures, it must not have a title,.

Any of these procedures may be replaced by others, or others
included, as the user requires,

ACCURACY

Single length working is used.

TAFPE

A mnemonic tape is provided.

STORE USED

If storage space is critical, unused procedures may be omitted,
but care must be taken not to omit procedures which are called by the required

procedures ;-

All procedures call procedures error, print 1 and print 2,

mxquot calls mxcopy, innerprod, permrows, crout, solvmx
solvmx calls innerprod, permrows and crout

invmx calls innerprod, permrows and crout

mxprod calls innerprod.

- 12 =

2.2.3.b0

MTX02 A
PROCEDURE AFPROX STORE USED INCLUDING
error)
printl) L8
print2)
mxdiff 189
mXsum 189
mxcopy 142
mxneg 141
formmx 81
mxtrans 227
scprod 64
mxprod 364 innerprod
invmx 1387 innerprod, permrows, crout
solvmx 935 innerprod, permrows, crout
mxquot 1079 mxcopy, solvmx (& thus
innerprod, permrows, crout)
readmx 66
printmx 73

Any of these procedures may be replaced by others, or others included, as the

user requires.

w18 -

2.2.3.40
MTX02 A

TIME TAKEN

This version is written in pure Algel and contains no
omptimization; however, it uses Algol procedures lowbound and range, and

procedures formmx and innerprod use Jensen's device.

SIZE OF MATRICES

PROCEDURLE x5 10x10 20x20
formmx Depends on the Function

mXS um .02 secs. .11 secs .16 secs
mxdi f'f .02 secs .11 secs M6 secs
mxcopy .02 secs .08 secs .32 secs
mxneg .02 secs ,0B secs .32 secs
mxprod .14 secs 1,10 secs 8.30 secs
scprod .02 secs .08 secs «32 5ecs
invmx .2f secs 1.70 secs 11.25 secs
mxtrans .02 secs .08 secs .32 secs
mxquot Depends on the matrices

solvmx Depends on the matrices

readmx Full speed of reader

printmx Full speed of punch

These times are of course, approximate,

ACKNOWLEDGEMENT

The procedures invmx, solvmx, crout and permrows are based on some

procedures written by Mr. J. Boothroyd of the University of Tasmania, Hobart,

e Xhw

2.2.3.40
MTX02 A

EXAMPLE OF USE

begin array A[1:3,1:3],C,B[0:2,0:2];

reader(1);

readmx(A);

reader(2);

readmx(B);

mxprod(C,A,B);

det:=1,0;

invmx(C);

scaled(h);

printmx(C);

print ££17 det=?,sameline,det;

end;
end;

This small program is fed in immediately after the main
package tape which stops on a H (haltcode) at the end of the tape. Output

is on the current device.

ADDITIONAL PROCEDURES

In all cases where the number of columns is too great for the
matrix to be printed on one level, either of the following output procedures

may be used,

begin
procedure printcol(a);
array aj;
comment This procedure prints the matrix a by columns, Each element

if a column is printed on a new line, then an extra 2 lines and
then the next column is printed, once again with each element on
a new line, This procedure does not give such a good display
as mxoutput (below) but it is quicker and also takes up less
storage space., Output is on the current device and in the

current format;

- 15 -

2.2.3.h0
MTX02 A

procedure spaces (t);
value t;

e,
integer t;
comment This procedure prints t spaces. It is used by mxoutput

below;

procedure mxoutput (A,myn);
value m,n;

bl

integer m,n;

array A;

comment This procedure prints a matrix together with its row and
column numbers printed in the format digits(3). Tt uses
procedure spaces above. The procedure calculates from the
information given by parameters m,n the number of coclumns to
be printed across the pape so that the array may be output

on 1 or more levels.

The parameters are:-

A a real array

m the number of characters available across the output
sheet

n the number of characters occupied by each element of
the array.

The format for printing is set by the programmer.
From this the number of characters per element can be

calculated. e.g.

freepoint (t) t+2 characters are required per element

aligned(r,s) r+s+2 characters are required of output
formats. See 2.,1.3.2 of the 503 Technical
Manual, for further details of the

character requirements of output formats;

=16 =

2.2.3.h0
MTZO2 A

METHOD OF USE

These procedures are on a separate tape from the main package,
and a H (haltcode - telecode value T6) is punched at the end. When these
procedures are required, this tape should be input immediately after the main

package, and then there must be 2 extra end; on the master propram,

STORE USED
PROCEDURE APPROX. STORE USED INCLUDING
printeol 78
mxoutput 203 spaces
CONFIGURATION

Algol Matrix Package will fill the available store during
translation, and hence facilities for storing the owncode version on Core
Backing Store are desirable but not essential - depends on the size of the
problem.

TAPE

A mnemonic tape is provided,

- 17 =

2.2.3.40
MTX02 A

EXAMPLE OF USE

begin array A,B,C[1:24,1:24];
reader(1);
readmx(A);
reader(2);
readmx(B);
mxprod(C,A,B);
inwmx(C);
scaled(h};
punch(2);
mxoutput(C,90,10);

m
=
=T

|

|

|
=0 =
) o
e we ww

First the main tape of the Matrix Package is fed in, then when
this stops in & systems wait on the H (haltcode) at the end, the small tape
containing these Addition Output Procedures is fed in. When this stops on
the H (haltcode) at the end, the small program above is fed in.

P, Simmons

January, 1966

w1l =

. HAPTER 41

CODE

FUNCTION

STORE USED

METHOD OF USE

2.2, 3,41
MTSTOR S

MAGNETIC TAPE ROUTINES (HANDLER 4)

MTSTOR S

To write and read blocks to and from magnetic tape on handler 4.
It is not possible to write further blocks once the reading back of
blocks has occurred without destroying blocks previously written.

200 locations including workspace.

MTSTOR is written as a SAC common program. There are 3 entry points,
and the standard SAC common program entry is made to all 3, Exit is
always made by the instruction

EXITCP,1.

COMP, MTSTOR,1. This is the initialisation entry point of MTSTOR
and should be entered before beginning to write blocks to magnetic
tape. It is also necessary to make this entry before beginning to
read back blocks which have been written to magnetic tape on a
previous run.

COMP,MTSTORy2. This causes entry to the second entry point of
MTSTOR, and should be used when blocks are to be written to magnetic
tape. It must be supplied with the block length and the address of
the start of the block in main store. This is achieved by having
an address (+S, say) in the accumulator upon entry, where location

S and S + 1 hold:=-

S) 00 0 : 00 start of block in main store

S + 1) 00 block length : 00 O

MTSTOR will write a block number into the more significant 19 bits
of the 1st location of the block, so that it is not possible to store
information in this portion of the location. MISTCR numbers blocks
consecutively, beginning at 1. The user should record the block
number for himself as this is one of the parameters that has to be
supplied when the blocik is to be read back.

3
(Issue 1)

2.2, 3,41
MTSTOR S

COMP,MTSTOR,3. This entry isused to read blocks back. When entry
is made, there should be an address {+S, ﬂny} in the amccumulator ,
where location S and S + 1 hold

S) 00 0 :00 start of block in main store

S + 1) 00 block length : block number,

ERROR INDICATIONS

Message Meaning and effect
H4 MAN Handler 4 is in manual state. The program walts until the

handler is released from manual and then continues.

H4 WNP The tape on handler 4 does not have a write permit ring. The
program waits until a write permit ring is inserted and then
continues.

H4 EOT The end of the tape has been reached. No continuation is
possible.

BL TS The length of a block to be written to magnetic tape is too

small i.e. less than 4 locations. Wo continuation is possible

CANNOT WRITE Displayed after several unsuccessful attempts to write a block
to magnetic tape. No continuation possible.

BL NO TL The block number of a block to be read is too large. No
continuation is possible.

CANNOT READ Displayed after several unsuccesful attempts to read a block
from magnetic tape. No continuation is possible,

NOISE A noise block has been encountered. The program continues.

LTH ER A long or short block has been encountered. No continuation
is possible.

S Displayed when a short block which 1s not a noise block is

encountered on reading. The program continues.

TAPES The program is coded in SAY1 and is not sum-checkable, so that when
a binary version is produced, SAP1 should be entered with keys 35
and 36 of the word generator depressed.

General Purpose Software Group.

(1s$uu 1)

2.2.3.h2
CARD A

CHAPTER L42: ALGOL CARD READER PROCEDURES

GENERAL

The procedures are written for the ELLIOTT card reader.
The following procedures are included:

procedure card in

integer procedure cdintl

Boolean procedure descend

interer procedure cdint2

in the given order.

At the end of the main program there must be an end; to go

with the begin at the beginning of the procedure package.

STORE USED:
Approximately 268 locations.
PROCEDURES
1) procedure card in(S);
integer array S5;
Function: The procedure reads a card, takes care of

the buffering of the card reader and gives
an error indiecation if the card reader is

not available.

2.,2.3.k2
CARD A

Parameters:

Global data:

Method used:

S is an integer array, where the card will be
placed. The subscript bounds of S are in
general [1:80] (they can be wider, but the
card is placed between these bounds). The
actual parameter corresponding to S must be

introduced in the program proper,

Boolean FSTCRD; is introduced at the beginning

of the procedure package., It indicates
whether the first card is to be read. At the
end of the procedure package, immediately
before the program proper, there is an
instruction FSTCRD:=true; . The procedure
gives it a value FSTCRD:=false; . The main

program must not give it a value true thereafter.

The input is buffered. The card read into the

own integer array Z [1:80] of the procedure

during the previous call of the procedure is
moved over to the array S immediately before
reading a new card., The time to read in the
card can thus be used for the calculation of

the main program.

If the card reader is not available the
procedure gives an error indication and waits
until the operator has made the card reader
available again, VWhen the control word of the
card reader indicates that the card reader is
available again the program waits about 200 ms

eand then reads the next card into the array Z.

Error mess Ages

2.2.3.42
CARD A

If the card to be read is the first card of the
program, or if the control word of the card
reader has indicated that the previous card

has not been correctly read, then the
information moved over into the array S will
be discarded and the procedure will be started

from the beginning again.

The display [:) CRerrx means that the card
reader is in an error state or is not
avaeilable 10 ms after the last column of the

previous card was input into the store.
x may have the following meanings:

X bits of the meaning error
control word

v - vacant o cause for an
error indication.
The program is
corrupted.

u 1 unavailable The card reader is
not on or is in
manual state, there
is no card in the
reader, the stacker
is full etc.

n L no error The card reader has
been busy more than
10 ms after the last
column was read.

m 1,k manual Same as u and n
together,
f 5 functional A functional error

of the card reader.
May indicate that

the card has not

left the sensing
platform. Other=-

wise like e (overleaf).

2.2.3.42

CARD A
x bits of the meaning
control word
e 1,5 error
X 4,5 functional
W 1,h,5 combined
Note 1
x does not get the values X and W very often.
lote 2

error

The card last read
in was not read in
correctly. If the
erroneous card has
really gone through
the reader, it must
be put in the reader
again together with
the card on the
sensing platform.

If the card has
jammed and not gone
onto the sensing
platform, it must be
copied and the copy
must be set into the
reader, If there are
no cards in the
reader the next

pack of cards must
be set into the
reader,

Same as f and n
together,

Same as e and n
together.

The error indication may also be of the form (:) CRerrxX .

Here the X meens that the erroneous card has been discarded.

The discarded

card may be an empty "card" given by the card reader automatically in case the

card remains on the sensing platform or the platform has become empty.

2.2.,3.42
CARD A

Such discarding error indications may also be caused by a card which has
really gone through the reader, if the card reader has found any number
of columns other than 80, The most usual of these error indications is

I, CRerreX . (See also the value e of Xa)

2) integer procedure cdintl (S,A,B,error);

value A,B;

integer A4Bj

integer array S;

label error;

Function: The procedure reads in integer from the
card and gives this value to the main

program.

Parameters: S is an array into which the card has been
placed, A and B give the columns of the
card between which (both the column A and
the column B included) the integer is
situated (ASB).

Allowing punchings: If there are one or more X=-punchings

(minus-punchings) in the columns A....B,
the integer is negative. There may be a
Y-punching (plus-punching) in any of the
columns. The plus-punching is ipnored.
There must not be more than one numerical
punching (0....9) in each column., If the
procedure finds more than one numerical
punching in any of the given columns,

reading of the integer ends at once and the

2.2.3.k2
CARD A

Error indications:

Time taken:

llote:

procedure gives an error indication to the
main program. Columns with no numerical
punching are interpreted as columns with
numerical punching O, Thus the zero-punching
may always be replaced by an empty column,
X-punching with XO-punching etc. The units
position of the integer must always be in

the column B,

The error indications mentioned before are
given so that control is transferred
immediately to the main program label
corresponding to the formal parameter
"error". If the absolute value of the
integer to be read exceeds 274877906943 the
ALGOL system may give the error indication
Int oflo.

Depends on the number of columns and the
punchings of these colunns, About 0.6 ms

per column,

The values of the elements of the array S

are not destroyed.

3)

k)

2.2.3.h2
CARD A

Boolean procedure descend (SMALLER,GREATER);
value SMALLER,GREATER;
inteper SMALLER,CREATFR;

Function: The vrocedure is used by the procedure
cdint? to make a minimum-maximum-check,
The procedure never causes inteper overflow,

and it clears the overflow indicator if set.

Parameters: SMALLER and GREATER are integers. The

procedure mets the value true, if

NREATER<SGHALLER,

integer procedure cdint2 (8,A,B,MIN,MAX ,error);

value A,B,UINMAX;

integer A,B,MIN,HNAX;

inteper array S;

label error;
e

Function: The procedure reads an inteper from the

card, and gives this value to the main

prorram,

Parameters: S is the array where the card has been put.
A and B rive the columns between and
includine which the inteper will be read
(ASB). MIN and !MAX are the limits
between which the integer should be., If
the interer to be read is <MIN or >MAX, the
procedure rives an error indication to the

main nrogran.

2.2.3.42
CARD A

Error indications:

M. KAISTI,
FINNISH CABLE WORKS.

The procedure uses the procedures cdintl
and descend to make the maximum-minimum=-
check. The procedure cdintl gives to an
integer C of the procedure cdint2 the value
of the inteper to be read, Then a jump is
made to the label corresponding to the
formal parameter "error" if descend (MIN,C)

or descend (C,MAX) are true.

The procedure cdint2 differs from the
procedure cdintl only by having no

maximum-minimum-check.

February, 1966,

2.2.3.k2

CARD A

The following examnle reads in a card and from it reads eight
integers each occunving ten columns. It does this first by using the

procedure edint 1 and then by using edint 2.

begin integer array CD [1:801;
interer COL1,COL2,min,max,I;
gswitch s:= EL,ON;
punch (1);
eoto ONg
EL: print punch(3), £CARD ERROR?;
ston;
ON: ecardin (CD);
for COL1:=1 step 10 until T1 do
besin COL2:=COL1+9;
~ I:=cdint1(cD,COL1,COL2,EL);
print digits (11),Xs

end;

min:= 9010305070

max:= +90000L56T0;

cardin (CD);

for COL1:= 1 step 10 until 71 do

- begin COL2:=COL1+9;
I:=ecdint2(CD,COL1,COL2 ,min ,max ,FL);
print digits (11),I;

end;

®|®
=3 b=}
=1 f=1

2:2¢3.43

MTALG A

Chapter 43 : ALGOL MAGNETIC TAPE PROCEDURES

CODE MTALG A

FUNCTION

The procedure package enables blocks of data, usually in the
form of Algol arrays, to be read from or written to magnetic tape. The
transfers are initiated by simple procedure calls in the main body of the

program.

The package also allows the transfer of such blocks to be
time-shared with other operations such as a block transfer to a different

handler.

Selective overwriting of blocks previously written on a

reel is not allowed.

STORE USED

The package occupies approximately TO0O locations.

DATA FORMAT

A block number is placed in the first word of each block

written. The check sum of all the words in the block is placed in the

-1 =

2-2-3-"“3

MTALG A

last word of the block. The form of each block is thus as follows:

Block Check
Number Data Words Sum
Word Word

T Block Length T

The checksum facility is optional, and if it is not used

the checksum word has the value zero.

Blocks are numbered consecutively from the beginning of
the tape. The appropriate values for the block number and checksum are

automatically placed before the block is written to magnetic tape.

The blocks are written using format 2, odd parity.

GLOBAL DECLARATIONS

The following variables are declared globally in the

mrocedure package:

integer curr, currl, curr2, curr3, currh,
max, maxl, max2, max3, maxh,
errs, errsl, errs2, errs3, errsh,

param, paraml, param2, param3, paraml;

2.2.3.43

MTALG A

boolean parity, wpremit, shortblock, longblock,

endtape, begtape, allows, allowL, chsum;

The variables curr, max, errs and param are used as workspace

by the procedures. They may also be used by the main program, but their

values are lost when a procedure is called.

In the following description, the notation currP, maxP,

errsP and paramP is used for the variables currl, curr2, currb,k

maxl max4 , etc., where P is the handler number, 1<P<h,

currP

errsP

paramP

the number of the block which has just been read or written
or is being read or written on handler P. The value is

set by a call of readwd or writewd.

the number of the last block on handler P. When a block

has been written, maxP is given the same value as currP,

the total number of rereads and the total number of rewrites
which have occurred on handler P due to parity errors. The

value is set by procedures rready and wready.

Used as workspace by the procedures, and must not be used by

the main program.

2.2.3-&3

MTALG A

All the global integer variables are set to zero by the
procedure package, Their values should not be altered by the main

program, except in the following cases:-

The variables corresponding to handlers not being used
by the main program, may be freely used as Workspace, If a tape is known
to contain n blocks written on a previous run, then maxP may be given the

value n.

The procedures use the value of maxP to check that no
search is made for a block whose number is greater than maxP. The values
of the boolean variables parity, wpermit, shortblock, longblock, endtape
and begtape are set by procedure control, Their values are not generally

of interest to the main program.

The boolean variables allowS and allowL are set to false
by the procedure package, and chsum is set to true. Their values may be
altered by the main program if required, and the variables have the

following meanings when true:

allowS - a short block indication when reading a block is not treated

as an error, and the program continues normally,

allowL - a long block indication when reading a block is not treated

as an error and the program continues normally.

2,2,3.43

MTALG A

chsum - the check sum calculated for data tranasferred to or from

magnetic tape.

PROCEDURES AVAILABLE

The procedures called by the main program to read a block

are readwd and rready, and to write a block are writewd and wready.

Transfers are time-shared with the main program, i.e. the
data is transferred between main store and magnetic tape while the main

program is running.

Data Input

procedure readwd (length, address, number, P);

value length, address, number, Pj
———
integer length, address, number, P;

Parameters:

length The total length of the block to be read, including the

block number and the checksum.

address The address in main store to which the block is to be
read, i.e. the block is read into locations address to

(address + length -1) inclusive.

2-2-3-"‘3

MTALG A

number The block number. If number <0, then the next block is
read, i.e, currP + 1,

P The handler number,

If the next block on tape is to be read, i.e. number<0
or number = currP +1, then nc searching is required. Otherwise, the tape

is moved backwards or forwards until block "number-=1" is read.

The transfer to read the specified block is initiated and
exit is made from the procedure, i.e. the main program continues while the
transfer takes place.

boolean procedure rready (P);
value P; integer P;

The procedure is used to determine whether the read operation
previocusly specified by readwd for handler P has been successfully completed.
The procedure is given the value true on exit if the operation is successfully

completed, otherwise false;

The main store area to which the block is read must not be

used by the main program until the procedure has the value true.

2.2.3.L3

MPALG A

If a parity error occurs, then up to 100 rereads are
attempted, and if none of these are successful, or if a short block error
has occurred and allowS is false, or if a long block error has occurred

and allowlL is false, then a error indication is given.

If chsum has the value true and there is no parity,
shortblock or longblock error, then the checksum of the block read is

calculated and compared with the last word of the block.

Data Output

procedure writewd (length, address, number, P);
value length, address, number, P;
integer length, address, number, P;

Parameters:

length - The total length of the block to be written, including the
words for the block number and checksum.

address - The address in main store of the block to be written,
i.e. the block is in locations address to (address +
length =1) inclusive.

number - The number of the block to be written. If number <0,
then the block is written as the next block on tape.

P - The handler number,

2.2.3.43

MTALG A

If the block is to be written as the next block on tape,
i.e. number <0 or number = currP+1, then no searching is required. Otherwise,

the tape is moved backwards or forwards until block "number -1" is read.

The transfer to write the specified block is initiated and
exit is made from the procedure, i.e. the main program continues while the

transfer takes place.

The procedure stores the block number in the first word of
the block before it is written. If chsum is true, then the checksum is

calculated and stored in the last word of the block, otherwise this word

is set to zero. The value of maxP is not yet updated (see below).

boolean procedure wready (P);
value P; integer P;

The procedure is used by the main program to determine
whether the write operation previously specified by writewd for handler P

has been successfully completed.

The procedure is given the value true if the operation is
successfully completed, otherwise false, The main store area containing
the block to be written must not be used until the procedure has the value

true. The value of maxP 1s only updated when this procedure has the value

true.

2.2.3.43

MTALG A

If a parity error occurs, then an attempt is made to write
the block again on the same area of tape. If still unsuccessful the cycle
retreat, erase, write is obeyed up to 6 times, and if none of these are

successful an error message is displayed.

The following note applies to calls of procedures rready
and wready: If no operation has been previously specified for handler P,
or if a previous call found that the operation was complete, the procedure

is given the value true and exits.

Tape Administration

procedure conclude (P)s
value P; integer P;

The procedure is called by the main program when no further
operations are required on handler P, and is called by the other procedures

when an 'end of tape' or error message is displayed.

The procedure displays the follewing information on the

output writer:

conclude
handler P currP maxP
rereads x

rewrites y

2.2.,3.43

MIALG A

x and y are the number of rereads and rewrites which have occurred on
handler P. Their values are extracted from the variable errsP, which

is then set to zero.

The values of maxP and currP are useful as a permanent
record of what has been written on a tape, and perhaps for diagnosing

an error.

The values of x and y give some indication of the state

of the tape or tape handler being used.

procedure tmout (P);

value P; integer P;

The procedure writes a "tape mark" on handler P. A tape
mark is a special block consisting of three words. The first word has the
integer value -1, which is the identification of a tape mark if one is read.
The procedure exits when the tape mark has been written, Since the tape

mark has no block number the values of maxP and currP are not affected.

The procedure should be called when the last block on

handler P has been written, so that the tape mark is the last block on tape.

- 10 -

2.2.3.43

MTALG A

procedure rewind (P);
value P; integer P;

This procedure rewinds the tape on handler P and sets

currP to zero.

N.B. None of the other procedures included in the package may be called

by the main program.

METHOD OF USE

General

When consecutive blocks are read or written, the actual
parameter 'number' of readwd or writewd may be set to zero, and the main
program need not be concerned with the block numbering system. This is
the optimum and simplest use of the system, since there is no hold-up for
searching. However, if it is required to read and/or write random blocks,
the actual parameter should be the required value and any necessary

searching is performed automatically.

It should be noted that this package cannot be used for
selective overwriting, since the last block written is considered to be

the last block on the tape (maxP is set to the number of that block).

- 11 =

2.2.3.43

MTALG A

Procedure Calls

Every call of readwd and writewd must always be followed by a
corresponding call of rready and wready respectively for the same handler.
Furthermore, the main store area used for the transfer must not be used by
the main program until the appropriate call of rready or wready has the
value true. The main program may continue calculating between these calls,
and/or may call one of the procedures for another handler. The main program
may continue similarly if rready or wready is found to be false, although

this will not always be possible.

Procedure "conclude" may be called at any time, but it is
recommended that it is called only when the operations on a particular

handler are complete, which will usually be at the end of the program,

Procedure "tmout" should be called when the last block has

been written on a tape.

Time Sharing

All transfers, including rereads and rewrites, are time-shared
with the main program. Since there are two controller channels, two
transfers may take place simultaneously. Procedure "select" is used
internally to determine which channel to use. If both are busy, i.e. two

transfers are in progress, then the procedure waits until one becomes unbusy.

- 12 =

2.2.3.43

MTALG A

A third or fourth transfer specified is not always held up in this way,

it depends on the timing of the demand for a free channel.

Since the present procedure package does not queue or buffer
blocks to be transferred, a call of readwd or writewd for handler P (except
for the first call of the program) must not be given until a call of

rready (P) or wready (P) for the previous operation has the value true.

End of TaEe and TaEe Marks

The package includes routines for deciding what action to

take when the E.0.T. marker is reached or a tape mark is read.

To ensure that a programming error does not cause the tape
to unload off the end, which will damage the tape and may damage the handler,

it is highly recommended that the following rules are used as standard

practice:
- Every magnetic tape for use by MIALG is previously prepared
8o that there is a tape mark at the end of the tape, well
past the E.0.T. marker to allow for a long block to be
written,
- After the last information block has been written, a tape

mark is written using procedure tmout.

- 13 =

2-2.3Ih3
MTALG A

It is the operators responsibility that the correct tapes

are used, and the programmers responsibility to write a tape mark as the

last block on tape.

The procedure assumes that the tapes are written as above.

If they are not, it is the programmers responsibility to ensure that the

tape does not unload off the end or that apparent magnetic tape errors

occur, due to a programming error.

The table below shows what action is taken when a tape

mark is read and/or E.0.T. is reached.

[Procedure Situation Action

search Advancing or reading Displays the message
in order to find a 'end of tape' calls
block, E.0.T. is reached | procedure conclude

and waits.,

search Tape Mark read After the wait the

rready E.0.T. is reached program continues as

rready Tape Mark read though the interrupt-

wready E.0.T. is reached ion had not occurred

search Tape mark read and Displays the message
E.0.T. reached 'prog errl' and stops,

rready Tape mark read and Continuation is not
E.0.T. reached possible.

Thus the procedure can be used to continue writing blocks

from the end of one tape to the beginning of another, displaying a message

to the operator when a new tape is to be loaded.

"endtape" is of no interest to the main program.

- 1 -

The wvalue of the variable

2.2.3.h3

MIALG A

If a tape mark is written as the last block on a tape,
then it is possible to read a tape which contains an unknown number of

blocks, since an indication is given when the tape mark is read.

The operator must know what action to take when 'end of

tape' is displayed,

If consecutive blocks are read or written, then no special
precautions need be observed when going over the end of one tape to the
beginning of another. But if random blocks are searched for, it should
be realised that it is not practical to return to the first tape from the

second.

Therefore, if procedure search is giving retreat orders
and reaches the B.0.T. marker, an error message is displayed.

Note: When continuing from one tape to another, the second and

subsequent tapes must be loaded at B.0.T.

- 15 s

2.2.3.43

MTALG A

SUMMARY OF PROCEDURES

The tape has the following form:

comment MTALG;
begin integer curr, currl, curr2, curr3, currh,
max, maxl, max2, max3, maxk, errs,
errsl, errs2, errs3, errsl, param,
paraml, param?, param3, paraml;
boolean parity, wpermit, shortblock, longblock,
endtape, begtape, chsum, allowS, allowL;
procedure display
procedure delay
procedure conclude
procedure control
procedure select
procedure search
procedure readwd
procedure writewd
boolean procedure wready
boolean procedure rready
comment 1nltial settings;

®

precompile;

®

The main program must include one extra end to go with

the begin at the beginning of the procedure package.

- 16 =

ERROR INDICATIONS

message is followed by the information:

2.2.3.43

MTALG A

All messages are displayed by procedure "display". The

handler P currP maxP

The following control messages are followed by a wait:

Message Procedure Reason Action
unavailable control Handler P is not Put handler P in
available the available state
and continue
no wpermit writewd Writing is not Insert the write
permitted on permit ring and
handler P continue
end of tape search EOT has been According to
wready reached or a programmers "
rready tape mark read instructions
Note: It may be found that & spurious 'no wpermit' message occurs

error is detected.

possible,

when continuing after 'unavailable',

ignored.,

The message may be

The following error messages are displayed when a programming

- 17 =

They are followed by a stop and continuation 1s not

2.2.3.L43

MIALG A

prog errl The number of a block to be read is greater
than maxP or the number of a block to be
written 1s greater than maxP+1.

prog err2 Procedure search is retreating in order to
search for a block and B,0.T. is reached

prog err3 readwd or writewd called when the corresponding
call of rready or wready has not yet been given
the value true

prog errh Tape mark is read and E,0.T. is reached (i.e. the
tape mark written when the tape was prepared)

prog errs The parameter P, the handler number, is outside
the range 1<P<k,

prog errb The block after block "number -1" is not block
numbered. A wrong tape is being used or the
program is corrupt.

This error message will also occur if a negative
block length is given as an actual parameter

The following messages are displayed when a magnetic tape
error, possibly caused by a programming error, occurs, Procedure conclude

is called after the message has been displayed, followed by a wait.

2423343

MTALG A

parity, writing On the seventh attempt to write the
block, a parity error occurred

parity, reading th the 100th attempt to read the
block, a parity error occurred

short block The block read was shorter than
specified and "allowS" is false

long block The block read was longer than
specified and "allowL" is false
check sum error The check sum of the block read does

not agree with the checksum value in
the last word of the block. This will
occur if there is a data error or if
an attempt is made to check a block
which was not sumchecked when written

The message 'cant write TM' is displayed if procedure tmout
cannot write the tape mark because a parity error occurs, The writing is
attempted twice. The program continues automatically after the message,
although a parity error will occur if it is attempted to read the tape mark.

The situation should only occur if the tape is damaged.

If the program is continued after one of the magnetic tape

error messages, the procedure rready or wready, which detected the error,

2.2.3.43

MTALG A

will exit with the value true, The value of maxP will be set to the

appropriate value by wready, even though an error has occurred.

If it is required to continue after an error, which will

not usually be the case, the main program should check whether an error

has occurred after the call of rready or wready has been given the value

true.

After a parity error, the boolean variable parity has

the value true.

After a short block or long block error the boolean
variable shortblock or longblock has the value true,
though a message is only displayed if allowS or allowL

respectively is false,

After a checksum error, the boolean variable chsum has

the value false.,

The procedures do not check the values of the actual
parameters length and address, and it is the programmers
responsibility to ensure that the program does not get
corrupted. The procedures cannot detect the following
programming error: if a call of readwd for handler P is
followed by a call of wready (P) or conversely a call of

writewd is followed by a call of rready (P), then the

result is undefined,

- 20 =

2.2.3.43

MTALG A

EXAMPLES

In the following examples, all blocks are sum-checked.

The number of words of data is two less than the total length of the block.

ExamEle 1

Versions a, b, ¢ and d all solve the same problem to write
100 blocks of length 52 words on handler 1, the data being read from paper

tape.

Program la demonstrates the simplest and most obvious

method, from the programmer's point of view, of solving the problem.

Program 1b uses a similar method, except that the address
of the array is calculated once at the beginning of the program, instead
of every time a block is written, and the block count in currl is used
instead of a for loop. The actual parameter number is set to zero, since

consecutive blocks are being written.

Programs 1c and 14 are optimised so that the data is read
from paper tape and the previous data written to magnetic tape at the same
time. In both cases this is done by buffering the blocks i.e. two arrays
are declared and one array is being transferred to magnetic tape while the

next block of data is being read to the other array.

- 21 =

2.2.3.43

MTALG A

Note that program 1c and 1d declare a procedure word, which

is called in place of a statement like: L:if not wready (1) then goto Lj;

If several of these statements occur in a program, it is

simpler and more efficient to declare the procedure.

comment MTALG example la;
begin array a[0:51];
integer i,j; switch s:=L;
for 1:=1 step 1 until 100 do
begin for j:=1 step 1 until 50 do read a[j];
writewd (52,address(a),i,1);
L:if not wready (1) then goto L

end;
tmout (1); conclude (1);
end example;
end MTALG;

comment MTALG example 1b;
begin array a[0:51];
integer j,A; switch s:=L,L1;
:=address(a);
L1:for j:=1 step 1 until 50 do read a[j];
writewd (52,A,0,1);
L:if not wready (1) then goto L;
if currl # 100 then goto L1;

tmout (1); conclude (1);
end example;
end MTALG;

- 22 -

comment MTALG example lc;
begin array a,b[0:51];
integer j,A,B; boolean x;
switch s:=L;
procedure wend;
begin switch s:=L;
L:1f not wready (1) then goto L

end ;
A:=address(a); B:=address(b);
x:=true;
L:for j:=1 step 1 until 50 do
EETR then read a[]] else read b[j];
wend ;
writewd (52,if x then A else B,0,1);
x:i=not x;
if currl 4 100 then goto L;
wend ;
tmout(1);
conclude(1);
end example;
end MIALG;

comment MIALG example 1d4;
begin array a,b[0:51];
intepger j,A,B; switch s:=L;
procedure wend;
begin switch s:=L;
L:if not wready (1) then goto L

end;
A:=address(a); B:=address(b);
L:for j:=1 step 1 until 50 do read a[j];
wend ;
writewd (52,A4,0,1);
for j:=1 step 1 until 50 do read b[j];
wend;
writewd (52,B,0,1);
if currl + 100 then goto L;
wend;
tmout(1);
conclude(1);
end example
end MTALG;

- 23 =

2.2.3.43

MTALG A

2,2.3.43

MTALG A

Example 2

The program demonstrates how the transfers can take place
simultaneously. One block is read from handler 1 and one block from
handler 2 at the same time, and then the results are calculated. Note
that in this example the transfers are not time-shared with the calculation

because buffering is not used, although the transfers are time-shared with

each other,

comment MTALG example 23
begin integer array a,b[0:1001];
integer A,B; switch ss:=L1;
maxl:=max2:=100;
:=address(a); B:=address(b);
L:readwd (1002,A,0,1);
readwd (1002,B,0,2);
L1:if not {rready[15 and rready(2)) then goto L1;
comment calculation and printing of results;
if currl # 100 then goto L;
conclude(1); conclude(2];
end example;
end MTALG;

Example 3

The program demonstrates how four handlers can be used.
Random blocks of length 52 words are read from handlers 1, 2 and 3, then the
blocks are sorted in the required order and written as a block length 152

words on handler 4.

- 24 -

2.2,3.43

MTALG A

The number of the blocks to be read are read from paper
tape. Since random blocks are read, the program is held up while the
necessary searching takes place, so it is unlikely that the transfers will
be held up due to both controllers being busy. The previous transfers
will probably be completed, i.e. a controller channel becomes free, while

the searching takes place.

comment MIALG example 3;
begin 1nteger array a,b,c[0:51], d[0:151];
integer nl1,n2,n3,A,B,C,D;
switch ss:=L,L1,L2;
t=address(a); B:=address(b);
C:=address(c); D:=address(d);
max1:=max?:=max3:=500;
L:read nl,n2,n3;
readwd (52,A,n1,1);
readwd (52,B,n2,2);
readwd (52,C,n3,3);
L1:if not (rready(1)and rready(2) and rready(3) and rready(4))
then goto L1;
comment sort a[1] to a[50], b[1] to b[50] and c¢[1] to ¢[50]
in the required order into d 1 to d 150 ;
writewd (152,D,0,L);
if currl # 500 then goto Lj;
L2:if not wready(4) then moto L2;
EEEEET&];

for n1:=1 step 1 until 4 do conclude (n1);

end example;
end MTALG;

D5 -

ElE-S-hB

MTALG A

Example U

The program demonstrates how the time can be used when
waiting for the procedure rready to be given the value true. In most
programs this time cannot be used, since rready is called when the data
is required, Blocks of length 102 words are read from handler 1 and
printed on the lineprinter, and blocks of length 52 words are read from

handler 2 and the data used for the caleculation.

Since these operations are quite independent of each

other, there is no danger of getting out of step,

comment MTALG example b;
begin integer array a[0:101];
array b[0:51]; integer A,B;
boolean endl,end2; sthch ss:=L;
A:=address(a); B:=address(b); max1:=max2:+200;
readwd (102,A,0,1);
readwd (52,8, ﬂ 2}. endl:=end2:=false;
L:if not {end1 and end2) then
hEg1n if rready dy (1) and not endl then
begin currl F 200 then readwd (102,A,0,1) else endl:=true
end
if rready (2) and not end2 then
begin comment perfarm calculations on array b
and punch results;
if curr2 # 200 then readwd {52,3.0,2); else end2:=true
end;
poto Lj

end;
conclude(1); conclude(2);
end example;

end MTALG;

M, BEAT

FINNISH CABLE WORKS MAY, 1966

20

2,2, 3,44

CP S
"HAPTER 44: GEVNERAL PURPOSE ROUTINES

CODE CP S
FUNCTION. To combine a set of useful routines into one program.
CONFIGURATION Basic 503.
SPACE OCCUPIED PROGRAM 127 locations

DATA 10 locations
METHOD OF USE To enter and run any of the routines

LIST, SET, PRINT, ALINK, CANCEL, GET and DUMP

which are described below.
OPERATING To use any of the routines provided assuming that CP is in store,

1.

type CP. NAME.
where NAME is the name of the routine to be entered. The routines
are as followsg:i=

LIST
Function
To give the user a break-down of the store.

Space occupied

PROGRAM 23 locations
DATA 1 location

Method of use

when 'LIST' is entered by typing CP.LIST. the output to the type-
writer is of the form:-

FFLF n m
PROG3 n m
PROGZ n m
PROG1 5 7885
END

1
(Issue 1)

. 3, 44

SET

Tunction

where n is the first free location and m is the last free location.
Let us assume that the output is as followst=-

FFLF 2900 7500
PROG3 2731 7635
PROG2 2400 7800
PROG1 5 7885
END

We would see from this that PROG1 occupies locations 5 to 2399 and
7801 to 7885 inc.

In the case of SAC programs the low addressed area is program space
and the high addressed area is data space. FFLF gives the current

value of the first free and last free pointers.

To set any store location to a new value.

Space occupied

FPROGRAM 13 locations
DATA 1 location

llethod of use

PRINT

Function

When this routine is entered after typing CP.SET. it requires to know
the address of the location, say n, and the new wvalue required, say m,
The typewriter outputs the characters 'LOC' and n and m should then be
typed in e.g.

I0OC . n . M.
The routine will then attempt to read another integer i.e. n. If
there are no further locations to be altered then a full stop will
act as a terminator. Both n and m must be terminated by a full stop.

To print out any location of store as a pseudo-instruction to the typewriter.

4.

Se

2.2,3,44
CP S

Space occupied

PROGRAM 24 locations
DATA 4 loeations

Method of use

This routine will print out the contents of any location as a pseudo-
instruction to the typewriter. The only information that is required
is the address of the location to be printed.

Operating.
After PRINT has been entered by typing CP.PRINT. the typewriter
outputs the characters LOC and the address n must now be typed in e.z.
I0C « n . When all the locations have been printed then the routine
should be terminated by typing in a full stop.

ALINK

Function

To print out the contents of the two links in the ALGOL dynamic routines.

Method of use

This routine searches for the ALGOL dynamic routines and then prints
the contents of the two links using the print routine in CP.

Operating
After entering the routine by typing CP.ALINK. the typewriter output
igs as follows:=
LINK pseudo-instruction
LINK pseudo-instruction
END
CANCEL
Function

To remove from the RAP list any named program and those compiled after it.

EEace occupied

PROGRAM 1 locations
DATA 1 location

2.2,3.44
CPS

Method of use

GEerating

IBue 1]

This routine replaces the facility 'CANCEL' from RAP which has been
removed from RAPMT. If wishing to remove a program from store it
should be noted that all programs input afterwards will also be removed.
(see diagram beluw]. The routine searches for the program to be

removed and when it has been found, resets the various RAP pointers

to the new position.

RAP pointers which must be reset arei=

7920 - RAP pointer

7925 = FIR3T FREE

7926 - LAST FREE

When the routine has been entered the program name is typed in
terminated by a full stop.
2.g. OCP. CANCEL. NAME.

2,2, 3,44
CPS

S6alS Nyl £0G§ 20 MHYYIvIC
s y
Ny 0 NALYoY J3LNiod
AT FEbL 2344 151N 33 st | Ty
v ooy v v v @ A
Ded .U] ['
dyy tﬁ“ Wb | wug m._..._.m CETR | hwﬁ: _Aﬁ_m ﬁur 0
- D Nbaxyd | § Weysoys | Y LvIINa | _

ozl

> §4L¥iog - {

(Issue 1)

2.2, 3, 44

CP S
6. DUMP
Function

To write the contents of main store to any specified half unit of core-backing store.

Method of use

To qump 0-7935 locatlions from main store to any half unit of backing
store, specified by the control typewriter. The backing store is
numbered from 1 to n where n is the number of half units of CBS

avallable.

Operating
Once the routine has been entered by typing CP.DUMP. n is typed in
followed by a full stop. Where 14n¢P slnce it was designed for up to
4 unite of CBS.
8.8. CP.DUMP.n.

T« GET
Func tion

To retrieve the contents of any half unit of core-backing store, as specified.
Method of use

This has the reverse effect of the routine DUMP and should be used to
retrieve copies of main store written by the routine DUMP.

Operating

After entering the routine type in n. where n is the number of the

half unit which holds the required copy of main store

BalSe

CP.GET.n.

TAFE

A tape ocoded in SAC is provided. The program is sum-checkable,

General Purpose Software Group.
6

(Issue 1)

2.2.3.b45

LINEAS S

Chapter 45 : LINE PRINTER LINE ASSEMBLER

CODE LINEAS &

FUNCTION

To facilitate the assembly of a line of characters to be
printed on the line printer. The routine is designed for commercial use
but may also be of value to the scientific user. It is also possible to

output the line assembled to the paper tape punches or the control typewriter.

PCPP (2.5.3 Appendix 3) is used as a common program in
order to handle the devices used., The user's program must be entered via PCPP

in the manner described in Appendix 3, 2.5.3. of the Manual,
TAPES

A library tape is provided in S.A.C. form for input by SAP.

STORE USED 301 (including workspace)

METHOD OF USE

The operation to be performed is determined by the

parameter word which accompanies the common program entry instruction.

2.2.3.45

LINEAS S

The routine caters for fifteen commands, each of which

allow certain options as shown below.

An internal count of the characters assembled for a line
is kept and this count will hereafter be referred to as the word count.

It defines the position of a character within the line to be printed.

Fntry and Exit

An entry to LINEAS the accumulator has special significance
according to the command specified. It will be referred to as "X" in the

following definitions.

Entry to LINEAS must take the form:

COMP, LINEAS
aa b : cc d
where aa specifies the command and b, cc and d further qualify the effect

of each command as described below.

The calling program is always re-entered at the word

following the parameter word.

List of Commands

2.2,3.U5

LINEAS S

The precise effect of each command is specified below.

The effect of an error exit is described fully in ERROR INDICATIONS.

Command
aa = 01
aa = 02
as = 03
aa = Ob
aa = 05

Effect
Set the word count to X.
X is held as an integer. FError exit occurs if

X is outside the range 0 < x < 121,

Set the 'paper controller' to X. Only the T
least significant bits of X are recognised. The

word count is not affected.

Assemble the character specified by the T least
significant bits of X. Increase the word count

by 1.

Assemble b spaces, Increase the word count by b.

Unpacking of alpha-numeric groups

Assemble b characters starting from position ce
of location d. The characters are packed 5 to a

word using the £ facility of SAP. Under this

2.2.3.45

LINEAS S

system the characters are packed in reverse order,
the least significant 7 bits specifying character 1
(ece = 1),

If ce 15 set greater than 05 it will be
reset to 01 and d will become d+1 so that the first

character of word d+1 is next assembled.

The word count is increased by b.

aa = 06 Set the conversion register to X (see "Conversion
Register settings"). The word count is unaffected.

Frror exit occurs if X 1s zero or negative.

aa = 07 Assemble b decimal digits of the value X, using the

conversion register,

In order to supress the plus sign cc

must be set to 00,

The remainder, R (if any), is held by
the routine in the form K x 10P=1 (see notes on

conversion register settings).

The word count is increased by b., If
the sign is printed, this is counted as one of the

b 'dlgi ts.,

Error exit occurs if no conversion register

has been set,

el =

aa

10

11

2424345

LINEAS 5

Assemble a further b decimal digits from the
remainder held by LINEAS following the use of

command 0T.

Should it be required to output the
single numbers 10 or 11 (as in a pence column)
then the B-digit must be present in the parameter
word. An error exit occurs if the number is

greater than 11.

The plus sign may be suppressed by

setting cc = 00, The word count is increased

by b.

Assemble the value X with b digits before the
decimal point and d digits following the decimal

point, using the conversion register,

Non-significant zeros are suppressed
and the remainder, R, is held by the routine in

the form R x 10? +d - 1,

The word count is increased by

b+d+1,

Error exit occurs if no conversion

register has been set,

2.2.3.L5

LINEAS S

aa = 12

aa = 13

aa = 14

Initialisation Procedure

X specifies the address of a location which contains
the address of the first word of the 121 word buffer
into which a line of characters may be assembled. The
first word of the buffer will contain the "paper

control" character,

This procedure clears the "paper controller"

and puts a "space" character in each of the words of

the line buffer. The word count is set to zero.

Error exit occurs if the address specified

by X is zero.

Assemble X as a b digit integer. The routine
manufactures its own conversion register setting
(wvhich destroys any previous setting). The plus
sign may be suppressed by setting cc = 0, The word

count is increased by b. No remainder is retained.

Assemble X as pounds, shillings and pence according

to the following rules:

aa =

B
i

15

16

2.2.3.45

LINEAS S

pounds : b digits

shillings: 2 digits

pence : 1 or 2 digits according to whether or
not the B-digit of the parameter word

is present (see aa = 10),

d spaces are inserted between each of the three

amounts. To suppress the plus sign, set cc = 00,

Obtain from PCPP a standard size (121) buffer (or line)

and prepare for LINEAS control as in operation 12,

Exit occurs with the buffer pointer in
the sccumulator, this is the value X to be taken in

command 12,

The conversion register is cleared.

OQutput the line assembled using PCPP

If the parameter word B-digit is present the line

specified by X, the buffer pointer, is output.

If the B-digit is not present, the line
at present under the coatrol of LINEAS will be

output.

2.2.3.L45

LINEAS 5

The setting of cc in the parameter word
determines the output device and the manner in which
output occurs., For a full description of the precise
meaning of output functions the reader 1s referred to
the PCFP description. The effects of the various

settings of cc are as follows:

ce = 00 Output to lineprinter

ce = 01 Output to punch 1

cc = 02 Output to punch 2

cc = 03 Output to typewriter

ec = 10 "Output and wait" to lineprinter
ce = 11 "Output and wait" to punch 1

ce = 12 "Output and wait" to punch 2

ce = 13 "Output and wait" to typewriter.

When the user svecifies his own buffer,
"output and wait" orders are always given. 'This is
in order to ensure that the user does not attempt to
overwrite information in a line which has yet to be
printed. "Output" orders enable PCPP to form a
queue of lines to be printed and the operations of
assembling lines and printing lines are thus time-

shared.

aa = 17

2.2,3.15

LINEAS 8

When LINEAS outputs characters to the
punches or typewriter, only the significant
characters are printed. Trailing null characters

are not output.

If the line of characters output was
assembled into a buffer obtained from PCPP, then
PCPP will automatically regain control of that
buffer on completion of output and will re-allocate
it on subsequent receipt of a request through

command 15,

Return the buffer at present held by LINEAS to PCPP

if the parameter word B-digit is not present,

If the B-digit is present the buffer

specified by X is returned to PCFP,

Conversion Register settings

The conversion of a number to a string of decimal digits

involves the setting of a "conversion register". This register determines

the way in which the number is interpreted.

If the number to be assembled has n digits and 15 held as an

integer in the accumulator, the operation is as follows:

2,2.3.h45

LINEAS 5

The conversion register must be set to the value K x 100=1 by

means of operation 06,
On execution of operation 07 the following sequence occurs:

The conversion register constant is subtracted from the number
to be assembled until the remainder is less than the constant, and the number
of subtractions required gives the first decimal digit which is then assembled
into the line. The remainder is then multiplied by ten and the process is

repeated until the last digit has been assembled.

The constant set in the conversion register may then be

altered and the remainder, if any, may be output under command 10,

If the conversion register has not been reset then the
remainder is multiplied by ten before the first subtraction process, but
if the conversion register has been reset, this initial multiplication by

ten is omitted.

Leading zeros are always suppressed.

- 10 =

Example

2.2.3.45

LINEAS S

The following section of program will cause the value held in

the location 'INCHES' to be printed in terms of yards, feet and inches.

COMP, LINEAS
15 0:00 O
30 <+3600>
COMP, LINEAS
06 0:00 ©
30 INCHES
COMP, LINEAS
O7T 3:00 ©
30 <+14>
COMP, LINEAS
03 0:00 O©
30 <+1200>
COMP, LINEAS
06 0:00 0
COMP, LINEAS
10 1:00 ©
30 <+14>
COMP, LINEAS
03 0:00 ©
30 <+1000>
COMP, LINEAS
06 0:00 O
COMP, LINEAS
10 2:00 0
COMP, LINEAS
16 0:00 0

(obtaln buffer from PCPP)
(Set conversion register for
conversion to yards)

(Assemble three digits ready
for printing)

(Assemble the character *)
(Set conversion register for
conversion to feet)

(Assemble one digit from remainder)

(Assemble *)

(Set register for inches)

(Assemble two digits)

(Output the assembled line using PCPP)

If '"INCHES' contains the value 5830 the output resulting from the above operation

will be

161%2%10

= 11 =

2-2-3|h5

LINEAS S

ERROR INDICATIONS

When an error occurs due to one of the causes listed below,

the message

ERROR LINEAS COMMAND "aa"

is displayed, where aa specifies the offending command. Control returns to

the calling program with the accumulator set to contain -1,

The possible causes are as follows:

1. The command specification is out of range.

2. One of parameters b, ¢ or d is zero or out of
range.

3. During number output, the digit in question is

greater than 9 (see commands 10 and 14),

' The word count has exceeded 120.

M. PUTT. JUNE, 1966,
INTERNAL COMPUTING
BUREAU

- 18w

2.2.3.46

DumMe2 5

CHAPTER 46 : DUMP, MARK 2

CODE DUMP2 S

FUNCTION

To facilitate the creation of program batches on magnetic
tape of the same type as those created using the BATCH S (2,2.3.25)
system but with an improvement in operating efficiency and an increased

range of facilities.

It is intended that this system should replace the BATCH S
system but it has been issued as a separate library program so that the
user may make a choice. Existing batches created by BATCH S may not be
input under this system and arrangements must be made to copy batches to
another tape by inputting them using the BRING & LOAD retrieval tapes and
using DUMP2 to create new versions which may subsequently be input under

the new system.

DUMP2 works in conjunction with a special version of RAP
known as RAP MI - see 2,3.%. Appendix 1 for a description of its features.
By making use of RAP MI', no leader tape, such as BRING & LOAD in the

BATCH S system, is required (see METHOD OF USE, Batch Retrieval).

P =

2.2.3.46

DUMPZ2 5

TAPES

The tape is provided in a mnemonic form suitable for input

under SAP Mark 1., It may be used to produce a binary version using SAP in

* b

the normal way (see SPECIAL OPTIONS for alternative actions).

STORE USED
Program : b1k locations
Workspace: 548 locations, including 512 words for the
transfer buffer (see SPECIAL OPTIONS for
alternative size buffer).
N.B. Location 4 is not preserved at any stage of the
dumping procedure,
BATCH TYPES

The type of batch created is determined by the operator's
choice of one of the eight entry points (see METHOD OF USE), The various
types of batch which may thus be obtained are described below, The operator
may also obtain extra information by use of the B-digit of the word generator

(see METHOD OF USE).

2.2.3.L46

DUMP2 S

The batch types, and their possible applications, are

as follows:

Partial Dump This is the type of batch created by BATCH S.

It comprises only the area of main store apart from
RAP and the free store area defined by the free
store pointers. According to the entry point
chosen part or all of the core backing store is also
dumped.

In order to achieve this, DUMP2 is input after
the required programs have been assembled and it does

not form part of the batech.

Total Dump All of the main store from locations 5 to 7935 is
dumped. DUMP2 itself is included in the batch. The
user may also choose to dump all or part of core
backing store as well,

The total dump enables the user to manually interrupt
during a run, dump the store configuration as a batch and
type CONT. to continue, ‘The run may be either a program
run or & stage in the compilation of a program, but it
has special value in enabling the operator to split a
long run into short stages and thus to provide "restart"

points in case of machine failure,

2.2,3,46

DUMP2 S

METHOD OF USE

For a Partial Dump, DUMP2 must be the last program input
and it will automatically remove all trace of its presence before writing

the main store to magnetic tape.

For a Total Dump, DUMP2 may be input at any stage.+ DUMP2
itself will be written away to magnetic tape together with the rest of the

main store (locations 5 to 7935 inclusive).

o 1 TR 4 il -3

All batches are dumped on Handler 1.

Reel Preparation

Before a scratch magnetic tape may be used for the first

time to contain program batches it must be prepared as follows:

1. Load the reel on handler 1 at B.0.T.

2. Type RESET. to clear the main store,

3. Input DUMP2 (type IN.) .

2.2.3.46

DUMP2 &5

L, Type DUMP2;5, This has the effect of writing a special
block at the beginning of the reel. For this operation

to be performed correctly, DUMP2 must be stored from

location 5 onwards.

The reel is now ready for the addition of program batches.
Provided the rules are followed (e.g. see entry 8 below), the reel

preparation sequence need not be repeated.

Batch Names

The user must specify at the time of the dumping procedure
a batch name., This is typed in as part of the message(see "BNAME" below).
According to the name chosen the reel will be either a single batch reel or
a multi-batch reel. A multi-batch reel is obtained only by naming the first
batch "BATCH1". Unless this is done, the first batch on a reel is over=-

written by the next batch dumped.

The names "LAST" or "CBS" must not be used as batch names.

If two batches are assigned the same name it will not be

possible to access the second batech dumped.

E'E'E-he

DUMP2 S5

Batch Creation

The type of message required for each type of batch is

shown below.

ENTRY

MESSAGE

1

DUMPZ2, "BNAME".

DUMP2 ;2. "BNAME",

DUMP2 ;3. "BNAME" .

DUMP2 ;4 ."BNAME".

DUMP2;5,

DUMP2 ;6.N."BNAME".

DUMP2 ;7. N. "BNAME",

DUMP2 ;8, "BINAME" .

EFFECT

Partial Dump plus complete dump of
core backing store.

Partial Dump of main store only.

Total Dump plus complete dump of
core backing store,

Total Dump of main store cnly.

Prepare scratch reel for dumping
(see "Reel Preparation").

Partial Dump plus part of core

backing store where N specifies the
number of units of 1024 locations to

be dumved. Thus locations 0 to 1024N-1
of backing store are dumped,

Total Dump plus 1024N locations of
backing store (see entry 6),

Cancel all batches on reel from "BNAME"
cnwards.,
By typing

DUMP2 38 .BATCH1
the user can re-vrevmare a multi-batch
reel,

2.2.3.L6

DUMP2 S

Batch Retrieval

To input a batch named X type

Iﬂ;x-

RAPMT recognises this message and initiates the retrieval

of the batch.

If the batch cannot be found, or if it cannot be read due

to a machine fault, an error message is displayed - see ERROR INDICATIONS.

Listing of Batch Names

When a bateh is being created or retrieved the operator may
obtain a list of the batches on the reel by depressing the B-digit of the

word generator.

Each batch name is displayed on a new line on the output
writer. On input only the names of those batches situated before the

batch being retrieved are displayed.

A blank line indicates the presence of a poor area of tape

on the reel (see ERROR INDICATIONS).

2.2.3.L6

DuMpP2 S

ERROR INDICATIONS

The following error messages may be disnlayed during the

creation or retrieval of the batch,

Message

H1MNL

XREEL

NO BATCH FND

NO WPT

SUMERR

RP, P

CANT WRITE

LNOISE

Internretation

Handler 1 is set to "LOCAL". Set to
"AUTO" and continue by typing CONT..

The batch requested has not been loaded.
This is only displayed when a single
batch reel has been lcaded,

The batch requested has not been found
on the multi-batch reel loaded.

The reel is protected when an attempt is
made to dumn a batch. Remove the
protection and continue by typing
CONT..

A batch has been brousht down incorrectly.
Each batch has a checksum which is checked
on occmpletion of input. A subseauent
retrieval attempt should be made.

Displayed each time a parity error occurs
when writing the batch. This gives an
indication of the reliability of the reel
and/or handler.

Disnlayed each time a parity error occurs
when retrieving a batch,

Unable to write a block after five attempts.
This area will be skinped over completely
if the dumping process is reveated. HNo
continuation is immediately possible,

Unable to read a block after sixteen
attempts. No continuation possible,

2.2.3.46

DuMP2 S

SPECIAL OPTIONS

The speed at which a batch may be retrieved depends entirely
on the size of the transfer buffer which governs the size of the magnetic
tape blocks into which the batch is split. Large blocks enable high speed
retrieval but require more main store workspace which interferes with large
systems such as ALGOL. Because the workspace is necessarily claimed when
DUMP2 is input it is not possible to give the user a dynamic choice of buffer
size. In order to give the user a choice it has been made a simple matter
to modify the program itself. The tape is supplied in mnemonic form and the
instructions given below enable the user to quote a larger or smaller buffer

size according to his requirements. The size specified must be a power of 2.

Batches which have different block sizes because they have
been dumped by different versions of DUMP2 created in this way may still be

contained on the same reel of magnetic tape.

The user, in order to change the transfer buffer size must

supply a tape containing two new SAP declarations as shown below:

The mnemonic tape supplied has the following form:

2.2.3.46

DUMP2 S

program DUMPZ;

&

data A(511);

replace BUF1 [;<00 512 : 00 A>],
BUF2 [3;<00 512 :>] ,
BUF3 [; <+512>],
BUFL [3< +506 >],
BUF5 [;< +2>],
BUF6 [

& A

All the constants used are calculated from 512 according

(where not obvious) to the following formulae:

data - A(X=1)
BUFL - X=6

BUF5 - 102L/x%
BUF6 - 10384 /X

vhere X is the buffer size. Thus the new BUFS constant for a transfer buffer

of 64 words would be 16,

Fach installation is recommended to decide on the maximum
and minimum buffer sizes aporopriate to their requirements and, where two
versions are in common use, to add a distinguishing letter or digit to the

program name, e.g. DUMP2F (Fast) and DUMP2 S (Slow but small).

R.E. NELSON
C.F. DEAL

May, 1966,

- 10 =

2.2.3.46

APPENDIX 1

DUMP2 requires free store of the order of 600 locations
in order to be input, thus eituations will arise in which insufficient
space 1s available. To enable such batchee to be written to magnetie

tape th® following version of DUMP2 has been produced.

DUMP2M

CODE DUMPZM S

DUMPZ2M is deeigned to produce main store batches on
magnetic tape previously prepared by DUMP2. The batches may be mixed

on the same reel with DUMP2 batches and are retrieved using RAP MT.
The program may be used to cancel any batch on & reel but it cannct
be used to produce core backing store batches or to prepare an

unmused reel (see DUMP2 description).

The program is written in SAC and the tape is provided

in sum checked binary form.

Appendix I
(1)

2.2.3.46

Minimum free store required for input: 267 locations
Progran : 127 locations

Workspace H 11 locations

N,B. The extra free store on input is required for the input routine
which ie situated at the front of all SAC - binary tapes,

METHOD OF USE

DUMPZ2M may be used in any position in store above
location 92; if it is the last program input DUMP2M will automatically

delete itself from the RAP list before writing the store to magnetic
tape. Locations 5 to 7935 inclueive are dumped as a single block

onto handler 1.

DUMP2M may also be used to cancel any batch on handler 1.

ENTRY MESSAGE EFFECT
1 DUMP2M. "BNAME", Cancel all batches on handler 1

from "BNAME" onwards

2 DUMP2M;2. "BNAME". Write the main store as a batch
called "BNAME" to handler 1.

Appendix 1

(2)

2.2.3.46

STAR will automatically be entered when a batch hase

been retrieved, provided it is the first program in store,

Batch Names
Batch Retrieval

See DUMPZ description.

sti of Batch Names

When a batch is retrieved, a 1ist of all batches situated
before it will be obtained on the output writer if the B-digit key is

depressed. No listing is possible on creation of a batch,

ERROR INDICATIONS

Message Interpretation
Derror DUMP2M is placed below location 92

in store when attempting to dump.

Xavail is displayed if handler 1 is in
manual or there is no write-permit ring
fitted to the reel, The program will
continue autonatically on setting the
handler to remote and/or fitting the
write-permit ring.

R displayed each time a parity error
occurse on reading a block.

P displayed each time a parity error
occurs cocn writing a block.

Appendix I
(3)

2.2.3.46

Message

XWRITE

SUMerr

R. Gordon

October, 1966.

Interpretation

unable to write a block after 6 attempts.
Repeat the dumping process.

a batch has been brought down incorrectly.
Each batch has a checksum which 1s

checked on completion of input, Repeat
the retrieval attempt.

Appendix 1
(4)

2.2.3.47

BGPROG S

Chapter 47: BACKGROUND PROGRAM DEVICE ROUTINES

CODE BGPROG S

FUNCTION

To facilitate the develomment of "background" progrems which
perform pseudo off-line functions by making use of peripherals not currently
being used by the main program. The object is achieved by providing a set

of common programs each of which controls a particular device,
The programs provided control the following devices:

Tape Readers
Tape Punches
Digital Plotter
Card Reader
Lineprinter

Magnetic Tapes

For the user wishing to time-share the operation of a non-standard

device connected through an I.M.U. the process used is described below so that

extra device programs may be produced by him,

2.2.3.47

BGPROG S
STORE USED
Device Program Code Name Locations (including workspace)
Tape Headers READ 33
Tape Punches PUNCH Lo
Digital Plotter PLOTTER 36
Card Reader CARDR 51
Lineprinter LINEPR Sk
Magnetic Tapes MIAPE 83
TAFPES

A composite tape is provided which contains each program in
mnemonic form for input under SAP Mark 1. The tape is labelled
"BGPROG S(COMBINED TAPE)". The user is recommended to produce binary
versions of the programs he requires by translating using SAP Mark 1 with

key 36 of the number generator depressed.

METHOD OF USE

1. Writing the Background Program

Each device program provided ensures that the group T orders
which are issued are only issued if the peripheral device controlled by that
program is not busy. The background program itself must not itself issue

group T orders directly.

2.2.3.47

BGPROG S

Entry to the device programs is by means of a common program
entry instruction, e.g. COMP,READ for the tape reader. Each program has two
entry points. The normal entry, that used for transfer of information, is
the first entry point but before any information is transferred & setting-up
entry (entry point 2) must be performed which gives advance warning of
intention to use the devices in guestion. The setting-up entry to READ must

always be made, wvhether or not READ is to be used again. This is because the

location of the tape reader interrupt registers is used to form a communication

link between the device routines.

In the case of devices for which error states may be detected
using control words there is a reporting technique which enables the writer of
the background program to display an appropriate message to cause an error
state to be rectified. This technique enables the user to decide on the
extent to which messages should be used and enables the size of the device

program to be kept to a minimum.

The background program is entered initially following & manual
interruption of the main program. The technique used for continuation from
this point depends on the fact that a manual interrupt has taken place prior
to initiel entry. Since the main and background programs are unlikely to

finish together a special arrangement must be made on the part of the background

2.2.3.47

BGPROG 5

program in order to allow the main program to continue once the job of the
background program is completed. For this reason, the normal 'STOP'
instruction must not be used, Each background program must end with the
instruction

66 7888

A 'signing-off' message such as "BGEND" could be issued in

the following way:

30 <9BG END>

RAPlprint
66 T888
HarniEE: These background device programs may not be run in

conjunction with a main program which is attempting

to use peripherals under interrupt control.

2. Device Program Entry Parameters

The method of entry to transfer information through each device

program is as follows:

2.2.3.47

BGFROG S
READ Entry: Accumulator contains the reader
number.,
Exit: Accumulator contailns the

character read in bits 1 to T
inclusive,

Example: To input a series of characters
from reader 2 and form their sum:

COMP,READ, 2
26 SUM

next) 30 <+2>
COMP ,READ
2L SUM
L0 next

PUNCH Entry: Accumulator contains the punch
nunber,

The word following the entry
instruction is a parameter
which gives the address of the
location holding the character

2.2.3.47

BGPROG S

PLOTTER

Exit:

Example:

Entry:

No information on exit.

Control returns to the location
following the parameter word.
To output the character with
value 1 on punch 1:

-
-

COMP,PUNCH, 2
30 <+1>

20 character
COMP ,PUNCH

+ character

The accumulator contains a value
which determines the pen movement.
This value is formed by sub=-
tracting the instruction T2 T168
from the appropriate instruction
as defined on page 2 of

section 1.4,7, of the 503 Manual.

Exit:

Example:

LINEPR Entry:

Exit:

2.2.3.47

BGPROG S

No information is supplied on
exit.

To carry out one Yest movement
followed by one South EHast

movement :

COMP ,PLOTTER,2
30 2>

COMP ,PLOTTER
30 <4+9>

COMP ,PLOTTER

The word following the entry
instruction is a parameter
which gives the address of the
first word of the buffer to be
output to the lineprinter. The
character in the first word
determines the vertical throw
before the line is printed.

The accumulator is zero if the

lineprinter was available.

2-2 |3 Ih?

BGPROG 5

Example: To output a line of 120
characters contained in an area

from 'L' onwards to the lineprinter:

COMP,LINEPR,2
AGAIN) COMP ,LINEPR

+L

L2 CONTINUE

30 <9LP MAN>

RAPlprint
LO AGAIN
CONTINUE) .
CARDR Entry: The word following the entry

instruction is a parameter which
gives the address of the first
word of the fip word buffer into
which a card is to be read.
Exit: The mccumulator is zero if the
cardreader was available,
Example: To read a card into an area from

location '"L' onwards.

MTAPE

2,2.3.47

BGPROG 5

COMP ,CARDR, 2
AGAIN) COMP ,CARDR

+L

42 CONTINUE

30 <9CARD M>

RAPlprint

L0 AGAIN
CONTINUE) .

Entry: The accumulator contains the
handler number.
The first parameter word
(following the entry instruction)
contains an integer which defines

the function to be performed:

Value Function

1 Read

2 Write

3 Advance

L Retreat

> Erase

6 Rewind

T Check Control Word,

clearing error state.
In the case of read and write
instructions a second parameter

word must be supplied as follows:

2.2.3.U47

BGPROG S

- 10 =

Exit:

00 <length> :00 <position>

where 'length' defines the number
of words in the block and
'position' defines the position

in main store of the first word

of the block to, or from, which
the information 1s to be transferred.

Parameter 1<7

Accurulator Interpretation
Value
Zero Handler in manual, or

writing not permitted
when attempting to
write.

LO 0:00 X Normal exit; X
takes the wvalue of the
handler control word.

Parameter 1=T7

The Accumulator contains the
handler control word. The sign
bit (39) is also present if a

parity error has occurred.

SPECIAL NOTES

1.

2.

2424347

BGPROG S

Example: To write & block onlo magnetic

AGAIN)

ON)

tape at the B.0.T. where the block
starts from location L and has
length 500, The handler used

is number 5.

[]
L]

COMP ,MTAPE, 2

30 <+5>

COMP ,MTAPE rewind to B.0.T.
+6

k2 ON

30 <9HS MAN> Test whether
RAPlprint handler available
Lo AGATIN

30 <+5>

COMP ,MTAPE

+2

00 500:00 L

The main program may use any peripheral it wishes to without

disturbing the background program.

If the background program finishes before the main progrem,

the main program will continue and vice versa. A second

background program may then be entered by interrupting the

2.2.3.47

BGPROG S

3.

main program again and entering it. However, if a second
main program is entered, the background program will not

continue automatically, but may be re-entered in the normal

WaY.

The background program must be kept in a fixed position in
main store, that is it must not be translated by SAP2 where,
in the event of a 'collapse', the background program could

be moved from main store.

It should be noted that when using the MTAPE routine the easiest
way of forming the second parameter word is by labelling it and
placing the reguired word in position, in which case there must
be no checksum while assembling this program i.e. key 35 should

be depressed.

The first routine on the composite,mnemonic tape provided is the
routine READ, which has detailed comments added. These will
help the programmer to understand the basic principles on which

this and all of the other device routines depend.

The lineprinter routine (LINEPR) also contains detailed comments.

The additional contingency to be catered for here is that location 8176, which

is used by the hardware for peripheral transfers (see the description of the 76

instruction, 1.3.1), must be preserved on interrupt and restored before control

- 12 -

2.2.3.47

BGPROG 5

is returned to the main program. This must be done for all device routines

which issue 76 instructions.

R.E. NELSON, SOFTWARE SUPPORT GROUP
AUGUST, 1966, SCIENTIFIC COMPUTING DIVISION

- T

2.2.3.47

BGPROG 5

Appendix 1

Magnetic Tape Input and Output Routines

FUNCTION

To provide separate routines for input and output of data by
& background program using magnetic tape so that the background program which
uses either routine will require a minimum of main store space. 'The routines
include comprehensive error retrieval techniques. [Each routine makes use of

the basic routines READ and MTAPE,

Each block, before being written to magnetic tape, is assigned
a block number which occupies bits 21-39 of the first word of the block of
data. On input a block may thus be requested by number. The first block

on a reel is numbered 1.

The input routine is MTREAD, ‘The output routine is MIWRITE.

STORE USED

MTREAD 88 Locations (ineluding workspace)

MIWRITE 81 Locations (including workspace)

ppendix 1
1

2.2.3.47

BGPROG 5

‘TAPES

The tape provided is in mnemonic form for input under
SAP Mark 1. Both MITREAD and MI'WRITE are held on the same tape. The tape

is labelled MTWRITE AND MTREAD (BG).

The user is recommended to produce binary versions of the
programs by translating using SAP Mark 1 with keys 35 and 36 of the number

generator depressed.

METHOD OF USE

Each program is entered as a common program in the same way
as the basic device routines. Both of the device routines READ and MTAPE

must be stored before MIWRITE or MTREAD are input.

The users background program need only be concerned with entry
to MIWRITE or MIREAD; any setting-up entries normally necessary when READ or

MTAFE are employed are performed automatically.

Throughout the running of the background program the user may
only read from, or write onto, one handler. He may not change the handler
number required once the background program has been triggered. That is to

say, for example, although he may read from handler 1 and write on handler 2,

Appendix 1
2

2.2.3.47

BGPROG S

he may not read alternately from handlers 1 and 3 and write on handlers 2
and 4. The handler to be used is specified through the initial setting-up

entry (see below).

The block number assigned to each block being written is
placed in bits 21-39 inclusive of the first word of the block. The user

should therefore arrange to leave this part of the first word free,

The method of entry to each routine is shown below:

MTREAD

Setting-up Entry: COMP ,MIREAD, 2

Entry: The accumulator contains the number of

the handler as an integer.

Normal Entry: COMP , MIREAD

Entry: The accumulator contains the block
number required &s an integer,
A parameter word must be supvlied which
contains
00 <ength> :00 <position>
where "length" is the length of the specified
block to be input, and "position" is the
address of the first word in m.s. to which

the block 1s to be read.

Appendix |

3

2.2.3.47

BGPROG 5

Example:

MTWRITE

Setting-up Entry:

Entry:

Normal Entry:

Entry:

Appendix 1

4

30 <+3>
COMP , MTREAD, 2

30 <45
COMP , MTREAD
00 200:00 address

indicates that handler 3 is to be used
and that block number 5 should be read
into an area beginning at "address" and

should be of length 200 locations.

COMP,MTWRITE, 2
The accumulator contains the number of the

handler as an integer.

COMP ,MIWRITE
The accumilator contains no relevant
information and is not preserved on exit.

A parameter word must be supplied which
contains

00 <length> :00 <position>

where "length" is the length of the block
for output, and "position" is the address
of the first word in main store from which

the block is to be written.

Example:

MAGNETIC TAPE FORMAT

All blocks are written

The same format is assumed for input.

FRROR INDICATIONS

MESSAGE

H MAT

ERR LS

ERR P

R.E.NELSON,
AUGUST , 1966,

2424347

BGPROG B

30 <+b>
COMP ,MIWRITE,2

COMP ,,ISTWRITE
00 100:00 address

indicates that handler 4 is to be used
and that a block should be written on to
tape length 100 locations starting from

the location specified by "address"

in binary form (Format 2) using odd parity.

REASON ACTION
requested handler message repeated until
in manual handler released from
manual
long or short block Irretrievable error
detected Main program continues
parity error detected Irretrievable error

Main program continues

SOFIWARE SUPPORT GROUP
SCIENTIFIC COMPUTING DIVISION

Avppendix |

2e2¢3.4T

ERPROG S

Apoendix 2
EDIT8 (Background Program Version)

FUNCTION

To perform the same function as the standard version of EDIT8
(2.2.3.27) but to perform the function as a background program by making use

of the necessary background program device routines READ and PUNCH.

CODE
The program tape is labelled:
EDITS (BG)

In order that it may be used to replace the standard version
of EDIT8 when used as a common program, this version is still called EDITS.
Since it is impossible to use it independently of the basic device routines

there is little chance of confusion between this and the standard version.

METHOD OF USE

Initiate the main program to be run. It is assumed that

EDIT8, READ and PUNCH are already in main store.

Interrupt the main program by depressing the MESSAGE button.

Appendix 2

2.2.3.L7

BGPROG S

Use EDIT8 according to the normal operating instructions
(2.2.3.27). The main program will continue automatically in parallel with

EDITS.

ERROR INDICATIONS

The messages below are those which may occur in addition to those
detailed in 2.2.3.27. They concern only the fact that one or both of the
routines READ and PUNCH may not have been input before EDIT8, On attempting to
input EDIT8 the appropriate message

READ PUNCH

or
NOPROG NOPROG

will be displayed if either or both routines are not present.

TAFE

The tape is supplied in mnemonic form for input under SAP Mark 1.

A binary tape should be produced from this by translating using

SAP with keys 35 and 36 of the number generator depressed.

A.W.PORRITT, SOFTWARE SUPPORT GROUP
AUGUST, 1966 SCIENTIFIC COMPUTING DIVISION

Appendix 2

- 2 -

2.2.3.47

BGPROG 8

Appendix 3
EDIT8 INTERFACE (Background Program Version)

FUNCTION

To perform the seme function as the standard version of EDITBI
(2.2.3.37) but to perform the function as a background program by making use

of the necessary background program device routines READ and PUNCH.

CODE

The progrem tape is labelled:

FEDIT8I (BG)

In order that it may be used to replace the standard version of
EDIT8I when used as a common program, this version is still called EDITOI.
Since it is impossible to use it independently of the basic device routines

there is little chance of confusion between this and the standard version,

METHOD OF USE

Initiate the main program to be run, It is assumed that

EDIT8I, READ and PUNCH are already in main store,

Interrupt the main program by depressing the MESSAGE button.

Appendix 3

2e2e3 AT

BGPROG 5

Use EDIT8I according to the normal operating instructions
(2.2.3.37). The main program will continue automatically in parallel with

EDITBI.

ERROR INDICATIONS

The messages below are those which may occur in addition to
those detailed in 2.2.3.37. They concern only the fact that one or both of
the routines READ and PUNCH may not have been input before EDIT8I. On

attempting to input EDIT8I the appropriate message

READ PUNCH
or
NOPROG NOPROG

will be displayed if either or both routines are not present.

TAPE

The tape is supplied in mnemonic form for input under SAP Mark 1.

A binary tape should be produced from this by translating using

SAP with keys 35 and 36 of the number parameter depressed.,

A MW.PORRITT SOFTWARE SUPPORT GROUP
AUGUST , 1966, SCIENTIFIC COMPUTING DIVISION

Appendix 3

“ P

2.2.3.47

BGPROG 5

Appendix U
LPRINT (Background Program Version)

FUNCTION

To perform the same function as the standard version of LPRINT
(2.2.3.22) but to perform the function as a background program by making use of
the necessary background program device routines READ and PUNCH.
CODE

The program tape is labelled:

LPRINT (BG)

In order that it may be used to replace the standard version of
LPRINT when used as a common program, this version is still called LPRINT.
Since it is impossible to use it independently of the basic device routines

there is little chance of confusion between this and the standard version.

METHOD OF USE

Initiate the main program to be run. It is assumed that

LPRINT, READ and PUNCH are already in main store,

Appendix L

=1 =

2.2.3.47

BGPROG 5

Interrupt the main program by depressing the MESSAGE button.

Use LPRINT according to the normal operating instructions
(2.2.3.22). The main program will continue automatically in parallel with

LPRINT.

ERROR INDICATIONS

The messages below are those which may occur in addition to those
detailed in 2.2.3.22. They concern only the fact that one or both of the
routines READ and PUNCH may not have been input before LPRINT. On attempting

to input LPRINT the appropriate message

READ PUNCH
or
ROPROG NOPROG

will be displayed if either or both routines are not present.

TAPE
The tape is supplied in mnemonic form for input under SAP Mark 1.

A binary tape should be produced from this by translating using

SAP with keys 35 and 36 of the number generator depressed.

AW, PORRITT SOFTWARE SUFPORT GROUP
AUGUST, 1966, SCIENTIFIC COMPUTING DIVISION

Appendix b

o

2.2.3.48

Chapter 48: GENERAL MAGNETIC TAPE ROUTINES

CODE GMT S

FUNCTION

The routines enable blocks to be written to and read from

any specified magnetic tape handler.

FORMAT

The first word of each block written contains the block
number. This is written in by the routine and is put in the upper half of the

first word.
Blocks are read and written using odd parity, format 2.

Writing and reading may be alternated on any one or more

handlers.
STQRE USED
216 locations, including workspace.
DESCRIPTION OF ROUTINE
The routine divides into three different sections. These
are (i) A setting-up procedure

(ii) Writing onto tape

(iii) Reading from tape.

(i) The setting-up section must be entered before any
other entry, to set markers and check the state of

the handler.

1

Tesue 1)

2.2.3.48

(ii} The writing section puts given blocks to tape, first
checking the state of the handler. It checks that the
block is of a suitable length, i.=. 34 locations and then
writes onto tape a block fellowing the last one written.
The parity bit is checked after writing and, if set, the
position of the block just written is found by, retreating
to the bleck before the one now being written, and
reading {unless at the beginning of tape). Part of the
tape is then erased and writing takes place again.
After ten attempts tc write an error message is output
An error message is also output after the end of tape

marker is reached

(iii) This section reads a required block from tape. It
checks that the block number required is within the
range of blocks already written conto tape, and also the
astate of the handler is checked. If no blocks have been
written to tape, then no checks are made on the block
aumber range. The block number is compared with
the position of the tape and the appropriate position
aimed for by retreating or advancing. A block is then
read, and its number checked with the one required. If
this is not correct, the appropriate retreats are given
or the next block read.

When the correct block number is found, if the parity
bit is set on reading, retreats are made and the block
read again. After ten attempts an error message is
output.

If the parity bit is not set on reading, a short or long
block is checked for. If there is a noise block an error
message is output and the next block read. If there is

an ordinary short block, ten attempts are made at

<
(Issue 1)

2.2.3.48

reading and then an error message output. On

detecting a long block an error message is output.

METHOD OF USE

There are three different entries. These are available by

COMP, GMT - setup
COMP, GMT, 2 - write
COMP, GMT, 3 - read.

Entry 1, used for setting-up,needs to be given the handler
number in the accumulator. If more than one handler is to be used, this

entry must be made for each handler.

Entry 2, used for writing must be given the handler number
In the accumulator and there must be one parameter word containing the

following information: -

00 length of block : 00 m.s. address for transfer.

The programmer must remember his own block number.

Entry 3, used for reading must be given the handler number
in the accumulator and there must be two parameter words containing the

following information: -

00 length of block : 00 m.s. address for transfer

+ block number.
TAPES

The tape is coded in SAP1 code; it is recommended that a

binary tape is produced with keys 35 and 36 of the word generator depressed.

{T_r.'""ln* 'I:'-

2.2.3.48

ERROR MESSAGES

Mes sage
MAN H 'N!'

H EOT

BL TS

CANNOT WRITE

CANNOT READ

NOISE

LTH ER

BLNOTL

(Tarne 1)

Meaning and Effect

The required handler 'N' is in manual
or has no write permit ring. The
program continues when this is corrected.

End of tape is reached.
Program stops.

The block length given for writing is too
short, i.e. <4 locations.
Program stops.

Handler unable to write.
Program stops.

Handler unable to read.
Program stops.

Noise block encountered.
Program continues.

Long or short block found on reading
without parity.
Program stops.

Displayed when a short block which is not
a noise block is encountered on reading.
Program continues.

Block number too large, i.e. out of range,
Program stops.

2.2.3.48

Appendix 1: MAGNETIC TAPE READ ROUTINES

CODE GMTR S

FUNCTION

These routines enable blocks to be read from any specified

handlers.
FORMAT

It is assumed that each block read has a block number, held

in the upper half of the first word of each block.
Blocks are read using odd parity, format 2.

There is a parallel routine 'GMTW' which writes with the

appropriate block numbering form.

STORE USED

122 locations including workspace.

DESCRIPTION OF ROUTINE

The routine divides into two different sections. These
are:- (i) A setting-up procedure

(ii) Reading from tape.

The setting-up procedure must be entered before reading.

It sets various markers and checks the state of the handler.

When reading there is always, a check on the condition of the

handler.

Appendix 1
1
(1raue 1)

2.2.3.48

The block number is compared with the position of the tape
and the appropriate position aimed for by retreating or advancing, i.e. if no

blocks have previously been read an advancing action will be taken.

A block is then read and its number compared with the one
wanted. Ifit is not the required block, the appropriate retreats are given

or the next block read.

When the correct block is found, if the parity bit is set on

reading, retreats are made and the block read again.
After ten attempts an error message is displayed.

If the parity bit is not set on reading, a check is made for a

short or long block.

If there is a short noise block an error message is output

and the next block is read.

If there is an ordinary short block, ten attempts are made at
reading and then an error message is displayed. On detecting a long block

an error message is displayed.

METHOD OF USE

There are two different entries, which are available by

COMP, GMTR - setup
COMP, GMTR, 2 - read.

Entry 1, used for setting up needs to be given the handler
number in the accumulator. If more than one handler is being used, this

entry must be made for each handler.

Entry 2, used for reading, must be given the handler number
in the accumulator and there must be two parameters words containing the
Appendix 1

2
(Traue 1)

2.2.3.48

following information.

(i) 00 length of block : 00 m.s. address for transfer

(ii) + block number required.
TAPES

The tape is coded in SAPI1 code and it is recommended that
a binary tape is made, entering SAP with keys 35 and 36 of the word

generator depressed.

ERROR MESSAGES

Message Meaning and Effect
MAN H 'N' The program waits until handler 'N' is

released from manual and then continues.

CANNOT READ Handler unable to read.
Program stops.

NOISE Noise block encountered.
Program continues.

LTH ER Long or short block encountered,
without parity.
Program stops.

S Displayed when a short block which is not
a noise block is encountered on reading.

Appendix 1
3
(Tesue 1)

2.2.3.48

Appendix22: MAGNETIC TAPE WRITE ROUTINES

CODE GMTW S

FUNCTION

These routines enable blocks to be written to any specified

handlers.
FORMAT

The first word of each block written contains the block
number. This is written in by the routine and is put in the upper half of the

first word.
Blocks are written using odd parity, format 2.

There is a parallel routine '"GMTR' which reads and assumes

that there is block numbering as written by GMTW.

STORE USED

119 locations including wor kspace.

DESCRIPTION OF ROUTINE

The routine divides into two different sectionse. These
are (i) A setting-up procedure

(ii) Writing onto tape.

The setting-up procedure must be entered before writing.

It sets various markers and checks the state of the handler.

When writing there is always a check on the condition of the
handler. There is a check that the block is of a suitable length, i.e. =4
locations, and then the block is written onto tape at the current position.

Appendix 2

|
(1o 1)

2 2.3.48

The parity bit is checked after writing and, if set, the position
of the block just written is found by retreating to the block before the one now
being written and reading (unless at the beginning of tape). Part of the tape
is then erased and writing takes place again. After ten attempts to write an
error message is displayed. An error message is also output after the end

of tape is reached.

METHOD OF USE

There are two different entries. These are available by

COMP, GMTW - setup
COMP, GMTW,2 - write.

Entry 1, used for setting up,needs to be given the handler
number in the accumulator. If more than one handler is being used for

writing this entry must be entered for each handler.

Entry 2, used for writing must be given the handler number
in the accumulator and there must be one parameter word containing the

following information:-

00 length of block : 00 m.s. address for transfer.
The programmer must remember his own block number.

TAPES

The tape is coded in SAP1 code, and it is recommended that
a binary tape is made, entering SAP with keys 35 and 36 of the word generator

depressed.

Appendix 2
2
(Tnsue 1)

ERROR MESSAGES

Message
MAN H 'N'

H EOT

BL TS

CANNOT WRITE

2.2.3.48

Meaning and Effect

The required handler 'N' is in manual or
has no write permit ring.

The program continues when this is
corrected.

End of tape is reached.
Program stops.

The block length given is too short,
i.e. <4 locations.

Program stops.

Handler unable to write.
Program stops.

Appendix 2
3

(Tenue 1)

224.1.

THE 503 BASIC TEST TAPE

This chapter describes the test programs. It is recommended that they are run at least once
cach day. They comprise programs designed to test for malfunction of the basic 503 system. Although
the programs test each unit of the machine separately, they should not be used for precise diag-
nosis of any fault. Failure of any test should be reported to the maintenance engineer.

The 503 basic test tape contains 4 separate tests, they are:—

TSTOIS—Paper tape inputfoutput, control station interrupt, and reserved area protection
test.

TST025—Store test,
TST03S—Function test.
TSTM4S—Typewriter and Word Generator test.

All the tests are on one tape, punched in a special binary code which is read in via the initial
instructions and includes a routine designed to cope with any error interrupt which may occur whilst
reading in the tape (see Input Routine).

A message routine (see below) is always available, control is transferred to this routine after
some errors, and control can be obtained at any time by pressing the MESSAGE button. The error
interrupt routine (see below) is common to all programs.

N.B.—The basic test tape does not use R.A.P.

MESSAGE ROUTINE

This is a common program and is always available. Control is obtained either by pressing the
MESSAGE button or by program control. A ‘message’ is a sequence of characters terminated by .
(full stop) typed by the operator on the input keyboard. In the cases where control is transferred to
this routine after an error a message CONTERR. will mean continue from the point where the error
occurred, If control was obtained by pressing the MESSAGE button, then the message CONT. will
mean continue from the point when the button was pressed. The other form of message accepted by
the routine is a decimal integer x (unsigned) where x < 8191, terminated by a full stop. This means
transfer control to location x.

A message accepted by the routine results in the character > being output on exit from the
routine. A message (or character) not accepted results in % being output and the routine awaits
another message.

CHARACTERS ACCEPTED AND NON-ACCEPTED

L T S (ignored)
Accepted characters | digits 0-9 upper case
! letters A-Z upper case
full stop
: . 011 = ;|- +
Dok sbeepiled chractert { and all lower case characters
MESSAGES NOT ACCEPTED

(a) a decimal integer > 8191

(b) any combination of upper case letters, terminated by a full stop which is not CONT or
CONTERR.

(c) any combination of digits and letters.

1
(Issue 2)

224.1.

Thus it can be seen that comments can be typed, using upper case letters and terminating the
comment with a full stop (i.e. unacceptable message).

ERROR INTERRUPT ROUTINE

This routine is common to all programs; when an error interrupt occurs control is transferred to
this routine; the output on the typewriter is of the following form:—

ERRINT PARITY 1234
The types of error indications possible are:—

POWER Mains turned off

FLPT Floating point overflow

RESAR Reference to Reserved Area when protected
PDVCE Reference to an unavailable peripheral device
PARITY Parity Error

NOBIT i.e. no indication present in the word ‘L -+ 3" as to

why the interrupt occured.

The integer, following the error interrupt indication is the location in the store at which the error
occurred, it will be followed by § if it refers to the second half of the word.

On exit from this routine control is usually transferred to the message routine. In the store test
control is transferred to a simple diagnostic routine if the error interrupt was caused by a parity
error. In phase 1 of the function test floating point overflow is tested and there will be no output
from the Error Interrupt routine if overflow occurs. If the floating point overflow should not have
occurred then phase 1 of the function test outputs an error indication.

INPUT ROUTINE

The tape is punched in a special binary code. The input routine itself is read in by the initial
instructions and contains a simple routine designed to cope with any error interrupt which may occur
while the input routine is reading in the tape.

The error indications output by this routine are:—
E 1—Floating Point overflow
E 2—Usually spare, but could be output if Power supply fails.
E 3—Parity Error
E 4—Reference to unavailable Peripheral Device
E 5—Reference to protected reserved area.

R. A. Finch January, 1964,

2
{Issue 2)

10.

11.

12.

14.

15.

17.
18.

224.1.

503 BASIC TEST TAPE
OPERATING INSTRUCTIONS

The 503 basic test tape contains 4 separate tests. They are:—

TSTO1S
test

TSTO2S
TSTO3S
TSTO45

Store Test
Function Test

Paper tape input/output, control station interrupt, and reserved area protection

Typewriter and Word Generator Test.

The operating instructions are as below. For any error indication obtained while running the
tests, see the relevant description of the test concerned.

ACTION
Clear store
Load tape in reader (normal Mode)
Press INITIAL INSTRUCTIONS button

Clear Word Generator and ensure that tabs
are set at 18 space intervals (see TST045)

Depress all keys on Word Generator when
B is displayed clear the Word Generator

Depress all keys on the input writer, as speci-
fied in the description of TST04S

Set address keys of the Word Generator to
mode of output required as specified in
TSTOIS description and change the sign of
the Word Generator

Load first non-blank character of the length
of tape into the respective reader and change
the sign of the Word Generator

3

{Issue 2)

EXPECTED RESULT

Tape read in
TSTO3S displayed

After 2} mins approx. TST03S COMPLETE
displayed
TST02S displayed

After 2§ mins approx. TST02S COMPLETE
displayed

TSTO04S displayed
A displayed

B displayed

Various patterns are printed on the output
writer

TST04S COMPLETE displayed
TSTO1S displayed
WAIT displayed

Length of tape punched on the channels
specified

WAIT displayed

Reading/Punching cycle of paper tape test
begins

224.1.

19,

2L

ACTION

23, (a) Release NO PROTN button
(b) Press RESET button
{c) Press MESSAGE button
(d) type 7733.

24,

This is the end of the Test,

RESULT
End of reading/punching cycle results in last

block of characters being read while blanks
are punched

A character is read and punched on each
device being tested (with the exception of the
input typewriter) to check control station
control word

A length of blank tape is punched; then tape
is read and punched under interrupt control
while TST03S is running. Thus TSTO03S is
displayed for each channel tested

PROTECT AND ENTER AT 7733 dis-
played. (For a non-standard reserved area
proceed with the special reserved area test

program.)

Reserved Area tested for protection

TSTO01S COMPLETE displayed,
transferred to the Message Routine

control

If no re-entry was made the time taken is approximately 12 mins. To enter at a specific test: —
{a) Press the MESSAGE button.
(b) Type entry point (as given below).

Re-Entry Points for the tests:

TSTO1S — 7370,
TSTO2S — 4630.
TSTO03S — 5380.
TSTO04S — 5140.

({ssue 2)

2.24.1.

503 RESERVED AREA TEST PROGRAM FOR RESERVED AREAS
OF A NON-STANDARD SIZE

FUNCTION
To test that the reserved area is protected.

STORE USED
Locations 259 to 309 and locations 8174 and 8175,

OPERATING INSTRUCTIONS

Unprotect Reserved Area.

Clear Store.

Place tape in reader and press INITIAL INSTRUCTIONS button.
PROTECT PRESS MESSAGE will be displayed.

Release the NO PROTN button.

Press RESET (the light in the NO PROTN button should go out).
Press MESSAGE.

If the test is completed correctly, PROTECTED will be displayed.

-

ERROR INDICATIONS
A. If the reserved area is not protected then NOT PROTECTED will be displayed.

B. If any other error interrupt occurs except ‘reserved area’, then El NOT RA will be displayed
and the contents of location ‘L + 3° (i.e. the location containing the error bits) will be held in
the accumulator.

PROCEDURE TO RESTART AFTER ANY ERROR
Restart from 1. of the operating instructions after any error.

TAPE
The tape is punched in the same binary code as the 503 BASIC TEST TAPE.

5
{lssue 2)

2.24.1.
TSTO1S

503 PAPER TAPE INPUT/OUTPUT, CONTROL
STATION INTERRUPTS, AND STORE PROTECTION TEST

TSTO1S comprises four tests, they are:—
Phase 1—Paper tape input/output test.
Phase 2—Control Station control word test.
Phase 3—Control Station interrupts test.
Phase 4—Reserved area protection test.

PHASE 1—PAPER TAPE INPUT/OUTPUT

FUNCTION

To test that the readers and punches operate correctly. The program will test both channels
or either channel, and each channel can be tested in normal mode or in any other mode fitted to the
control station.

OPERATING PROCEDURE

On entry to this test TSTO1S will be displayed on the typewriter followed by WAIT. At this
point the channel selection should be made on the Word Generator according to the following
chart:—

N1 address = channel 1
M2 address

For each channel the number of bits which are mixed into the accumulator for the given mode
should be set thus:—

channel 2

Setting on
Address Keys Input/Output
0 Channel not to be tested
5 5 hit
7 7 bit with parity (i.e. 8 hole tape)
etc. etc.

Changing the sign of the Word Generator will then cause a tape to be punched on the selected
channels, sufficient to reach the readers. (Care should be taken that the punches are loaded with
tape and that the channels are set to the correct mode.) Load the first character of the tape produced
into the respective reader and change the sign of the Word Generator, this will start the Reading/
Punching cycle of the program.

Errors
There are two forms of error detection:—

\a) The checking circuits of the control station.
(b) An error detected by the program.

{a) An error detected by the logic of the control station will result in an error condition indicated
by the light in the appropriate LOAD button.
Procedure: Restart test by pressing the MESSAGE button and typing 7370. the re-entry point.
(b) An error detected by the program will result in output on the typewriter in the form:—
Cl 00111000 00111001 CYC No. 2

i.e. channel number (C1 or C2), then the correct version of the character followed by the version
read, then the cycle number. Control will then be transferred to the message routine.

7
(Issue 2)

224.1.
TSTO1S

Procedure: Either type CONTERR. to continue from the point where the error occurred, or, if the
program is ‘out of step’ restart by typing 7370. .

RE-ENTRY POINT—7370.

TIME TAKEN FOR PHASE l—each cycle takes about 35 seconds and the test is set for 2 cycles,
taking approximately 3 minutes including operating time.

Brief Description of Program

Two types of pattern are punched and read. A JU pattern (alternate 42 and 85) and a binary
count, The program reads and punches alternately, each block of characters read or punched is split
into sections, and associated with each section is a particular speed of reading or punching.

PHASE 2—CONTROL STATION CONTROL WORD TEST

This phase of the program checks the control word of the control station, and will output a A
during the test. If only one channel was tested in phase 1 then the channel not tested in phase 1
will be ignored in the control word test. If the control word indicates that a devise is busy or unbusy
when it should not be, then the program outputs CONTROL WORD ERROR and control is trans-
ferred to the message routine, otherwise the program will continue with the interrupt test.

RE-ENTRY POINT FOR PHASE 2—7746.
TIME FOR PHASE 2—about 3 seconds.

PHASE 3—CONTROL STATION INTERRUPT TEST

Both interrupt lines are tested, i.e. the interrupt associated with the punches and the interrupt
associated with the readers. The two input/output channels are tested separately, if only one channel
was tested in phase 1 of this program then only that channel will be tested with interrupts.

The test procedure is as follows:—

A length of tape (100 inches) will be punched (not under interrupt control) on each of the
channels to be tested, then reading (1000 characters) and punching (100 characters) occurs
under interrupt control while the function test (TSTO03S) is running. Thus TST03S will be
displayed on the typewriter at the beginning of the test on each channel. If the required
amount of tape has been read and punched, the program transfers control to phase 4 (see
below) which will output PROTECT AND ENTER AT 7733: Phase 3 should take less
than 20 seconds. If the test does not work correctly then at the end of about 2 minutes
TST035 COMPLETE will be output, but it should be obvious to the operator, if phase 4
is not entered after about 20 seconds, that something is wrong and he should halt the
function test by pressing the MESSAGE button.

RE-ENTRY POINT FOR PHASE 3—7776.
TIME FOR PHASE 3—about 20 seconds.

PHASE 4—TEST RESERVED AREA FOR PROTECTION (256 locations)
If phase 3 is completed correctly then the following output will occur:—
PROTECT AND ENTER AT 7733,

Note.—Phase 4 of the 503 BASIC TEST procedure is to ensure that the last 256 locations of the
store can be protected. This test will not be performed correctly if the reserved area differs in
size. In this case ignore the message ‘PROTECT AND ENTER AT 7733" and proceed with the
special reserved area test program (already described).

B
(Issue 2)

2.24.1.
TSTO1S

Release NO PROTN button, depress RESET, (the light should go out in the NO PROTN button),
depress the MESSAGE button and type 7733., the program tests if the the reserved area is protected
and, if it is, will output TST01S COMPLETE, and control is transferred to the Message Routine,
if the reserved area is not protected then NOT PROTECTED is output and control is transferred to
the message routine.

RE-ENTRY POINT FOR PHASE 4—7816.

TIME TAKEN FOR PHASE 4—1 second + operating time.

TOTAL TIME FOR TSTO01S is about 4 mins but depends on the operating time.
RE-ENTRY POINT FOR TST01S—7370.

9
(Issue 2)

224.1.
T5TO025

503 STORE TEST

The program contains three separate tests:—
Phase 1—Writes and checks a ‘shifting () and 1" pattern in each store location.

Phase 2—Critical Pattern Test,

Phase 3—Random Numbers Test.

These are performed first with the program in the upper store testing the lower store, then with
the program in the lower store testing the upper store. If an error occurs during the latter it is possible
to continue by typing CONTERR. but none of the entry points can be used. It should be noted that
locations 8174 and 8175 (Manual Interrupt and Error Interrupt locations respectively) are not tested.
A complete cycle (i.e. testing both upper and lower store) takes approximately three minutes.

On entry TSTO2S is output on a new line; on completion of the test TST02S COMPLETE is
output on a new line. If there is no intermediate output the test may be assumed to be successful.

ERROR INDICATIONS

There are two types of errors expected, in each case control is transferred to the message
routine after the appropriate indications have been given; and the program can be continued by
typing CONTERR.

(a) A discrepancy between the pattern stored and the pattern read back. This only applies to
phases 1 and 3.

(b) Parity Errors.

Error Type (a)
An error of this form will result in the following form of output:—
ERR. PHASE 1 1234 CYC No. 1

The integer following the phase number indicates the address from which the ‘wrong’ pattern
was read.
(CYC No. means cycle number)

Error Type (b)

On detecting a parity error control is transferred, as normal, to the Error Interrupt routine
which will result in, say,

ERR INT PARITY 1234 being displayed
control is then transferred to a diagnostic routine which will result in, say,

PHASE 1 6789 CYC No. 1 being displayed

The integer following the Phase No. refers to the test location being accessed when the parity
error occurred, a parity error may occur when the location containing the instruction to be obeyed
is accessed, in which case this integer may not represent the location where parity occurred.

ENTRY POINT
Location 4630,

TIME
A cycle runs for approximately 3 minutes and 1 cycle is run.

11
(Issue 2)

2.24.1.
TSTO35

503 FUNCTION TEST
This test comprises 2 phases:
Phase 1 a comprehensive function test using randomised numbers,
Phase 2 a Function Unit Test.

On entry to the test TST03S is output on a new line on the typewriter; on exit TST03S COM-
PLETE is output; if no intermediate output occurs the test may be assumed to be successful.

PHASE 1

Three pseudo random numbers a, b and c are generated each cycle such that a + b = ¢; this
property is used for simple arithmetic tests, but simulators are used for functions such as multiply,
divide, etc. Shifts are tested by moving one pattern a number of places determined by one of the
other patterns. The results of all floating point functions are checked against those of simulated oper-
ations using fixed point arithmetic.

An error will usually result in output on the output writer of:
(i) the function that failed

(ii) a binary output of various registers of interest to the engineer
(iii) ERR PHASE |

(iv) COUNT N (where N is the cycle number); the program will then attempt to repeat the
test using the same operands. However some errors will output only the function that failed
followed by §, i.e. 428, where the S refers to some ‘Simple’ tests which are entered at the
beginning of each cycle

PHASE 2

Various patterns are fed through the function unit, the patterns are designed to apply critical
tests to the function unit with regard to the logical design.

In the event of an error, ERR PHASE 2 will be displayed on a new line and the test will restart
from the beginning of phase 2.

ENTRY POINT FOR TST03S 5380,

TIME TAKEN

Approximately 2} mins (2500 cycles of phase 1 taking approximately 2 mins and 500 cycles of
phase 2 taking approximately 15 secs).

13
{Issue 2)

224.1.
TSTO45

503 TYPEWRITER AND WORD GENERATOR TEST

This test is comprised of four distinct phases:—
(a) Test the Word Generator for zero.
(b) Test the Word Generator for ‘full house’.
(c) Test the Input Typewriter.
(d) Test the Output Typewriter.

On entry TST04S is displayed on a new line and on exit TST04S COMPLETE is displayed on a
new line.

(a) After the heading is output the program will wait for the Word Generator to be zero. On
finding it so, the upper case letter A will be output on the typewriter.

(b) After finding the Word Generator zero the program will wait for it to read ‘full house’, on
finding this the upper case letter B will be output on the typewriter.

(c) After outputting B the program will wait for every key on the input typewriter to be
depressed. The order in which they must be depressed is left to right, starting at the top
left hand corner, in upper case, then repeat the procedure in lower case.

ie. 012 - = = = o = = - 1011
Tabh OW =« s.0 0iwa = P = New Line
AS - - - - ---- s
A + -
SPACE

The characters input are checked against a stored table, any discrepancy will result in ERR
being displayed on a new line, and control will be transferred to the beginning of this phase
of the program, i.e. will be ready to accept another attempt at typing in the characters.

(d) After successful completion of this test the program displays a series of patterns and com-
binations of the characters to test the output writer. They are:—

(i) Outputs the full typewriter repertoire in the following format:—
(). £:&*/
01234567891011
e
ABCDEFGHIJKLMNOPQRSTUVWXYZ
| ' I1 o <> 4+ A % ?
abcdefghijklmnopqrstuvwxyz

(i} Outputs (‘new line’ 20 ‘spaces’‘ 4 ") 3 times thus showing if the output writer misses
spaces, it should be checked visually that 20 spaces are output.

(iii) Ensures that the output writer is capable of dealing with characters of alternate case
and outputs the following, twice:

8[9]110 , 11l <=> 4+ + - A . % ; ? Aa Bb...... Zz

{iv) This test ensures that the tab and space functions are working correctly. The tabs
should be set at 18 space intervals for this test otherwise the test may not work cor-
rectly. For a description of how to set tabs see 3.1.2. The test consists of typing 5 tabs
each followed by +, then on the next line 5 tabs each followed by a space then + .

15
{Issue 2)

224.1.

TSTO4S
This is done twice in all; therefore the output should lock like this:
ok + + + +
+ + -+ + +
+ #* + + +
+ + + + +

(v) Variable speed test. The upper case alphabet is output with a varying delay between
each character.

(vi) Outputs the 37 forbidden output writer codes in ascending order of value. These will
be typed as 3 rows of 10 solid triangles and one row of 7 solid triangles. Thus all the
output should be checked visually for any missing characters.

ENTRY POINT 5140.

TIME TAKEN
Approximately 3 mins (approximately 2 mins for phases (a) (b) and (c) and 1 min for phase (d)).

16
(Issue 2)

2.2.4.2,
CBSTST

503 CORE BACKING STORE TEST PROGRAM

The program comprises 4 phases, which are:

Phase 1 To ascertain the size of the core backing store and print out the apparent number of
words [itted.

Phase 2 A test using the A.D.T. system to write and read blocks of pseudo-random numbers,
using the interrupt facilities to run a simple function test in the central Processor
during the core backing store ‘busy’ periods.

Phase 3 Using single word transfers, a ‘chequerboard’ pattern is set up in each of the units of
core backing store fitted. (See Description of Program below for a more detailed descrip-
tion of phase 3).

Phase 4 To test that the main store is tagged while using the A.D.T. system.

TAPE

The tape is issued in SAC, but it is recommended that this tape is preserved as a master
copy and a relocatable binary tape is made and used for the daily test of the core backing store.

DESCRIPTION OF PROGRAM

Phase 1 The apparent size of the store is determined by writing “+1' in the first location of each
unit (i.e. 0, 16384, 32768,) and reading back from that location. The size of the store is
determined when zero is obtained on reading back.

Phase 2 A block of 1024 pseudo-random numbers is generated, and this block of data is written
into 128 consecutive areas of the core backing store by A.D.T. It is then retrieved by
A.D.T.; when the data is retrieved from the backing store locations actually fitted it is

checked for any discrepancy between the words written and the words read back. When
it is retrieved from ‘non-existent’ backing store locations, it is checked for zero.

Phase 3 A chequerboard pattern is setup using single word transfers in a unit (16384 words) of
core backing store. Each location is then:

(a) Checked that it contains the correct pattern (‘full house' or zero).

(b) Written into with the inverse of the correct pattern.

(c) Checked that the inverse was stored correctly.

(d) Restored to its original state.
When each location of the unit has been tested in this way, the whole pattern in the
unit is inverted and the checking procedure repeated.

Each unit of core backing store fitted is tested, separately, in this way.

- 1 -
(Issue 2)

2.2.4.2.
CBSTST

The ‘chequerboard’ pattern written is of the form:

Shon b W B e D

61
62
63

0 64 4032
0110011 110
100110 001
100110 001
01100 110
01100

1001

100

100 D01
10011 001
01100 110

Phase 4 A block of 1023 words, each word containing ‘all ones’, is transferred by A.D.T. to the

core backing store. When the last main store location to be transferred becomes available
(i.e. untagged), location 8186 (the A.D.T. count) is tested to see if it is negative. A
block of 1023 words in the main store is cleared, and a block of 1023 words consisting
of ‘all ones’ is read down from the core backing store into this area . The first and last
main store locations referred to in the A.D.T. are tested. If either of them contain zero
when they are read, they are considered untagged.

OPERATING INSTRUCTIONS

The operating instructions assume the program tape is coded in relocatable binary. In

order to read in CBSTST, RAP must be in the store.

1. Read in the CBSTST tape by typing IN..

2. Ensure that the Reserved Area is unprotected and enter the test by typing CBSTST..

3. On entry to the test 503 CORE BACKING STORE TEST will be displayed, followed by
NUMBER OF WORDS IS x where x is a 6-digit integer representing the apparent size of the
core backing store. The operator should ensure that the figure printed is in fact the number of
words of core backing store fitted to the machine.

4, Phase 2 is then entered. During this phase of the test, which uses the A.D.T. system and
interrupts, FUNCTION TEST will be displayed twice, once for the writing cycle and once for
the reading cycle.

5. Phase 3, the chequerboard test, is entered,

6. Phase 4 is entered. This writes and reads a block of words by A.D.T., testing the main store
for tags. This is the last phase of the test. Thus on successful completion CBSTST
COMPLETE will be displayed and control is transferred to RAP.

TIME TAKEN

Approximately (25 + 22N)secs, where N is the number of units fitted.

-2 -
(Issue 2)

2.2.4.2.
CBSTST

ERROR INDICATIONS

If the core backing store is unavailable, then on entry, immediately after the title is
printed, an error interrupt will occur. There is no special facility for interpreting the error interrupt
within CBSTST. (ERRINT 4 will be displayed by RAP).

Control is transferred to RAP after any of the following errors. A ‘Detected Error’ in the
following description means an error which is detected by the parity checking logic of the core
backing store. ‘Undetected Error’ means an error which has not been detected by the parity circuits
of the core backing store.

Errors in Phase 1

If the apparent size of the core backing store is zero words then control is transferred
to RAP.

Errors in Phase 2

(a) ‘Detected’ Errors. If an error condition is indicated in the control word after reading a block
of locations then PARITY ADT TRANSFER is displayed. The block of locations read is
checked against the original block of data.

If a discrepancy is discovered,

ERROR PHASE 2

LOCATION x

A

B
is displayed, where x is a 6 digit integer representing the backing store location in which the
error occurred and A and B are the 39 bit binary patterns of the word written (A) and the
word read back (B).

If it is correct
DATA CORRECT
LOCATIONS x-y
x and y are two 6 digit integers representing the area of core backing store being accessed
when the parity error was indicated.

is displayed,

(b) 'Undetected’ Errors. If a discrepancy is discovered between a word written into the core back-

ing store and the word read back

ERROR PHASE 2

LOCATION x

A

B
is displayed, x, A and B having the same significance as the error indication for ‘detected’
errors.,

{c) Function Test Error. If an error occurs in the function test then
ERROR FUNCTION TEST N
is displayed, where N is an integer N denoting the number of the individual test within the
function test that failed.

There are also error indications which are (almost) self-explanatory:
ERROR NOT BUSY DURING TRANSFER, i.e. bit 4 was not set in the control word during the
A.D.T. transfer.

-3
(lssue 2)

2.24.2.
CBSTST

ERROR BUSY AFTER INTERRUPT, i.e., bit 4 was still set in the control word after an interrupt
had occurred. (The program is written so that this should not be so).

ERROR PARITY DURING WRITING, i.e., bit 5 was set in the control word while writing blocks of
data to the core backing store.

ERROR PARITY AFTER CLEARING ERRORS, i.e., after clearing the errors at the core backing
store (by a 75 5120 order) bit 5 was still set in the control word.

ERROR PARITY READING FROM NON-EXISTENT LOCATIONS, i.e., bit 5 was set in the control
word while reading from non-existent locations.

Errors in Phase 3
There are two forms of error indication

(a) Detected Errors.
{b) Undetected Errors.

(a) Detected Errors

If a parity error is indicated after reading a core backing store location into the core backing
store register

PARITY ERROR CHEQUERBOARD

LOCATION x

A

B
will be displayed. x is the backing store location being accessed when the error occurred; A
and B are, respectively, the binary configurations of the word written into the location (A) and
the word read back (B).

(b) ‘Undetected’ Errors

If a discrepancy is found between a word written to the core backing store and the word read
back, then

ERROR CHEQUERBOARD

LOCATION x

A

B
will be displayed. x, A and B have the same significance as in ‘Detected’ Errors (see above).
N.B. - The binary print routine will print out ALL ONES or ALL ZEROS if the word to be

printed is ‘full house' or zero.
Errors in Phase 4

(a) If a parity error occurs while writing then the indication is the same as in Phase 2,
(b} If a location is found to be untagged then TAG ERROR will be output on a new line.

R. A. Finch. November, 1964

il
{Issue 2)

2.2.4.3.
CRPTST

503 CARD READER/PUNCH TEST PROGRAM

The program comprises 3 phases which are:

Phase 1 The standard pack of cards is copy punched using the interrupt facilities to run a simple
function test in the central processor during the card reader/punch ‘busy’ periods.

Phase 2 The copies punched in Phase 1 are read and checked, again under interrupt control.
Phase 3 A facility for producing a standard pack if required, not under interrupt control.
TAPE

The tape is issued in SAC, but it is recommended that this tape is preserved as a master
copy and a relocatable binary tape is made and used for the daily test of the card reader/punch.

DESCRIPTION OF PROGRAM

The program uses a standard pack of 280 cards, 180 of Type A, 90 of Type B, and 10
blank cards. Card A fulfils the following requirements:

(a) contains all permitted codes at least once
(b) has no blank columns
(c) the total number of holes in each row is odd.
Card B fulfils the following requirements:
(a) contains all forbidden decodes
(b) the total number of holes in each row is even.
These cards are shown in Figure 1.
The program is divided into 3 phases
Phase 1 The standard pack is copy punched under interrupt control, while a simple function test
is being run during the card reader/punch ‘busy' periods. The cards are checked against

a stored image as they are read in and then copies are punched in the following order:-

(8) 90 A type cards, binary image to binary image (i.e. bits 28 to 39 with bit 27
false).

(b) 90 A type cards, decode to decode (i.e. bits 1-7, with bit 27 Lue).

(c) 90 B type cards, binary image to binary image. In addition 10 B type cards are
attempted to be punched decode to decode. These 10 cards will be blank since
the forbidden code will not be recognised.

2.2.4.3.
CRPTST

The copies and the 10 blank cards are sent to pocket P2 whilst the standard pack exits

at the main stacker. Phase 1 involves about 560 card movements, therefore the total time taken
should not be more than 2 minutes.

Phase 2 The track is cleared and the copies from the pocket P2 are placed in the main hopper.

The program is entered to read and check, under interrupt control, that the copies have
been correctly punched, while a function test is in progress.

Phase 3 This is a facility for producing a standard pack. It does not operate under interrupt

control,

OPERATING INSTRUCTIONS

The operating instructions assume the program tape is coded in relocatable binary. In

order to read in CRPTST, RAP must be in the store.

Phase 1 and 2

1. Read in CRPTST tape by typing IN.

2. Clear the main track (depress CL.M) and load the main hopper of the card reader/punch with
the standard pack (see below to obtain standard pack) and load at least 280 blank cards in the
sub-hopper.

3. Depress buttons (% + §), START and END on the card reader/punch control panel, ensuring
that the lamp within each button is lit.

4. Ensure the Reserved Area is unprotected and enter the test by typing CRPTST.

5. On entry to the test

503 CARD READER PUNCH TEST
FUNCTION TEST
15 displayed and the standard pack copy punched under interrupt control.
The standard pack is ejected into the main stacker, the copies (the last ten cards of which
should be blank) are deflected into pocket P2, and
END PHASE 1
WAIT
is displayed on satisfactory completion of Phase 1.

6. Clear main track. Remove and preserve the standard pack from the main stacker.-Remove the
copies from pocket P2 and place them in the main hopper.

7. Depress START and either change the position of Key 39 of the word generator or type

CRPTST; 2. to begin phase 2 of the reading cycle, when

PHASE 2

FUNCTION TEST
is displayed. The copies made in phase 1 are read and checked against a stored pattem
under interrupt control, and ejected into the main stacker.

CRPTST COMPLETE

is displayed on satisfactory completion of phase 2.

-4

2.2.4.3
CRPTST

Phase 3 to obtain a standard Pack of cards

1.

Clear the main track and place at least 280 blank cards in the subsidiary hopper.
Press [1; + 8), START, and END
Type CRPTST; 3.

On completion

END
is displayed and the standard pack produced is found in the main stacker. The pack can be
checked by entering Phase 2.

ERROR INDICATIONS

1. In the event of a read error CRPTST will stop and either
(a) NOT AVAILABLE
DETECTED READ ERROR
is displayed, and lamp RE is lit.
Procedure:- Press START, this moves the error card to pocket P1 and stops.
or
(b) UNDETECTED READ ERROR
is displayed in which case the program sends the error card to pocket Pl and stops.
2. In the event of a detected punch error
NOT AVAILABLE
DETECTED PUNCH ERROR
is displayed, the card reader/punch stops with the lamp PE lit and the error card in pocket P1,
An undetected punch error will be discovered in Phase 2 which checks the cards punched in
Phase 1 against a stored pattern.
There are also the following error indications:-
NOT AVAILABLE - i.e. bit one is set in the control word.
NOT RPS - i.e. the correct mode of reading/punching (bit 9 of the control word true
and bits 7, 8 and 10 false) is not set.
BUSY AFTER INTERRUPT
- i.e. bit 4 was still present in the control word after an interrupt occurred,
The program is written so that this should not happen.
ERROR FUNCTION TEST n
The simple function test is run during the card reader/punch ‘busy’
periods, n is the number of the particular test within the function test
that failed.
R. A. Finch December, 1964

]] []] 1 []]
Iilllll? idtanannf
e N N
l|1=l1'||r|ar|l||l||r|1l|-||~r||-|1||-|u

I1k|1||||||

I|I|Ir||l|l'|1x

ri?fl?'J?fl?IJ?|JlrlJ?:?rlirIJrrlFrJFrl.rlF1IFI?r!IIJFrl?!!PJIFIJrJJPJIr'Ir:Jr]:
F]I-llll]l]ll]ilI!il]ll]l]]il‘l IIJIJILJI'JHJ:IJ]||].|||||

qulu.nqlnl.nlunlu

[(R RTRYS [T

- ——

llllt[nt;-qinq

AR AR RNy LR RN R NN FR R R R R PR AT ARy (R RN RN Y AR AR R (2]
li{l|Lllnllnl:nlnnt::|lntlntlln L TRt | SERRREREE
yr ||a||a||i||rr|rr||f||r||;|1i||

a—

TN RN NRTAL]
iE & R b & B oW 5w
(RERRERAERRERARERERRRRET]

TEST CARD A

[

S T ——

(1L I*Illll
" ow oW
FRITRTRRINELY 'IFIII.II"

N R .
(SREREY ISERSRY IRNART INRNE] |
LEFEEEEY FRRE RN R FER] TR LR | | EEE R SN R F R R E R R R R R R R SRR N R R Y]
ISENT FREERRY FERERY ERRET IRNT PRV BIDEINBINBBINEAN
-Lt-nl-tllulltt||t1;i | [} |1l|1k|uL|ttq||uL|;;;;;41-|~L||L4|--|;;1-;

!El!!1\'I*51Etl\\I\IL1\|1\IIIEI\\11l|5l151\s1ﬁsﬁlL:\L1~L1:Lt::|:s1:L11L

JRRINFIRIOIRIDNINNAERLNEY

r—

I|J.||flll'l rI||'|||'r|lfllf|'flI'IJJrI:’|I.IIJrIflln'In'II|'IIIII!IIlIIF|I|‘|Jr|I.Ir|.||
LY IR AR RN NN NAN]
ihvae "o oaom

BIINIINTINNANNI NI NINND

TEST CARD '®'

Figure 1

2.2. 4

