503

COMPUTER

VOL. 2

503

COMPUTER
MANUAL

503 TECHNICAL MANUAL

VOLUWME 2: PROGRAMMING INFORMATION

CONTENTS LIST

PART 1: PROGRAMMING SYSTEMS

Section

1:

Section 2:

Section

3

Section L:

PART 2: 503 LIBRARY

Section 1l:

Section 2:

Section

Section

PART 3:

Section

PART bL: PROGRAMMING

Section

3:
L

1:

l:

Section 2:

Section

PART 5: PROGRAMMING

Section
Section

3:

l:

Section 3

Section L

Section

Basic Machine Programming
Symbolic Assembly Mark 1
503 Algel Mark 1

503 Autocode

PROGRAMS

Reserved Ares Program

General Information on the Library

Program Specifications (excluding test programs)

Daily Test Program Specifications

THE INTEGRATED SOFTWARE SYSEM FOR THE NON-BASIC 503

Introduction

LANGUAGES FOR THE NON-BASIC 503
Symbolic Assembly Mark 2

503 ALCGOL Mark 2

FORTRAN IV

AND OPERATING AIDS FOR THE NON-BASIC 503
Operational Techniques

The Storage Planning and Allocation System
Peripheral Control Program

The Controlling Programs

Segmented Tape Administrative Routines

(Issue L)

2.3.1.

PART 3: THE INTEGRATED SOFTWARE SYSTEM FOR THE
NON-BASIC 503

SECTION 1: INTRODUCTION

CONTENTS

page

1. INTRODUCTION ... mii]
2. THE SYSTEMS PROGRAMS w3
3. CONFIGURATION ... e 1
4. THE OPERATING SYSTEM wr B
5. THE TIME-SHARING SYSTEM ... 3
6. THE STORAGE CONTROL SYSTEM ... 4
6.1 Dynamic Storage Allocation ... 4

6.2 Program Segmentation 4

6.3 Single Level Storage Simulation 3

6.4 Direct Control of Storage 5

7. THE PROGRAMMING LANGUAGES ... S
8. THE PROGRAM CHECKING SYSTEM B

0]}
(Issue 1)

23.1.

1. INTRODUCTION

This introduction provides an overall picture of the software system provided for the 503
Computer. The system comprises several interdependent programs, each concerned with a partic-
ular aspect of computing techniques. Taken together, the programs form a system designed to
simplify the programmer’s task while at the same time facilitating maximum utilisation of com-
puter time and efficiency. Reference should be made to the technical specifications (see Parts 4 and
5) for details of implementation and use.

2. THE SYSTEMS PROGRAMS
The programming and operating aids may be classified broadly under five heads; they are,

however, fully integrated and interdependent, and are discussed individually in the following
sections under these headings:

The Operating System

The Time-sharing System

The Storage Control System

The Program Checking System

The Programming Languages

3. CONFIGURATION

The 503 software system is designed for use on a configuration which includes some form of
auxiliary storage. On a basic computer (i.e. a configuration which may include peripheral devices
but has no form of auxiliary storage) the Reserved Area Program, ALGOL Mk. I, SAP Mk. 1,
Autocode etc. should be used, as specified in Vol. 2, Parts 1 and 2 of the 503 Manual.

The configuration for which the software system is most suited is one comprising:
At least 2 magnetic tape handlers
At least 1 unit of 16,384-word core backing store
I line printer
If a wide range of equipment is available the system can take full advantage of this, yet will
work quite adequately on a smaller configuration, provided that some form of auxiliary store is
included. The adaptability of the system will be useful whatever range of equipment is available. For
example, if a computer is fitted with tape handlers, one of them is used to hold the systems pro-
grams themselves, However, if the programmer wishes 1o reserve all the tape handlers for his own
use, he may use the system, retaining only the utility routines which assist in the use of the tape
equipment. In this way the system need not intrude upon the requirements of the programmer.

4, THE OPERATING SYSTEM

The operating system falls into two parts so that it can cater for all configurations of equip-
ment and all types of programs to be run. The essential part of the system is the Executive program
and this is always used whatever the configuration. It performs functions very similar to the Reserved
Area Program used on the basic 503: it reads in programs, accepts messages from the typewriter,
transfers control to the specified program, prints out messages etc. Using only the Executive, pro-
grams are run in the normal way as single units requiring the operator’s intervention to initiate each
program,

However, if magnetic tape handlers are available the Executive is supplemented by the Seg-
mented Tape Administrative Routines (STAR), and used in conjunction with them. The systems
programs are set up by the Executive and control is then passed over to STAR. All programs to

|
(Issue 1)

2.3.1.

be run under the STAR system are held on magnetic tape and are then processed automatically in
accordance with the STAR commands tape.

The usual method of running programs under STAR is to group together several programs
in a batch sharing a singe reel of magnetic tape. When a reel with several programs has been
mounted on one tape handler, STAR ensures that any operations to be carried out for each pro-
gram on the tape are executed automatically without manual intervention of any kind. Several
operations can be carried out for each program in one run through the batch tape. For example,
STAR can supervise the editing, retranslation and running of one program before passing on to the
next, or the same program can be run more than once using different sets of data. This does not
involve any restrictions on the individual programs of the batch, each of which can be designed
and written as though it were going to be held by itself on its own separate reel of tape.

The input and preparation of a batch of programs onto a single reel of magnetic tape normally
requires the supervision of an operator. However, the whole process can be speeded up by recognis-
ing that a high proportion of the programs to be placed in a given batch will have featured already
in some previous batch, and can therefore be copied across directly from magnetic tape instead of
being reinput from paper tape every time. For each installation there will probably be certain pro-
grams and subroutines of such frequent use that they can be copied among every batch of programs
produced, thus saving a considerable amount of paper tape input.

Even more time can be saved on programs undergoing development. In this case, the magnetic
tape holds not only the machine-code programs but also the source programs in ALGOL, SAP or
FORTRAN, and in addition one or more sets of test data. Facilities are provided for making correc-
tions to source programs by means of simple editing instructions which are obeyed when the
program is copied across from a previous batch to the current batch; any necessary recompilation
of the object program can be requested by the programmer and he may also call for simultaneous
listings on the line printer. The programmer has, in fact, complete control over the content of his own
segment of the batch tape, and he may insert, delete, and amend any of the items at will.

The batch processing methods provide an efficient way of using a computer especially in the
case of programs lasting for a few minutes of running time. However, it is not always efficient or
even possible to run programs in a batch. Large programs with a long running time are normally
held on a separate reel of magnetic tape and run as a separate unit, For very short programs, last-
ing less than a minute, the batch processing has, in fact, several disadvantages. Firstly, the time taken
to write the program to tape and bring it back again may be nearly as long as the time it would take
to execute the program directly. Secondly, the programmer may have to wait several hours for other
programs of the batch to be run before getting his results back.

For this reason, the method of ‘load and go’ is provided as an alternative to batch processing
and may be used for short programs. This method can also be expedient in the case of programs of
any length which are to be executed only once on any given occasion, and which are not therefore
worthwhile putting on a batch tape.

A useful feature of the operating procedures is the possibility of interleaving batch processing
with load and go operation. During the run of a batch the operator may interrupt at any time to
request that at the end of the current STAR command the automatic sequence of processing
should be temporarily suspended whilst he takes manual control. Under manual control, one or
more load and go programs may be introduced before returning to automatic sequencing. This
makes it possible to start running a batch of programs, even if it is known that the run will have
to be interrupted in order, for example, to run a set of tutorial programs or for a short checking run
of an urgent program.

2
(Fssue 1)

2.3.1.

Normally, in order to save excessive tape movement, the programs are executed in the order
in which they appear on the batch tape. However, it is also possible to arrange for programs to be
executed out of order, by setting the STAR priority list in the required order.

5. THE TIME-SHARING SYSTEM

The aim of the time-sharing system provided by the Peripheral Control Program (PCP) is to
ensure maximum utilisation of the peripheral devices by keeping them occupied for as much of the
run as possible, whilst the central processor, after initiating the peripheral transfers, is dealing
concurrently with useful computation. This computation can belong to a program entirely independ-
ent of that which is using the peripheral devices, or it can belong to the same program; both possibil-
ities are catered for by the time-sharing system.

The method of obtaining time-sharing within a single program is to regard the input and out-
put routines as semi-autonomous programs which can run concurrently with the main program;
thus once the initial order has been given, the main program can continue running at the same time
as the input and output routines are waiting for the completion of a peripheral transfer, When a
program requests a peripheral transfer, that request is put on a queue for the specified device and
control returned immediately to the main program. If the device is free, the transfer is initiated
immediately; if, however, the device is already busy, the request remains in the queue until its turn
comes. This means that the main program is not held up and that work is available for a peripheral
device immediately it becomes free.

The data to be transferred is input into buffer areas or output from buffer areas, Thus the
system builds up queues of requests for buffers to be filled or to be output as appropriate. The
administration of the scheme is carried out quite automatically and places no restrictions on the
user, who may write programs as if the time-sharing methods were not being used.

The scheme for time-sharing within a single program will give excellent results in the case of
programs in which there is sufficient computation to fill in all, or nearly all, the time occupied by
input and output routines. However, there are programs which consist almost exclusively of input
and/or output, and which contain hardly any calculation to fill the gaps; these are known as back-
ground programs. Since it would be uneconomic to run such programs by themselves, means are
provided for running several background programs independently yet concurrently with the main
(foreground) program. Provided that no two programs make use of the same peripheral devices,
there is no limit to the number of background programs which may be run at the same time as each
other. However, only one foreground program may be time-shared with the background programs
at any one time.

When independent programs are time-shared, most of the central processor time is claimed by
the foreground program, with only very short periods given over to background programs in order
that they may initiate further peripheral transfers. The background programs can build up queues
of requests for input and output devices in the same way as time-sharing within a single program.

Some restrictions are involved in the extent to which background programs may use other pro-
grams in the system; in particular they may not use the storage control system, and must be input
by the load and go method.

Programs to be time-shared can be input to the computer at the end of an operation specified
on the STAR commands tape. Once such a program has been entered it will proceed independently
of all other programs being run simultaneously, until it signs itself off and informs the operator to
that effect.

3
(Issue 1)

23.1.

The time-sharing of independent programs greatly increases the range of tasks which can be
performed economically on the computer. This includes such cases as:

1. Pseudo-off-line Conversion: the copying of data from an input medium to an output medium,
with or without the incorporation of editing, checking and corrections. This covers the
cases of transcription of data from paper to magnetic tape, from magnetic tape to line
printer, to or from cards, and the control of the digital plotter by magnetic tape, paper
tape, or punched cards.

2. Information scanning: a vast amount of data is held on magnetic tape, and a number of
requests are made to retrieve items of information relevant to a small selection of subjects.
This involves scanning each item of data held on the tape, to see whether it is relevant.
If it is, it is retained, and if not, it is bypassed. The time taken to load and traverse the
original file, which may be held on several reels, is time-shared with the normal work of
the computer.

The system also provides the option of dynamic device selection by means of the Device
Selection Program (DSP). When writing the program, the programmer need not specify the actual
input and output devices he requires but simply refers to them as sources and destinations. At run
time actual devices are assigned to each source and destination. This facility means that different
runs of the same program can use different devices and, further, that the same program may be
run on varying configurations of equipment without necessitating any alterations to the program.

If the programmer chooses to use dynamic device selection, he may then call on a further pro-
gram in the time-sharing system, the Information Manipulation Program (IMP), in order to trans-
fer data between his program and PCP. This program either accepts data from the object program
and packs it into buffers for output, or unpacks data input into buffers and hands it over to the user
program.

6. THE STORAGE CONTROL SYSTEM

The storage control system provided by the Storage Planning and Allocation program (SPAN)
is designed to help the programmer make simple and efficient use of all forms of internal storage. The
system allows fully dynamic allocation and reallocation of storage in blocks and permits the avail-
able storage to be used and re-used in the most economical fashion, according to the changing
needs of the program. Note, however, that background programs may not use this facility; they
must remain in the same area of store into which they are input.

6.1 Dynamic Storage Allocation

By using the storage control system, the programmer can allocate space as he requires it dur-
ing a program and hand it back to the system for re-use (e.g. the buffer areas used in the time-
sharing system). This means that the same storage area can be used over and over again for
different purposes during the same run rather than being reserved exclusively for one purpose and
usually being redundant for part of the run, Thus much larger tasks can be effected than would
otherwise be possible,

6.2 Program Segmentation

Programs to be run under the storage control system are written in blocks (chapters), ie.
self-contained sections. Thus the system is able to administer programs which are too large to fit
in the main store, by automatically placing blocks (chapiers) of the program in core backing store
and/or magnetic tape. A macro instruction is provided to jump to the next block of program

4
(Issue 1)

23.1

required (or even a different program) no matter in which store it is held. If the relative addresses
in the block need to be modified, this is done on transfer into main store. Under this scheme only
those blocks which are actually being used at a given time need be in main storage, whilst the rest
are held in auxiliary store.

6.3 Single Level Storage Simulation

The storage control system eliminates any problems presented by the different levels of storage
when constructing general-purpose array-handling routines to operate indifferently on data held
in any form of storage: by using the macros of the system the same instructions can be given to
access the elements of arrays regardless of their position. In fact the programmer need not even know
which form of storage is being used to hold the arrays, since the system can determine at any time
the position and type of storage in which every block is held. Any necessary movement of data is
effected automatically.

Thus, the programmer can regard all the available storage as a single level with immediate
accessibility; in SAC he uses the macros to achieve this whereas in ALGOL and FORTRAN these
facilities are incorporated automatically when a program is translated.

6.4 Direct Control of Storage

1f he wishes, the programmer can gain a more direct control over storage allocation. He may
state when requesting space which form of storage is required. Further, at any time he may specify
that a block of program or data is to be moved to the most convenient form of storage; he may
have a block deleted from main store, written to backing store and brought back when required;
alternatively it can be deleted from main store and written to magnetic tape (banished). The macro
‘retire’ is a refinement of banish in that the information is not written to tape until the space in
main store is actually needed for another purpose. If the space is not eventually required then no
time need be spent in transferring the information between tape and main store.

The methods used by the storage control system are based on those described by 1. K. Iliffe &
J. G. Jodeit in their article ‘Dynamic Storage Allocation’” (Computer Journal, Volume 5, Number 3
pp 200-209, October 1962). The methods have a number of useful side-effects, of which full advant-
age is taken:

1. References to multi-dimensional arrays in symbolic programming languages are much faster
by the SPAN method of “chaining™ through the dimensions than with the normal method
of address calculation.

2. Non-rectangular arrays (e.g. triangular and band matrices) can be compactly represented
in store and efficiently processed.

3. It is possible to extend the size of a block of store if it turns out to be too small to hold
the amount of information required.

4, It is possible to offset the range of indices so that the first element is referred to by an index
other than unity; this is essential for the implemention of ALGOL.

5. During a checking run, the system will verify that every index used is within the permitted
range, so that any attempt to corrupt the program itself or its constants or data, or any
other program in store, can be detected and prevented.

7. THE PROGRAMMING LANGUAGES

The three programming languages in the system are Symbolic Assembly Code (SAC), ALGOL
and FORTRAN. The translators for these languages, the Symbolic Assembly Program Mk.2 (SAP),

5
(Issue 1)

2.3.1

the Elliott ALGOL Mk.2 Compiler and the FORTRAN 1V Compiler, produce programs to be run
in conjunction with all the other systems provided. Programs written in FORTRAN and ALGOL
automatically use the facilities of the time-sharing and storage control system. In SAC the functions
of these systems can be invoked by the use of built-in macros.

A most useful feature of the languages is their flexibility: for example, a program written in
either ALGOL or SAC can be called as a slave program by a master program in the other language.
Further, sections of SAC can be included in an Elliott ALGOL program. The FORTRAN language
has the advantage of independent compilation of each unit making up the complete program, i.e.
master program, slave programs, sub-routines and standard function routines can all be translated
separately and later be incorporated into a complete program.

All translators produce their object program in a single pass, and allow the program to be
run immediately after input of the source program, on the load and go principle. The speed of trans-
lation is such that the source program is input at nearly the full speed of the input tape reader, so
that no efficiency is lost by load and go methods; however, the translators also operate in conjunc-
tion with the batch processing system for programs which are more conveniently run in that manner.
In this case the object program is compiled and then output in binary form to paper or magnetic
tape. It can then be reinput for batch processing without being translated each time.

The SAC language is provided for the programming of jobs which require close control of the
actual coding produced. The language includes all the normal facilities of symbolic assembly in
addition to powerful macro-compiling capability.

The ALGOL translator is designed in accordance with the recommendations of the European
Computer Manufacturers Association. These recommendations are based on a full subset of ALGOL,
which includes all facilities which are ever likely to be found useful in practical programming.

The ECMA subset is sufficiently full to include all the facilities of the subset specified by the
International Federation for Information Processing, the official body for the maintenance of
ALGOL. It is expected that most published programs will conform to this smaller subset, and
therefore will automatically be acceptable to translators which follow the ECMA recommendations.

On the 503 even some of the restrictions of the ECMA subset have been relaxed; in particular,
own variables are permitted and most of the forms of recursion are allowed. These relaxations are
made without impairing the efficiency of the object programs which do not use them. Programs
written in Elliott ALGOL Mark 1 and in 803 Elliott ALGOL are also acceptable provided that
they do not use certain non-ALGOL optimisation features; in particular, calls of the ‘elliott’ order
are not permitted.

The 503 FORTRAN IV Translator has also been designed according to ECMA recommend-
ations with certain extensions and relaxations. The American Standards Association definition of
FORTRAN [V was published in the Communications of the A.C.M., October, 1964, ECMA
FORTRAN is a subset of this, the major differences being that it excludes the use of complex
and double length data, the functions for complex and double length data and data initialisation
statements. The translation speed and the efficiency of the object program are approximately the
same as for ALGOL Mark 2.

8. THE PROGRAM CHECKING SYSTEM

The first aim of the program checking system is to make a check of the validity of the source
program. This excludes the possibility that a slightly wrongly phrased source program will produce
a wildly inappropriate object program, which will be practically impossible to check. When an error

6
(lssue 1)

23.1.

has been detected during program input, the diagnostic information is conveyed to the programmer,
and the process of checking continues, although translation is stopped and the program will never
reach the running stage.

Another function of the checking system is to make extra tests of validity during the running
of the program under review, which would not be desirable during production runs because of the
extra time involved. The most important of these is the check on the values of indices (subscripts)
which prevents a program in the store from corrupting itself or anything else. When an error is
detected, its nature is indicated, together with as much additional information as is requested by
the programmer. Then, at the programmer's option, the run will continue.

When the programmer has traced his error to the source, the program must be corrected before
it is run again. The checking system provides a convenient way of doing this: instructions for the
insertion, deletion and replacement of portions of the text of the program are punched on a short
length of tape, which is input to the computer ahead of the program to which it refers. The checking
system ensures that only the characters of the corrected text reach the compiler. In order to verify
that the corrections have been correctly specified, a complete listing of the corrected text on the line
printer may be requested; when the program is working, a fresh copy on paper tape may also be
requested, Although most programs are part of a batch, there is no restriction on the number of
operations which may be carried out in connection with one program before passing to the next,

The checking system includes the normal facilities for optional printing of the values of inter-
mediate results, and for tracing through the course of the program. The operations of the system
are similar for all the languages and their use is integrated with the process of translation. Communi-
cation between the computer and the programmer is exclusively in the source languages, and
variables and labels are always referred to by the symbolic names given to them by the program-
mer, not by the addresses allocated to them by the computer. This secures a more efficient use of
the computer, since the printing out of storage maps and octal listings can be completely avoided.

When magnetic tape handlers are available all checking and diagnostic information is written
to magnetic tape; at the end of the checking run this tape is rewound, and the information it con-
tains is transcribed to the line printer. This method has the advantages that:—

1. The line printer is left free to accept the normal output of the program.

2. It is possible to omit the printing up of the early checking information, produced by the
correctly working part of the program, and concentrate on that which was produced im-
mediately prior to the occurrence of an error.

However, if no magnetic tape is available or the programmer has already reserved all the
handlers, the checking information can be output to paper tape or printed on the line printer as it
becomes available.

The operating system enables checking runs to be loaded in between production runs, so that
the programmer with a program undergoing checkout can gain frequent access to the computer
and his results are available immediately after the run.

7
(Issue 1)

a3 TECHNICAL MANUAL

VOLUME 2 @ PROGRAMMING INFORMATION

PART 4 : THE PROGRAMMING LANGUAGES FOR THE NON-BASIC 503

SECTION 1 SYMBOLIC ASSEMBLY MARK 2

2.4.1.

SYMBOLIC ASSEMBLY MARK 2

PREFACE

The reader is assumed to be familiar with Section 2.1.1. of the 503 Computer Manual, which
describes among other things, the number representation and function code of the 503: also a knowledge
of the conventions of 803 T.I. Code is assumed.

The Symbolic Assembly Program Mark 2, in future referred to as SAP 2, is part of a complete
software system for programming large 503 computers. This software system includes routines for storage
planning and allocation (SPAN) and for control of the 503 peripherals (PCP). These routines provide many
facilities which in effect extend the hardware functions of the computer.

This description of SAP 2 is divided into three subsections. The first five chapters explain
the use of Symbolic Assembly Code (SAC) and give a short introduction to SPAN and PCP. The next ten
chapters, numbered 6 to 15 give instructions on how to write code in a form which is acceptable to SAP 2.
Providing the conventions given in these chapters are adhered to, the programmer need not concern himself
with any restrictions imposed by the use of the routines of the software system. Chapters 1 to 15 are
intended as a guide to programming in SAP 2. The later chapters contain further details of the facilities
of SAP 2 and give the operating instructions for assembling and running SAP 2 programs.

i
(lssue 1)

2.4.1.

CONTENTS LIST

SYMBOLIC ASSEMBLY CODE

1.1 Reasons for SAC.
1.2 Compiling.

STRUCTURE OF SYMBOLIC ASSEMBLY CODE GROUPS
PROGRAM STRUCTURE

3.1 Chapters and Blocks.

3.2 Relocation.

3.3 ldentifier Introductions.
3.3.1 Scope of identifiers.
3.3.2 Use of identifiers.

3.4 Macros.

STORAGE PLANNING AND ALLOCATION IN SAP 2

4.1 lse of SPAN by the SAP 2 compiler.
4.2 Use of SPAN by the SAC programmer.

INTRODUCTION TO INPUT/OUTPUT PROGRAMS

5.1 'The Peripheral Control Program
5.1.1. Buffers
5.1.2. Queueing
5.1.3. Device Routines
5.1.4. Control
5.2 The Device Selection Program
5.3 The Information Manipulation Program
5.4 Data Input/Output Routines

BLOCKS

6.1 heEin

6.2 Local data
6.3 Functions
6.4 Operands
6.5 Local labels
6.5.1 Jump instructions

6.5.2 n:,rnnmi:: stops
6.6 FEnd of block

.7 Example

6.8 Wholewords

6.8.1 Integers, Fractions and Floating Point Numbers
6.8.2 Octal Groups
6.8.3 Instruction pair

flssue 1)

Page

(=2

L === BT BT T - - T - = < = - =1 =1 =1 =3 O O O O

10.

11.

12,

CONTENTS LIST (Continued)

6.9 Diamond bracket constants
6.10 Comments

SIMPLE ENTRY AND EXIT FROM BLOCKS

7.1 Global label identifiers
7.2 Transfer macros

7.3 Global data identifiers
7.4 Subroutine entry and exit

ARRAY ALLOCATION

8.1 Data introductions
8.1.1 Compiling of data introductions
8.2 Array introductions
8.3 Use of SPAN for dynamic allocation of storage
8.3.1 ALLOC
8.4 Storage of codeword
8.4.1 consider, insert
8.5 Reference to elements of a SPAN block thkl1 [A,I], st1 [AT]
8.6 Two dimensional arrays
8.6.1 Allocation
B8.6.2 Reference to elements
8.7 Multi-dimensional arrays
8.8 Deletion of arrays
8.9 Summary of SPAN macros mentioned

SUBROUTINES WITH PARAMETERS

9.1 Parameter macro
9.2 Smrage of Codewords
0.3 Array Identifiers as Parameters of Subroutines

UNIVERSAL IDENTIFIERS
INPUT/OUTPUT

11.1 General
11.2 Input data
11.3 Data Input/Output Routines (DIOR)
11.3.1. Setting up DIOR
11.3.2. Example of setting up and using DIOR
11.4 EXECprint, EXEClprint

SPECIFICATION OF ACTUAL DEVICES

flssue 1)

2.4.1

Page

12
13

14

14
15
15
16

17

17
17
17
18
18
19
19
20
21
21
22
23
23
24

25

RS

29

30

30
31
33
35

a6

2.4.1.

13.

14,

CONTENTS LIST (Continued)

REPLACEMENT STATEMENTS

13.1 Introduction

13.2 Form in which replacements are specified

13.3 Replacement texts- parameters

13.4 Identifiers which are given more than one meaning

CHAPTER INTRODUCTIONS AND SAC PROGRAM FORMAT

14.1 Chapter Introductions
14.2 SAC Program Format
14.3 Summary of Control Names

COMMON PROGRAMS

v

{lssue 1)

Pﬂge

38
38
40
41

45
45
45

4

2.4.1.1.

CHAPTER 1

SYMBOLIC ASSEMBLY CODE

1.1 Reasons for Symbolic Code

Most instructions on the 503 consist of two parts, a function part and an address part (see 2.1.1).
In use, each of these parts consists of a number, the function part being the numerical code of the function
required, and the address part being, in general, the number of the location which contains the operand.

In the case of the address, the user is not really concerned with which storage location is in
use — any will ao, provided the cnoice is consistent.

The basic purpose of the Symbolic Assembly Code is to ease the difficulty of addressing. This
is achieved in the following way. Any location may be given a name, or identifier and be referred to by that
name. The name is usually chosen to be meaningful, like ‘““speed” or *‘time’’, whereas the number of the
storage location is unlikely to be significant or memorable. These names are chosen by the user.

The basic function code of the 503 is, in the main, consistent and reasonably easy to memorise.
However, the Symbolic Assembly Code enables the programmer to use certain groups of letters to represent
the basic function code, and, in effect to extend the basic code by using a group of letters to represent a
sequence of functions. These groups of letters are called mnemonics.

1.2 Compiling

Programs written in Symbolic Assembly Code (SAC) are not in a form which can be obeyed by
the computer. Before the program can be placed in the store and obeyed it must be translated into numeric
form, and all the decisions such as which data to place in which store location must be taken. The resulting
program is called the object program.

The task of translation from symbolic code to object program is purely routine, requiring only
persistent application of rules. In fact the task can be undertaken by a computer and is then usually called
compiling. The program which does the job is called a compiler.

The compiler which converts the Symbolic Assembly Code (SAC) to Object Program is called
the Symbolic Assembly Program MK 2 and will be referred to as SAP 2.

When a SAC program has been written it is punched on to paper tape, SAP 2 is loaded into the
computer and it reads the S.A. Code either directly from paper tape or from magnetic tape.

As the SAC program is translated the object program is placed in the main and auxiliary store
of the computer. Subsequently the object program can be run or it can be output to paper tape or magnetic
tape for running at a later date.

Ik 0
(lssue 1)

2.4.1.2.

CIHAPTER 2

STRUCTURE OF SYMBOLIC ASSEMBLY GROUPS

A SAC program may be regarded as a string of characters which are capable of being compiled
into an object program. The characters are selected from upper and lower case letters, the digits and a
variety of signs and punctuation marks.

The string of characters is divided into groups, each group being normally written on a different
line. Most groups correspond to instructions in the desired object programs. The remaining groups are used
to control the operation of SAT* 2 and are known as controls. Controls are used to indicate natural divisions
of the program, specify storage requirements for data, and so forth.

The groups which carrespond to instructions of the object program on a one to one basis are
known as instructions. Those which correspond to a one to many basis are known as macros.

The group of characters is further split up into items. The most important types of item are

a5 f(}“DWH H

Identifiers are invented by the user and consist of a string of letters and digits beginning with

a letter. They may be of any length but only the first six characters are considered by the compiler,
any extra ones being ignored. An identifier may not be followed immediately by a further letter

or digit since this would merely be accepted as a continuation of the identifier.

Numbers consist of a string of decimal digits which have the usual significance of specifying

an integer.

Wnemonics are strings of characters having pre-assigned meanings in SAC. They may be of any
length but only the first six characters are considered by the compiler.

The difference between a mnemonic and a macro is shown by the fuﬂuwing examp]e:
enter [B.n]

The complete group is a macro, enter is the mnemonic part and the items B and n are parameters.
Thus enter , has a pre-assigned meaning and B and n are identifiers which further specify the
series of instructions represented by the macro.

Octal fnnc:ians are a pair of octal digits which represent the function in numeric form.

In the case of instruction groups the first item is normally an octal function or a mnemanic which
specifies the function part of the resultant instruction in the object program, This function part may be preceded
by one or more identifiers, each followed by a closing round bracket. An identifier which is introduced in this
way is called a label, and serves to identify the group which it precedes so that reference may be made to that
ETDHP fmm E].EEW]'IETE il'l tl'l.E PTDEFEITI'

The first item of a macro is always a mnemonic which specifies the function of a set of instructions
in the object program. This mnemonic may be preceded by one or more labels in the same way as an instruction

group.

Control groups may not be preceﬂed b}‘ labels.

wlic
{lssue 1)

2.4.1.3.

CHAPTER 3

PROGRAM STRUCTURE

3.1 Chapters and Blocks

A SAC program is not normally written as a single unit, but is split up into blocks.

The division into blocks is merely a convenience for the user. It is usual to consider the program
as separate sections, since most programmers find that a section containing a few hundred instructions is as
large as can comfortably be worked on at one time. The division into blocks is mainly a programming
convenience, but has some effect on the object program. For example, a new block always begins in a new
location, even if a half-location is spare at the end of the previous block. Also, it is not allowable to proceed
“off the end”” of one block and thus into the next. Blocks must always be entered and left by jump instructions.

When a program has been written as a series of blocks, the blocks may be grouped into one or
more chapters. A small program will have only one chapter but a large program will usually be divided into
several chapters so that the ones which are temporarily not in use can be held in auxiliary store, e.g. core
backing store or magnetic tape.

A chapter normally occupies a number of consecutive locations of the store. The important feature
of a chapter is that it may be bodily copied into any set of consecutive locations of the main store, and may
be used in that position. That is, a chapter is relocatable, its position in store does not matter.

In order that chapters may be relocatable certain conventions must be observed. SAC is designed
to observe these conventions and the inexperienced programmer has only to follow the rules. Facilities are
available for the experienced programmer to relax some of the rules but this must be done with great care.

3.2 Dynamic Relocation

It was stated in the last paragraph that chapters could be copied into any set of consecutive
locations in the main store and be obeyed there. This process is dynamic relocation. It is not the same as
the relocatable input available on the 803 or the RAP relocatable input of the 503 where the destination of

the program is decided on input, -~ L {trred Souihen Ll Etoai b & '
Dynamic relocation is provided by the automatic use of SPAN by SAP 2. Thus a single chapter
of the SAC program is compiled by SAP 2 into a single SPAN block which contains not only the object code but

also relocation markers which record which addresses have to be altered if the chapter is moved in the store.

In general programs should not be writtem so that instructions are altered at run time. If they are,
the relocation markers, which are formed at compile time, may not correspond to the relocation required by
the altered instructions.

3.3 Identifier Introductions

[dentifiers are introduced either by attaching them to instructions as labels as described in
Chapter 2 or by use of a controi group. The control group consists of a control name followed by a list of
the identifiers. Thus, for example, if a program contains blocks which are identified by alpha and beta and
uses the data locations time and space, the following introductions must be given

block alpha, beta;
data time, space;

-
{lssue 1)

2.4.1.3.

3.3.1 Scope of ldentifiers

An identifier introduced within a block is said to be local and only has meaning within the block.
An identifier which is introduced outside a block is said to be global and has meaning anywhere within the
program.

In addition certain other identifiers, such as the one which names the program itself, have
meanings outside the program and are called universal. [7

No two identifiers with the same scope may be identical. However a local identifier may be
identical to a global identifier, and two local identifiers can be identical provided they are introduced within
different blocks,

3.3.2 Use of ldentifiers

Identifiers are used within a SAC program to name blocks of program, label instructions within
a block and to identify data locations.

Block and data identifiers must always be introduced before they are used in an instruction.

It must always be possible to refer to a block anywhere within a program and therefore block
identifiers must be global. Data and label identifiers however can be either local or global.

A local label is introduced by attaching it to the relevant instruction. If however, it is required
to use a label globally then it must be introduced at the same time as the block within which it is introduced
locally.

Outside its own block the instruction it labels must always be referred to by the label identifier
and the block identifier.

3.4 Macros

It was mentioned at the beginning of Chapter 2 that a group of characters which corresponds

to instructions on a one to many basis is called a macro.

A macro consists of a mnemonic which may be followed by a list of identifiers enclosed in

square brackets.

A macro is written on a line by itself and during compiling is replaced by a set of machine
instructions.

A data or label identifier is distinguished from an identical macro mnemonic by the compiler.

A S
{lssue 1)

2.4.1.4.

CHAPTER 4

STORAGE PLANNING AND ALLOCATION IN SAP 2

In Chapter 3.2 it was mentioned that relocation was implemented in SAC programs by the use
of the Storage Planning and Allocation Routines (SPAN). These routines are fully described in Section
2.5.2. of the 503 Manual. The purpose of the notes in this section is to indicate to the programmer how
SAP 2 uses SPAN to handle his object program and how he may use SPAN within his program.

Under the control of SPAN, the core storage of the machine is divided into blocks of consecutive
words. Additional blocks may be held on magnetic tape. The first word of each SPAN block, (called the
header word) describes the block, giving its length and the type of information held in it (e.g. data, program,
free space). Each block has also a codeword which is effectively a pointer to the position of the block in
whichever form of storage it has been placed. The system keeps in fixed workspace sufficient codewords to
be able to determine at any moment the whereabouts of every SPAN block. When a program makes a request
for more space than is available in the main store, SPAN moves some blocks into auxiliary storage in order
to make room. [f the programmer then makes reference, via SPAN, to a program block which has been moved
into auxiliary store, the block is brought back into main store, moving out other blocks if necessary to make
room. Similarly if reference is made to an element of a data block on magnetic tape, the block is brought
back into main store. This movement of information takes place automatically.

4.1 Use of SPAN by the SAP 2 compiler

When a SAC program is compiled by SAP 2 a SPAN block is allocated to each chapter of the
SAC program. In addition SPAN blocks are allocated to hold the codewords of these blocks and to store the
workspace of the chapters.

4.2 Use of SPAN by the SAC Programmer

The most common use of SPAN by the SAC programmer is for dealing with arrays (e.g. matrix
manipulation).

When writing in 803 T.I. code it is always necessary to allocate storage space at compile time
for the maximum size array that will be used.

The SAC programmer can, however, h}’ the use of SPAN, allocate storage space dynamically so
that he only uses sufficient storage for his needs in that run of the program.

For a single dimensional array there is a single codeword pointing to a data block which holds
the array elements. For a two dimensional array the main codeword points to a block of codewords each of
which points to the elements of one row of the array. As a result, an array element in core store can be
accessed by “‘chaining’” through the codewords. This system means that it is not necessary to have the same
number of elements in each row of an array.

The SAC programmer is provided with facilities for allocating store and accessing elements by
the use of macros which are recognised by the SAP 2 compiler.

—_5—
flssue 1)

2.4.1.5.

CHAPTER 5

INTRODUCTION TO INPUT OUTPUT PROGRAMS

The SAC programmer must use PCP to control all input and output, either directl}r* via the PCP
macros provided, or indirectly, by use of IMP and DIOR. This chapter gives an introduction to each program.

5.1 The Peripheral Control Program (PCP)

PCP ensures maximum utilisation of the peripheral devices. It makes full use of the Autonomous
Data Transfer (ADT) and Interrupt facilities of the 503 and provides a time sharing system.

PCP makes it possible for the programmer concerned with the main program to make requests
for serveral devices to transfer information concurrently into or out of the 503 while the main program is

operating,
3.1.1 Buffers

PCP carries out all data transfers to and from the 503 via buffers. A buffer is an area in main
store used by PCP to store incoming or outgoing data. The programmer would normally obtain a buffer either
directly from SPAN or through PCP, although it is possible for the programmer to use his own workspace.
Care must be taken to ensure that the buffer is in a fixed position and is specified by the address of its
codeword when a request for a data transfer is made by a PCP macro.

The PCP input’/output macros include parameters to specify the device to be used and name the
buffer to which the request applies.

5.1.2 (ueueing

When a transfer request is made, PCP attaches information relating to the buffer and the function
to be performed to a queue for that device. If the device is free the operation is performed immediately; if
not, information is left on the queue until the device becomes free.

In either case the transfer is carried out autonomously and control returns immediately to the
calling program. This prevents the main program being held up and ensures that the peripherals are used
efficiently.

If the calling program gives a specific instruction that it is not to be resumed until the transfer
operation is cumpleted. another program is entered. If no other program is -::urrentl}r in operation then the
system waits until the operation is completed.

5.1.3 Device Routines

The SAC programmer using PCP has the additional advantages provided by the Device Routines
which check the accurate functioning of all devices, where possible, and which contain instructions to repeat
operations in which a parity or similar fault occurred.

65—
flssue 1)

2.4.1.5.

5.1.4 Control
The system provides control for all 503 input ‘output devices e.g.

Paper tape input
Faper tape output
Magnetic tape
Magnetic film
Digital plotter
Line printer
Control typewriter

A full description of PCP is given in Section 2.5.3 of the 503 Manual.

5.2 The Device Selection Program (DSP)

The Device Selection Program is a set routines used in conjunction with PCP which permits
the SAC programmer to refer to input/output devices by a formal numbering system. The actual devices
curresponcling to the formal numbers, may be specified at the end of the program but do not have to be
specified until run time. This means that the same program can be run on different 503 configurations, or
on the same one but using different peripherals, without alteration.

5.3 The Information Manipulation Program (IMP)

IMP is a set of routines used in conjunction with PCP and DSP which enables the program to
input/output single items of data instead of dealing with complete buffers. On output, IMP forms buffers
from the individual items of data and outputs the information to the selected device using DSP and PCP.
On input, IMP inputs complete buffers or information and transmits individual items to the programmer
on request.

5.4 Data Input/Output Routines (DIOR)

Routines are provided for reading and printing fixed and floating point numbers and strings.
These routines make use of the facilities of PCP, DSP and IMP.

T

(Issue 1)

2.4.1.6.

CHAPTER 6
BLOCKS

6.1 begin

It was mentioned earlier that a program is not normally written as one unit but is split into
sections of program called blocks.

A block must be named so that it can be referred to by instructions within other blocks. The
compiler must also be informed that this is the beginning of a block. Therefore at the beginning of every
block the programmer writes the control name begin followed by the identifier which names the block,
followed by a semicolon. (Note that control names are always underlined).

In general the block identifier is chosen to give some indication of the result of obeying the
block of instructions.

e.g. heﬁi n root;

6.2 l.ocal Data

The declaration at the beginning of the block is in general followed by the introduction of the
local data identifiers. This is done by writing the control name data followed by the list of local identifiers,
separated by commas followed by a semicolon.

e.g. data numbers, answer;

Then follow the actual program instructions, one instruction to a line. Most instructions consist

of a function and an operand.
6.3 Functions

A complete list of the basic machine functions is given in Chapter 2.1.1.1. of the 503 Programming
Vlanual. They can be represented by a pair of octal digits

6.4 Operands
The operand is either a literal e.g. 51 5 ,or is a location of the store. Within a SAC block a
location of store may be referenced either by an identifier or by use of the *‘diamond bracket" facility, which
is fully described in paragraph 6.9.
Thus one can write
30 number
where number is a data identifier or
40 again

where again is a local label attached to some instruction within the block.

—B—
{lssue 1)

2.4.1.6.

Alternatively one can write
0<+2>
which means ‘‘set the accumulator equal to the value 2",
6.5 Local Labels

It was stated in Chapter 3 that a local label identifier is introduced by prefixing it to the
instruction which it is intended to identify. This is done by preceding the instruction by the identifier
followed by a closing round bracket.

Each instruction may be given up to 3 labels, e.g.
L 1) again) repeat} 30 a

These labels may be used in the address part of any instruction within the block in which they
are introduced, and refer to the instruction and not the instruction pair which follows them.

6.5.1 Jump Instructions

Whenever the programmer wishes to transfer control to a labelled instruction within the same
block, he uses the functions 40, 41, 42, 43, The SAP 2 compiler will automatically convert these functions
to 44, 45, 46, 47 if the labelled instruction is placed in the second half of the word in the object program.

6.5.2 Dynamic Stops

No SAC program should contain dynamic stops. These are replaced in the 503 system by the
following mnemonics:

STOP — unconditional

OSTOP — stop if overflow set

NSTOP — stop if the accumulator is negative
ZSTOP - stop if the accumulator is zero.

When the program is being run these mnemonics have the effect of transferring control to the
overall operating system.

6.6 End of Block
When all the instructi ons of a block have been written the programmer must write the control

name e_:j followed |:r].f a semicolon to indicate to the cumpller that the block is :umpIete The programmer
ey insert il characters between enﬂ ﬂnd semlcnlun as the]r wzll I:re lgn-:rred b}r the compiler, ¢5-. - ¢~

6.7 Exnmple

The following example illustrates the previous points. It is a re-write in SAC form of the example
given in Chapter 2.1.1.1. of the 503 Computer Manual.

To extract the positive square root of a fraction the formula
Yus1™ % (yy + y“}

is used to generate a series of numbers Yi which converge monotonically to the root of x

—0_
{lssue 1)

2.4.1.6.

The initial value of y is taken as 1-27* as this is the largest positive number which can be
held. [deally y ., -y, should eventually reach zero but rounding errors can cause oscillation between

. TR ; : . i
plus and minus 27 . The process is therefore repeated until Yus 1Y, I8 zero or positive.

It is assumed that the number is in the accumulator at the start. The root is in the accumulator

““on exit from the block ™.

comments
heEin root;
data number,yu;
- NSTOP stop if negative
42 end exit if zero
20 number store the number
30 <37 B191/77 8191> }5tore initial value of y 4
20 yu
again) 30 number form 2yu+l ' Yy + ﬁ.u}
56 yu
04 yu
ol 1
15 yu Write y, ., form A 2
41 again [f negative repeat
07 yu If positive exit with yu.
end) exit [1]
end root;

Note: The explanation of the instruction exit [1] is given in Chapter 7.4.
6.8 Wholewords

So far this chapter has dealt mainly with instructions which are written, one to a line and which
in general occupy half a computer word. Other information can be written in a SAC program which defines
the content of a complete computer word. Any SAC expression which represents the content of a complete
computer word is called a wholeword,

The following types of wholewords are described below.
Integers, Fractions and Floating Point numbers,
Octal Groups.
Instruction pairs.

6.8.1 Integers, Fractions and Floating Point Numbers

These are composed of the digits 0 to 9 and the characters + — and subscript . Each number
10

must contain at least one digit and be preceded by a sign.

Any whole number between — 274 877 906 943 and + 274 877 906 943 inclusive is called an

INTEGER
e.g. +0 —304882

o
(lssue 1)

2.4.1.6.

A FRACTION consists of the character . (point) followed by no more than 11 digits: it may
be unsigned.

e.g. —. 11129811392 .5 +.5

Note that signed fractions such as +0.113 will also be accepted by SAP. Unsigned fractions
of the type 0. 113 should not be used.

A FLOATING POINT NUMBER is one of the form

ax 1Db

‘a’ being known as the ‘mantissa’, and 'b’ as the ‘exponent”.

The form of the mantissa is an integer, or a fraction, or an integer followed by an unsigned
fraction. It must be such that the number obtained by removing the character ‘point’ (if present) is an
integer as defined here.

The exponent is an integer of no more than 2 digits, and may be without a sign if positive, or
even omitted altogether if zero.

A floating point number is written as

mantissa,, exponent
and floating point overflow will occur if it is outside the (approximate) range:
41.73x 10" to + 5.8 x 107
Examples +3 45 (=300,000)
~7.33192,, 460

+.892,, -27
540
+0.739,, 2

Numbers beginning with character ,, will also be accepted, and are understood to have a
mantissa of 1.

Example: Zero may be expressed as

+0 =0.0 .0 +0,, +00000 and so on.

But *.000000000000" is erroneous, because it is a fraction with more than 11 digits, and so is ‘+* because
it holds no digit.

6.8.2 Octal Groups

A 39 bit location content may be split into 13 equal parts of 3 bits each. If each of the parts
so obtained is expressed as a digit between 0 and 7, and the whole expression is preceded by the digit B,
the result is known as an ‘octal group’.

For example the number 21 may be written as

B0 000 000 000 025

=11—
flssue 1)

2.4.1.6.

in octal form, since 21 may be expressed as the 39 bit location content

wwiw wowmia won adelal

=21 ied37°777 777 17T 753
6.8.3. Instruction Pairs

Instructions in SAC programs are normally written one to a line and the compiler packs them

two to a word when forming the ul:rje::t program,

The SAC programmer may, however, inform the compiler that he requires an instruction pair

to occupy a whole word.
He may do so in any one of the following ways:-

a) Write two instructions on a line, separated by the B digit indicator colon () or slash (/).
This method is often used to express a constant as a pseudo order pair.

I'lxampIe + 100 is equivalent to 00 0O « 00 100
and — 100 is equivalent to 77 8191/77 8092

b} Write the instructions on separate lines but terminate the first instruction of the pair by a

colon or slash.

e.g, 22 number
an F

c) Precede an instruction by a colon. This indicates to the compiler that this instruction is to
occupy the second half of a wholeword the first half of which is zero

£. g : 208
is identical to 000 : 20 B

Note that noo:o00pP
: 00 P
+P

All have the same effect. i.e. the location contains the address of the identifier P.
The identifier P can be a data identifier or a local label identifier.

6.9 Diamond Bracket Constants

Wholewords may be stored in a SAC program by writing them as part of the program with label

for identification,
e.g two) +2
This constant may then be referred to in an instruction such as

30 two

the result of which is to place +2 in the accumulator.

i 7
(Issue 1)

2.4.1.6.

An alternative way of duing this is E}r the instruction
0 <+2>

The SAP 2 compiler a]luca_tes storage space to wholewords read in this way. Such wholewords
are stored in a separate SPAN block and are available throughout the program. They are not duplicated if
read again within the same program.

One may write any form of wholeword within diamond brackets with the exception of diamond
brackets themselves.

Thus one may write
30 < : 0P >

but one cannot write

30 < : 30 b >

This must be written either as :

30 label
label) : 30 <46>
or 30 < 30 L>
L) 8

Note that one can write
30 <+P>

where P is a data identifier or a local label identifier.

6.10 Comments

Comments in a SAC program which are helpful to the programmer may be punched on the
tape if desired without affecting the translation of the program, provided they are enclosed within
round brackets. e.g. 30 A (A = collating constant)
is read as 30 A
by the SAP Mk 2 compiler. There is, however, one restriction that comments must rot be punched

inside any introduction list.

=13-—
flssue 1)

2.4.1.7.

CHAPTER 7
SIMPLE ENTRY AND EXIT FROM BLOCKS
When entering a SAC block it is necessary to name the block which is to be entered and the

label of the first instruction to be obeyed. Also one must use a transfer macro instead of a group 4
instruction to enable SPAN to ensure that the block required is in main store.

There is a convention which states that the block identifier also labels the first instruction
of a block. For example consider the block below:

begin sum;
d_at_u_ all, modsum;
24 all
mod) 01 0
11 mod
24 modsum

end sum;
oL
if in another block one wrote

trans [sum®sum |

then the effect would be to enter the block at the first instruction and so add the contents to the location

all and its modules to location modsum. However, writing:
trans [mod*sum |
would cause an entry at the location labelled mod and thus an addition to modsum only.

Note that sum*sum and mod*sum are relative identifiers. A relative identifier has the form A*B
where B is a blockname and A is either a label or data identifier.

7.1 Global Label Identifiers

In Section 2.5 a description was given of the introduction of local label identifiers and it was
stated that these identifiers only had meaning within the block in which they were introduced. In the above
example a label is used outside its own block. Therefore it is being used as a global label and so must be

introduced.

Block identifiers and labels are introduced globally by giving a block introduction at the
beginning of the program, this is done by writing the word block underlined, followed by the block identifier
followed by the labels within the block which are to be used globally.

e.g. block sum (mod);
block one (alpha, beta), two, three;

Note that block identifiers are separated by commas and that the label identifiers are contained
within round brackets and are separated by commas. The last introduction is followed by a semicolon.

S
flssue 1)

2.4.1.7.

7.2 Transfer Macros

These are four transfer macros corresponding to the four Group 4 instructions:

trans [A*B] unconditional
ntrans [A*B] negative
ztrans [A*B] zero

otrans [A*B] overflow

where B is a block identifier and A is a global label. For transfer to the first location of a block the global
label A is replaced by the block identifier B.

e.g. ztrans [B*B]

7.3 Global Data Identifiers
Local data identifiers were described in Chapter 6.2.

Global data identifiers can also be used and they are introduced in the same manner as local
identifiers but exterally to any block. They are usually given at the beginning of the program following
the block introductions.

If the same identifier is introduced globally and locally then within the block in which it is

introduced the local meaning is assumed.

For example
block alpha,beta;

data one;

heEiu alpha;

30 one

a3l 1

trans [beta*beta |
ﬂ alpha;
begin beta;

m one

STOP

end heta;
An entry to block alpha would leave the global data one unchanged but would cause the local
data one of block beta to be altered.

If after a block is written, including local data introductions, it is found that local data is
required globally then a global introduction must be given in the form
data one*beta;
Thus is the above exampfe the gluba] introductions would become

Biu uk n]ph a,]:u:ta;

data one, one*beta;

=15~
(lssue 1)

2.4.1.7

7.4 Subroutine Entry and Exit

The SAP 2 compiler automatically allocates a ‘link-location” for each block it reads doing

so at the time the block identifier is introduced.

Thus each SAC block may be treated as a subroutine provided that its exit instruction is

correctly arranged.

Whe n entering a SAC block as a subroutine it is necessary to use the macro instruction
enter so that SPAN can ensure that the subroutine required is in main store.

The enter macro is written in the form

enter [B,n |
enter [A *B,n |

where I3 i s the block identifier, A is the global label and n is the number of parameter words after the

‘enter’ macro.

If a SAC block is intended to be used as a subroutine then exit must be made by use of the
“‘exit"” macro which is written in the form

exit [m]

where exit is to the mth location after the entry macro. In general m =n + 1.

There are standard conventions for dealing with parameters of subroutines and these are
explained in chapter 5.

Exﬂ.l’l‘l?l e

Given x and y to find /(x?+y?) and store it in z. It is assumed that x and y are fractions.

block
ata

.E_ti

square,root. :

Xa¥ oy

shuare;

workspace;
30 x

53 x
20 workspace
30 y
a3 y

04 workspace
enter [root,0 |

2!_}2

square;
root;
number,yu;
NSTOP
42 end
20 number
30 <37 8191/77 8191 >
20 yu

30 number
36 yu

04 yu
511

15 yu

41 again
07 yu
exit [1]
root;

(stop if negative)

{exit if zero)

(store the number)

(store initial value of }ru'_l

(from E?IJ-I-'l:.

(Write (I » form Yigs 1 -—}"“}
(If negative repeat)
(If positive exit with yu)

—16—
flssue 1)

2.4.1.8.

CHAPTER 8

ARRAY ALLOCATION

8.1 Data introductions
So far a description has been given of the use of identifiers to refer to single words of data,

Mention was made in Chapter 4.2 of the 803 T.I. method of allocating data space at compile
time for arrays.

The method can still be used in a SAC program by writing introductions in the form

data number (12)

This introduction causes 13 locations to be reserved and they may be referred to in the
program as number, number + 1, number + 2, number + 12 or by the use of B-lined instructions.

Example:

data number (12), total;

Eﬂil sum;

c]ﬂ_l:,a count;
26 total (clear total)
30 <=12>
20 count (set count)

repeat) 00 count /
30 number +12 (pick up number)

24 total (add to total)

32 count (test & increment count)
41 repeat

exit [1]

Note that B-lined instructions are also written one instruction to a line. The stroke, at the end
of the instruction labelled repeat, informs the compiler that this instruction must be stored in the next
available first half word.

8.1.1 Compiling of data introductions

When, during compiling, a data introduction is met locations are reserved in main store and
these identifiers are associated with main store locations throughout the running of the program.

Thus, while a program is running, main store locations are permanently reserved for all the
data introductions.

Therefore the above form of data allocation should only be used for arrays of known length
and is general, only for short arrays.

8.2 Array Introductions

In chapter 4.2 it was also mentioned that, by the use of SPAN, the SAC programmer can
allocate storage space dynamically. This is done by use of the control word array and the SPAN allocation

macro.
14

., 7
(lssue 1)

2.4.1.8.

Thus the programmer introduces an array by writing an identifier after the control word array.
Later in the program he asks SPAN to allocate a block of storage and then informs SPAN that the codeword
of the block is to be stored in the location specified by the identifier.

8.3 Use of SPAN for dynamic allocation of storage

A full description of the facilities of SPAN is given in section 2.5.2 of the 503 Manual. The
following paragraphs describe the structure of SPAN blocks and explain the use of the SPAN macros
ALLOC
consider
row
insert delete
tk1 stl tk 2 st2
take store

le ngth

It was stated in Chapter 4 that under the control of SPAN, the core store of the machine is
divided into blocks of consecutive words and that additional blocks may be held on magnetic tape. The
first word of each SPAN block (called the header word) describes the block, giving its length and the type
of information held in it. Fach block also has a codeword which is effectively a pointer to the position
of the block in whichever form of storage it has been placed.

Whenever a SAC programmer wishes to reserve storage dynamically he must ask SPAN for a
block stating at the same time the size, the type of information to be stored in the block, the **storage
status'’ of the block and the required *‘offset”.

size: The total number of locations in the block i.e. one location for each data item plus
a further location for the header word.

type: The type indicates whether the content of the block is numbers, program or codewords.

storage status: The storage status tells SPAN whether the block is to be kept in main store or in
backing store or whether SPAN can make the decision.

offset: The offset has no other purpose or effect than to change the index range of the block
so that the elements are no longer numbered from 1 to 1 =1, where [is the length of the
block, but rather from (—offset +1) to ([—offset—1).

8.3.1 The SAC programmer requests storage from SPAN by use of the allocation macro.
This consists of the mnemonic ALLOC followed by identifiers which name locations which contain
information on the size, type, storage status and offset of the block required. The identifiers are separated
by commas and are surrounded by square brackets.

e.g. ALLOC [Size, Type, Status, Offset |.
Size: contains a positive integer specifying the size of the block.
Type: contains an integer specifying the contents of the block, e.g.
+1 if block to contain data

+2 if block to contain program
+3 if block to contain codewords

—18—
flssue 1)

2.4.1.8.

If the SAC programmer requires the index to be checked, on each reference to the block, to see
that it is within the range of the block then the integers +5, +6, +7 should be used in place of +1, +2, +3.

Status: contains an integer specifying the type of storage required for the block e.g.
+0 if the block can be in main store or backing store. This is the normal form.
+ 1 if the block is to be kept in main store.
+2 if the block is to be kept in backing store.

Offset: contains an integer equal to (1-lowest index). Thus if the contents of the block
are to be referred to by the index numbers 1 to [— 1 then the value of the offset
is zero. This is the usual case. (If a non-zero offset is required see Section 2.5.2
of the 503 Manual.)

Fxamples a) To request a SPAN block which is to contain 20 words of data which are to be indexed
from 1 to 20. The block can be in either main store or backing store

ALLOC [<+21l>, <+1>, <405, <+0>]

b) To request a SPAN block as above except that the number of words of data is stored in the
location ‘data’

02 data
20 temp
ALLOC [temp, <+1>, <+0>, <+0>]

Note that in ALLLOC the diamond bracket form of specitying constants may be used.

8.4 Storage of Codeword

Having allocated a block of storage the SAC programmer must then tell SPAN where the codeword
is to be stored by the use of the pair of macros ‘consider’, “insert’ i.e. the block must be identified for
future reference.

Example: To allocate a block which is to hold an array of 20 numbers. The array is to be named
by the identifier Mine

array Mine; [/-isoduced wwm iy

begin example;

ALLOC [<+21>, <+1>, <+0>, <+0> |
consider [<+Mine> |
insert

end example ;

8.4.1 The SPAN macro ‘consider '

An example is given above of the use of the SPAN macro ‘consider’. In general, consider is used
to identify a block. It is never used on its own but in conjunction with other SPAN macros which specify
the operation to be performed on the block so identified.

The ‘consider” always consists of the mnemonic ‘consider’ followed in square brackets, by a
parameter which specifies the address of the location containing the codeword.

—-]19—=
flssue 1)

2.4.1.8.

In the example, ‘consider’ is followed by the macro ‘insert’ which specifies the operation i.e.
store the codeword in the location specified by the previous ‘consider’.

8.5 Reference to Flements of A SPAN Block

The previous paragraphs explained the allocation and naming of a single dimensional array .
To reference elements of the array the SAC programmer makes use of the SPAN macros

With these macros tk1 and stl are mnemonics (i.e. pre-assigned). The macro parameters A and
| are identifiers; A is the array identifier and I is the location which contains an integer specifying which
element is required, i.e. the index.

Fxamples

I Store the numbers 10 to 29 in the 20 locations of the array allocated in the last example.

begin example
data number, element;

30 <+10>
20 number
02 0

20 element
next)] 30 number
stl [Mine, element |

22 number
32 element
0h <+20>
41 next
end example;
o Store the number 15.7 in the lst, 4th and Tth elements of the array.

begin example;
Tl 21505
st] [Mine,<+1>]
A <+15.7,>
stl [Mine, <+4>]
30 <+15.7 >
stl [Mine, <+7 3]
end example;

The above example illustrates two points:

a) The diamond bracket constant form can be used for identifier [.

b} The number to be stored must be brought into the accumulator each time a stl instruction

is given.

—20—
(Issue 1)

2.4.1.8.

3. Sum the numbers stored in the array.

be&in example;

data sum;

T 2% sum
02 0
20 1

next) tkl [Mine,l]
24 sum
32 [
05 <+20>
41 next

end e;cmple;
8.6 Two Dimensional Arrays
8.6.1 Allocation

In Chapter 4.2 it was stated that for a two dimensional array the main codeword points to a block
of codewords each of which points to the elements of one row of the array.

To allocate storage for a two dimensional array the SAC programmer must adopt the following
procedure.

Identify the array by use of the control name array. This allocates storage for the main codeword,
and names the array for future reference.

Allocate a block to contain the codewords of the rows of the array and inform SPAN that the
codeword of this block is the main codeword.

Allocate a separate block for each row of the two dimensional array and insert these codewords
in the appropriate positions in the codeword block.

To insert a codeword into a codeword block use is made of the SPAN macro,
row [1]
in conjunction with the macros consider and insert,

The macro row [I | is used to specify which element of the codeword block is being referred
to. [is replaced with either a diamond bracket constant or by the identifier of the location which contains
the index.

e.g. consider [«+Matrix>]
row [<+2>]
insert

would cause a codeword to be placed in the second element of the codeword block.

21—
{lssue 1)

2.4.1.8.

Exam ple

Allocate storage for a matrix of n rows and m columns assuming that n and m are stored in
locations ““N"* and “M"’ respectively.

array Mine;

data W,N;

begin matrix;

ata number;

02 N (set the size of the codeword block in ‘number’)
21'.} numher
ALLOC [number,<+3>,<+0>,<+0>] (Allocate a codeword block of length.{ﬂ-#l}
consider [<+Mine> | I
insert (name the array Mine for future reference.)
02 0
20 which (set ‘which’ to indicate the first row.)
0z2 M
20 col { set the size of each row in col)

again) ALLOC [col,<+1>,<+0), <+0>] { Allocate a block for each row of the matrix)
consider [<+Mine>]
row [which]
insert
32 which
05 N
41 again

end matrix;

8.6.2 Reference to Elements
In paragraph 8.5 it was explained that the macros

tkl [A,

1]
stl [AL]

were used to reference elements of a Bingie dimensional array. Simﬂarl}r for & 2-dimensional array the macros

tk2 [ALL]]
st2[ALT]

are used, where | contains the index of the row and] contains the index of the element within the row that
is required.

Example

Add the 1st row to the second row of the matrix allocated in the last example.

—29
(lssue 1)

repe at)

0z 0

20]

tk2 [Mine, <+1>,] |
20 temp

tk2 [Mine, <+25,] |
60 temp

st2 [Mine, <+2>,]]
3z J

0 M

41 repeat

8.7 Multi-dimensional Arrays

2.4.1.8.

Multi-dimensional arrays are allocated by an extension of the method described in the previous

paragraph,

Elements of the array are however accessed in a somewhat different manner.

Thus to access element a of an array a
1,5,10 Y P4

consider [<+a>]

row [<+13]
row [<+53]
row [<+10>]
take

one would write

A similar method is used to store elements but in addition the SAC programmer must remember

to place the item in the SPAN location ‘reserve’ before obeying the macro consider

e.g.

This is necessary as the macro consider destroys the contents of the accumulator.

20 reserve
consider [<+a> |
row [<+1>]
row [<+5>]
row [<+10>]
store

8.8 Deletion of Arrays

Just as arrays can be allocated they may also be deleted dynamically. Whenever a SAC
programmer has no more use for an array he should delete it so that the store space occupied is released.
Thus store space is then available for later allocation.

To delete an array the SAC programmer writes the macro consider followed on the next line
by the macro ‘delete’.

e.g.

consider [<+Mine>]
delete

—_23—
{lssue 1)

2.4.1.8.

Note that in a multi-dimensional array the above pair of macros would delete the whole
array. To delete a single row of a two-dimensional array the programmer should write

consider [<+A >]
row [[]
delete.

8.9 Siummli.l':,r

In the previous paragraphs the use of the following SPAN macros has been explained.

ALLOC [size, type, status, offset]

consider [<+A> |

insert

tk1[AT],st1[AT],tk2[ALJ], st2[ALT]
row [1]

take

store

delete.

A full description of all the facilities of SPAN is given in Section 2.5.2. of the 503 Manual.

Insert, take, store, and delete are examples of parameterless macros, A call of any such SPAN macro must
be preceded immediately by a description of the SPAN unit that is being operated upon. This description
consists of either a single ‘consider’ or else a ‘consider’ followed by one or more calls of ‘row’.

o

. J. R
(lssue 1)

2.4.1.9.

CHAPTER 9

SUBROUTINES WITH PARAMETERS

In Chapter 7.4 it was explained that to enter a subroutine the macro

enter [A*B,n |
was used where n is the number of parameter words after the enter.

The parameters can take any whole word form described in Chapter 6.8.
9.1 Parameter Macro

Within the subroutine the parameters, which are written after the ‘enter’ macro, are accessed
by means of the ‘parameter” macro.

The ‘parameter’ macro consists of the mnemonic ‘parameter’ followed by the number of the
parameter in square brackets. e.g. parameter [1] will bring the first parameter after the “enter’ macro
into the accumulator.

Example

To find the sum of squares of two numbers whose addresses are given by two parameters
following the enter instructions.

heEin square;

data mod,x,y;
parameter [1 |

20 mod’300
20 «x

63 x

20 «x
parameter [2 |
20 mod/300
20 vy

63

60 x
exit[3]

end square;

The entry to this subroutine would be in the form

data length,width;

begin master;

enter [square,2 |
+ Iength
+width

end master;

—9E_
(lssue 1)

2.4.1.9.

On exit from the subroutine the sum of squares of the contents of length and width would be
in the accumulator.

The address of an array identifier may also be used as a parameter but in this event care
must be taken as the array identifier contains a codeword and not data.

9.2 Storage of Codewords

There is one basic rule that must always be obeyed when using SPAN, "*SPAN must have

access to H.I]. EDC[E“'DT&S".

This is uhuiuusi}r necessary to enable SPAN to update codewords when relocaliug blocks
in store,

This rule can be restated as:-
“*SPAN must know the addresses of all hasic codewords".

The SAP2 compiler informs SPAN of the addresses of the program codewords and the array
declarations enable SAP to inform SPAN of the addresses of the data basic codewords.

Thus for the programmer the rule can be expressed ““Copies of codewords must not be held in
data space to which SPAN has no access".

Because of this rule, and because it is often necessary to transfer information from one
section of program to another, the following convention has been adopted:-

The address of the codeword, and not the codeword itself is transmitted from one section of
program to another.

The macro parameters normally adhere to this convention. Thus the consider macro is written.
consider [<+A> |
the diamond brackets indicating that the address of the codeword of A is required by SPAN.
The exceptions to the convention are the macros tk1 [A1], st1 [A1], tk2[AT1, st2 [A1].
They are written in this form for optimisation purposes i.e. tkl [A,I] is the optimised version
of consider [<+ A>]

row (11
take

{Note that this form does not break the basic rule as the codeword is being transmitted to SPAN itself).

9.3 Array Identifiers as Parameters of Subroutines

Array identifiers may be used as parameters of subroutines.

—26—
{Issue 1)

2.4.1.9.

Thus one can write:
array A,B,C;
begin master;

enter [sum,2]
+A

+B
+C

end master;

where ‘sum’ is a subroutine to store the sum of two arrays.

Within the subroutine the parameters are accessed by the parameter macro. However, the values
of the parameters must be stored in locations
| Sl !

Thus the subroutine would start:-

heEin sum;

parameter [1]
20 X
parameter [2]
200
parameter [3]

20 7
X,Y,7 now contain the addresses of the array codewords.

In order to sum the matrix it is necessary to determine the length of the array by use of the
consider and length macros.

e.g. consider [X]
Iength

This places the length of the array in the accumulator as an integer.
Note: that we write R

consider [X]
because X is a formal parameter of the macro and contains the address of a codeword.

To access a location of the matrix we write tkl [X,I].The formal introduction of X informs
the SAP2 cumpiler that X contains the address of a codeword and not the codeword itself.

i.e. tkl [A,I]is a conditional macro dependent on the form of introduction of the identifier A.

) v [
flssue 1)

2.4.1.9.

Thus the swbroutine becomes:

heEin sum;

data temp, I,size

parameter E 1]

20 X
parameter [2 |
20 Y
parameter [3 |
20 7
consider [X]
length
20 size
0z 0
20 1

again) Tkl [X,I]
20 temp
&1 [Y,I]
60 temp
stl [Z,1]
32 1
05 size
41 again
exit [4]

end sum;

The SAC programmer should note that parameter [u] is a macro and therefore represents a
set of instructions which bring the parameter into the accumulator. It is not an identifier which represents
the parameter.

Therefore the programmer cannot write

consider [parameter [ul]

since this would generate a portion of code as a parameter of consider.

—2R—
(Issue 1)

2.4.1.10.

CHAPTER 10

UNIVERSAL IDENTIFIERS

In chapter 3.3.1. mention was made of universal identifiers. These are identifiers which have
meaning outside the program itself.

An essential universal identifier is the name of the program itself which is used for external

reference to the program. The program name is introduced by use of the control name program followed by
the identifier terminated by a semi-colon.

e.g. program EDITAL;

This is the first introduction of any program.

The other essential universal identifiers are the list of entry points to a program. These are
introduced by the control name trigger which is the last control name of any program. The entry points
are listed after trigger and must have been previously introduced within the program by a block introduction.
The entries in the trigger list are separated by commas and terminated by a semi-colon.

program THIS;
block alpha, beta (one);

trigger alpha, one*beta, beta;
These identifiers are universal labels.

It is sometimes useful to be able to refer to data and arrays of one program from blocks of
another program. This is possible if universal data and arrays are used. A universal data identifier is
introduced by the control name universal. Two programs which wish to use the same universal data must use
the same universal identifier.

The programmer may-also have universal arrays ﬁnd,these are introduced by the control name
array given imediately after the program introduction. Global arrays are introduced after the block introductions.

Thus:

program compute;

array all;

universal many;

block alpha,beta (one) ;
In this case 'compute', ‘all" and ‘many’ are universal identifiers. ‘a]pha',‘beta' are global iden-
tifiers.

920
flssue 1)

2.4.1.13.

CHAPTER 13

REPLACEMENT STATEMENTS

13.1 This chapter describes how whole sections of SAC may be replaced by a single identifier,
provided that the identifier is properly defined as a “‘replacement identifier’ and the “‘text” i.e. the code
it is itended to represent, is specified in the mann=r described below.

Replacement identifiers may be local or global but not universal in scope. The standard macros
are equivalent to universal replacement identifiers but have fixed meanings and the SAC programmer
cannot change their universal effect (although their local meaning can be altered, see 13.4) .

Replacements are most useful when a particular section of program is to be obeyed many times.
A simple example of the use of replacements is given by the sequence of instructions required to form
twice the content of the accumulator plus one. The instructions are

55 1
04 <+1>

and can be introduced as a replacement text for a replacement identifier, say SOCK.

Subsequently, SOCK may be used in place of, and will be replaced by, the above instructions.
Thus to perform

C:=(2A+1)+(2B +1)

where A and B are locations containing the operands and the result is placed in a location specified by C,
the SAC could be

0 A
SOCK
20 C
30 B
SOCK
24 C

13.2 Form in which replacements are specified
Specification is in two parts

(a) introduction of the identifier
and (b) specification of either the replacement text, or the name of the peripheral (e.g. the second
tape reader) from which this text may be drawn whenever it is required for insertion into
the program

Both parts of the specification must be given together in an introduction statement. An
introduction is given by writing the control name replace followed by as many replacement specifications as

———

required in the order
(i) the replacement identifier
(ii) an equals sign
(iii) a letter representing the “‘source’ of the replacement text.
(iv) if the letter was S, then the actual text enclosed in square brackets.

—38—
flssue 1)

2.4.1.13.

The complete statement is terminated by a semicolon.

SAP recognises four letters as references to sources from which a replacement text may be
obtained:

the store
the second reader
the typewriter

M= =W

none.

Thus & section of code held on paper tape may be used as a replacement text for the replacement identifier
SETUP after giving the introduction

reElace SETUP =R ;

providing that the tape on which the text is punched is placed in the second reader when a call of the
replacement is met during assembly.

The introduction statement for the example in 13.1 could be

replace SOCK =S[;55 1
04 <+1>];

When the source is S, the store, the *‘=S" may be excluded from the replacement statement, thus

replace SOCK[;55 1
04 <+1>];

Several replacements may be specified in one introduction statement, e.g.

replace SETUP =R, PRINT=R,Mod 17 =T, SOCK [; 55 1
e 04 <+17>] i

Note that the text is not inserted when the introduction statement is read but every time the
replacement identifier is read in the program thereafter. In the above example, each time the replacement
identifier PRINT is read during assembly (after the introduction has been made) the tape in the second
reader is searched until

PRINT [. . . .replacement text. . . .]

is found. Other replacements on the tape are ignored. The required replacement text is then inserted into the
program and SAP proceeds with assembling the next instruction.

This provides a convenient method of assembling a program from its constituent subroutines.

Whenever during assembly SAP encounters a replacement identifier which has been given the
source T, a text is requested by display of a message on the typewriter. In the above example

TYPE Mod 17 [

is displayed. SAP then waits for a text to be typed in, terminated by a closed square bracket.

oy
flssue 1)

2.4.1.13.

The operator may type the character = which means the replacement text is a single data or
label identifier, with the same name as the replacement identifier.

Incorrectly typed texts may be cancelled by typing the non-escaping character vertical bar (V).
The text then has to be retyped from the beginning.

A source of Z, for a replacement text means that whenever the corresponding replacement
identifier is read no insertion is made and SAP passes on to the next instruction. This is most useful when
the replacement for a particular identifier is not required in one block.

The replacement text for any replacement identifier can be changed by re-introducing it at a
later stage in the program. The new text is then inserted for all subsequent calls of that replacement
identifier; previous insertions are not affected.

Certain identifiers are so placed that they can only be interpreted as replacement identifiers,
e.g. identifiers on lines by themselves. These are ignored by SAP if unintroduced when read.

As with data identifiers, replacement identifiers may be made local or global by introducing
them inside or between blocks, but they may not be universal in scope.

132.3 Rephcemem texts - parameters

Any section of SAC may be used as a text; it can be a single identifier or function, or a
complete section including data-, label - and even replacement-introductions. Each text must always be
enclosed within square brackets and preceded by the appropriate identifier. It is important that this
arrangement is adhered to even when texts are drawn from sources other than the store

e.g if the introduction

reElace SOCK =R ;

is made (see 13.2) then the tape in the second reader should contain

SDCK [; 551
04 <+1> 1]

If the same replacement text is used serveral times in different parts of a program, it is often
necessary to be able to change the names of certain data and label identifiers appearing in the text.

The text employs identifiers of four different types:
1. l.abel, data and block identifiers

2. Replacement-identifiers. Replacements may call each other to any depth, although
a replacement cannot call upon itself, as this would lead to an infinite recursion - see
paragraph 13.4.

3. Standard macro names.

4, Parameter identifiers. These may be *“‘renamed"’" when the replacement text is inserted
into a program. They are referred to as ‘‘formal parameters” when in the text, and the
renamings and replacements as “‘actual parameters’, using ALGOL terminology
(Vol. 2.1.3). Permitted re-namings {actual parameters) are:

_A0—
flssue 1)

2.4.1.13.

(i) an integer, from which the sign may be omitted.

(ii) a constant enclosed within diamond brackets, which is equivalent to the address of a
location containing this constant,

(iii) another identifier.

Formal parameters, if any, are enclosed in the same square brackets with their text and need
no other introduction. The parameters are listed first and separated from the text by a semicolon. e.g.

replace CALC [factor, step ;
42 inc
53 factor
inc) 20 result
30 step
24 value] ;

In this example, “factor’ and ‘step’ are the formal parameters. The separating semicolon must
a]wﬂ}rs appear before the repla:ement text even if there are no parameters.

The actual parameters are given when calling the replacement, and are listed after the
replacement-identifier enclosed in square brackets, in the order set up by the formal parameter list.

Hence

CALC[5, <+2>]

result in the following instructions being inserted into the program

42 inc
53 5
inc) 20 result
30 <+2>
24 wvaluoe

Care must be taken when the same replacement text is used more than once in one block, to
ensure that labels introduced in the replacement text are made parameters. Also when the replacement is
called, the actual parameters for the labels must be different each time the replacement is required within
that block. If this is not done an error will result since effectively there are two identical labels in one block.

Thus facilities are provided for the systematic replacement of sections of SAC programming by
mean of a single identifier, possibly with parameters. The effect of a sequence of such statements can be
determined by systematically making the replacements. The expanded text, thus constructed, must obey the
rules of syntactically correct SAC.

13.4 Identifiers which are given more than one meaning
[f the same identifier has been introduced more than once under different control names, and it

occurs in a position which makes its meaning syntactically ambiguous SAP determines which reference is
intended according to the following rules.

41—
{lssue 1)

2.4.1.13.

The meaning of an identifier met at the beginning of a new line, which is neither a label nor a
signed identifier, is determined in the order of priority

a local replacement
a global replacement
a standard macro

Thus, the instructions represented by a replacement identifier are inserted into a program when

a call of that identifier is read, in preference to those represented by a standard macro of the
SAMEeE name.

One important factor must, however, be considered before applying this rule. Onge such an
identifier safonnd-bo-be a standard macro name, it becomes equivalent to a local replacement
in that block and any further reference to it is taken as a reference to the standard macro.

The meaning of an identifier occurring in the address position of an instruction is determined
in the order of priority

a formal parameter

a local replacement
a EIDI)HI replacement
an ordinary identifier

An identifier in this position is never taken to be a standard macro.

The following examples should clarify these rules.

(i) tiven the local introduction at the beginning of block B

rtplﬂﬂﬂ Cﬂﬂsider{ A H
24 X
41 Y
40 Al;

In the same block, B, a call of
consider [P]

is interpreted as the replacement given above. The operation of the standard macro
does not take place. If the same identifier was used in another block of the program,
the macro would operate as usual,

(ii) A replacement’s identifier can be quoted in its own text, either explicitly or else
as part of the text of one of the nested replacements. Since a replacement cannot
call upon itself, the meaning of such an identifier would be taken to be an ordinary
identifier or a formal parameter. e.g. given the introductions

data .54'
eEin{:e Al:;30A];

The instruction A
is taken as the replacement identifier. The A in the text of the replacement cannot

be a formal parameter and therefore must refer to the ordinary identifier.

-) -
flssue 1)

2.4.1.13.

30 A
is inserted into the program where A nowrepresents the data identifier.

(iii) Given the introductions,

data A, B;
replace A[; B]

in the instruction 30 A

A is taken to be the replacement identifier A, since this takes precedence over the data
identifier A.
The instruction thus becomes

30 B

(iv) The same identifier can be used as both a formal and an actual parameter, without producing
odd effects.

e.g. After the replacement introduction

reE]ane PLANT [SEED, SOIL ;
30 SEED
24 SOIL. 1;
the instruction PLANT [SOIL, POT]

becomes 30 SOIL
24 POT

i.e. Although the formal parameter SOIL becomes actual parameter POT this does not affect
the actual parameter SOIL.

{v) Given the introduction

replace whichone [;<+1>], thisone [;<+2> 1, GET [whichone; 30 whichone] ;

the instruction GET [thisone |

becomes 30 <+ 2>

SAP starts by assembling the text of the replacement identifier GET i.e. 30 whichone. The ident-
ifier whichone is interpreted as a formal parameter, rather than a replacement identifier, so

GET [thisone | becomes 30 thisone (not 30 <+13>). Then thisone is replaced by its text <+2>.

(vi) A formal parameter only operates on identifiers actually written in its own replacement text i.e.
the actual parameters of any nested replacement call will only take the actual values of the
immediately outer replacement, they will not be affected by the actual parameters of other
outer replacements. e.g.

Given the introduction

reElﬂr:e SUB[;53A], TEST[A; SUB
41 Al;

—43-—
{lssue 1)

2.4.1.13.

A call of TEST [error |
becomes 53 A
41 error

The identifier A in the text of the replacement identifier SUB, is not affected by the actual
parameter, error, according to the rule given above. Thus, when determining the affect of a
replacement which itself contains a replacement, the text should be expanded one layer at a
time, applying the appropriate set of parameters to each layer. These parameters should also
be applied to the actual parameters quoted in the call of any identifier which appears in the
layer considered e.g. Given the introduction

replace SUB [B;53B], TEST [A, B;
SUB[A]
41 Bl;
and a call of TEST [<+15>, error]
and expanding the replacement one layer at a time it becomes

SUB[<+15>]
41 error
and then
53 <+15>
41 error

This rule excludes such a case as

replace HOP[A,B;....]1, SKIP[; HOP];

with & call SKIP [error, <+1>]

since SKIP has been given actual but not formal parameters.

_44—
{lssue 1)

2.4.1.14,

CHAPTER 14

CHAPTER INTRODUCTIONS AND SAC PROGRAM FORMAT

14.1 Chapter introductions

It was stated that the blocks of a SAC program could be grouped into chapters. A chapter
occupies a single SPAN block and thus if a number of SAC blocks are combined into one chapter they will
be moved round the store together. If one of the blocks of the chapter is in the main store then all other
blocks of that chapter are also in the main store. Thus it is usual to group SAC blocks which are used in
conjunction with one another into a chapter.

This grouping is done by means of the block introductions. Thus all blocks named between the
control name block and the following semi-colon constitute a chapter.

For example the introductions

block alpha (one), beta (two);
block gamma;
would ensure that alpha and beta constituted one chapter while gamma
was in a chapter on its own.

14.2 SAC Program Format
Each SAC program is constructed of three main parts.

(1) The program begins with a ‘head’ giving all universal and generally all global identifier
introductions, starting with the program name, followed by the universal data identifiers and
then the block names and global data identifiers.

(2) The blocks come next, each being limited by the control names begin and end with global data
introductions between them if necessary. Blocks may not intersect or be contained in each
other and every program must be made up of at least one block. A semicolon must follow each
introduction statement (including those in the ‘head’) and each end.

The blocks may include SAC instructions, macros of SPAN, PCP etc. and local label and data
introductions.

(3) The program finishes with the control word trigger followed by a list which specifies the

entry points of the program. These entry points
must have been introduced as global labels or be block names.

14.3 Summary of control names
The following introductions must always be given.

program, block | trigger

Every block of program must start with the control name begin and conclude with end.

The following control names may be used to introduce universal data identifiers

universal, array

45
{lssue 1)

2.4.1.14.

The following control mames may be used to introduce global data identifiers.
data, array
The following control names may be used to introduce local data identifiers.

data

The control name replace may be used to introduce replacement identifiers, local or global
depending on where the introduction is given.

Order of giving instructions

EI"D Eﬂm

arra universal

universal
—— ————

blocks

glohal
data

re Elace

bcﬁin
data

replace
cna

local

trigger universal

SRE=
flssue 1)

2.4.1.15.

CHAPTER 15

COMMON PROGRAMS

The previous sections have been concerned with writing individual programs.

It has been explained that identifiers are used to name data and blocks within a program.
However, the job to be programmed may be too large and a team of programmers may be working together.
[f the job is written as one large program the individual programmer would have to ensure that they did not
use the same identifiers for different blocks or global data identifiers. Therefore facilities are provided so

that the job can be written as a set of programs. In this case the individual programmers only have to
ensure that they use the same names for the universal data items which they all wish to use.

The facilities provided are:

1. Universal data and array introductions
‘trans’ and ‘enter’ macros to other programs.
3. Links so that complete programs can be used as subroutines.

trans and enter macros

To transfer to another program the trans and the enter macros are written in the form

trans [A*B*C] enter [A*B*C,n]
where A is a global label or block B of program C. A*B must have been given in the trigger list of C.
The macros ntrans, ztrans,otrans can be given in the same way.

The enter macro must only be used if block B of program C is left by an exit [m] instruction,

oz

2
flssue 1)

2.h.1

SYMBOLIC ASSEMBLY MARK 2

APPENDI X

This appendix provides the specification of SAP2, Issue 2 in so far
as it differs from SAPl. A complete specification of the language SAP2 is
obtained by reading this in conjunction with the description of SAP1 (503
Manual 2.3.1). Any reader unfamiliar with Symbolic Assembly Code would be
advised to read issue 2 of the SAP? Programming Guide (2.4,1) first.

Part 1 contains the specification of SAP2, Issue 2, Part II the
operating instruetions and Part III the format of an assembled program.

Appendix 1

1
(Issue 1)

2.h.1

1. SPECIFICATION

SAP2 makes provision for programs which are too large to fit into the
mainstore with all their dataspace. This has been done by incorporating SAP
into the SPAN/PCP system, and the resulting changes end additions to the SAFl
specification are described in the following section. A program written in
SAPl is acceptable to SAP2 provided that it uses no reader or typewriter
replEEEmenf?’and that the COMP and EXITCP facilities are used to reference
only programs assembled by SAPl (e.g. standard binary tapes): all other COMP
instructions should be replaced by the "enter" instruction and the SAPl

program will then be acceptable to SAFZ2.

A. UNIVERSAL IDENTIFIERS

SAP1 programs can only communicate with each other via the COMP
instruction, and this type of subroutine entry may only be made to a program
which is already in store at assembly time. This facility may be used in any
SAP2 progrem, though only to enter a program which has been assembled by SAPl;
and it will be found that any SAPl common program entered via COMP must be in
binary form, as there is not sufficient room to hold SAP1 and SAP2 in store
together. SAP? programs, however, always communicate with each other via
wniversal data, label and array names; and as before, no program may be

referred to before it has been input or assembled into the store.

A local identifier may be used anywhere inside the block it is introduced
in, (but not outside), while global identifiers may be used anywhere in the
program they belong to. A SAP2 universal identifier may be used in any
program which is read into store, and, according to its type, must be

introduced in one of the ways described below.

A universal data or array name must be introduced in the head of the
program which first uses it. It may subsequently be introduced in the heads
of any of the other programs which use it, though this is not an essential
thing to do, but only a precaution. All universal data and array names are
simple(i.e. are single identifiers)and the introductions, if made, must appear
in the following order:

*) Chupttsr v
Appendix 1
e
(Issue 1)

2.4.1

program Ej

array Al, ... 3
universal Ul,U2, ... 3
(block)

These universal data and array identifiers may be handled just like ordinary
data nemes, though an array location may only be used to hold the codeword of
some block of space obtained from SPAN at runtime. It is essential that the
codeword of each SPAl-block obtained at runtime be placed in such an array
location, and that the array locations are used for no otherpurpose. lote that
array introductions may only be made universally.

Any global label in a program can be made universal by introducing it in
the program's trigger list, and all the global labels mentioned in a program's
trigger list are considered to be universal. Outside the program to which it
belongs, a universal label may only be used as a parameter of one of the special
macros 'enter', 'trans', 'chepter', which are detailed below. In this case,

the reference must have one of the forms
B*B*P, L¥B*P

where L stands for a label name,
B stands for a blockname,

P stands for a programname.

A three-part identifier of the above form mey not be used anywhere as &

parameter in a programmer's own replacement statement.

B. CHAPTERS

SAPl assembles each program into 2 blocks, one of which contains the
program instructions, and the other the program dataspace; there is no way
of shifting and relocating such a program in the store after it has been
assembled. By using the facilities of SPAN, SAP2 is able to assemble the

program instructions into a number of SPAN storage blocks, in such a form

Appendix 1
3
(Issue 1)

2.4.1

that the instructions may be relocated at runtime by SPAN, if this should be
necessary (to free space in mainstore). A set of SAC blocks may be stored
in one SPAN storage block called a "chapter", and the "chapter-structure" of
any program may be defined in its block introduction list by grouping together
in separate introductions the names of the blocks which are to form a single

chapter.
Thus, the introductions

block A,B(L1,L2);

block C(12);
at the head of a program indicate that the progrem ha: ~ blocks, which are to
be stored as 2 independent chapters: of these, o.e is bLe contain blocks A
and B, and the other block C. The program blocks must be arranged in chapters
on the source (mnemonic) tape, and the program chapters must appear in the same
order as their associated block introductions; for example, given the above
introductions, the blocks could be punched in the order A,B,C or B,A,C but not
as C,A,B or A,C,B etc.

Only the current chapter need be in the mainstore at runtime; the others,

being independent and relocatable, may be in main or backing store, or on a
magnetic tape. There are 2 ways of bringing a chapter into mainstore:- by
transferring control to it, as described below, or by giving an explieit
instruction to SPAN. The latter method cannot make use of the SPAN macro-
instructions

consider [A]

fast
because there is no way of naming a chapter, but the same effect may be achieved
with the macro-instruction "chapter [A]". This is really the same macro as
consider[A], and has the same kind of effect, except that A is not the name of
the SPAN block being considered, but the name of one of the global or universal

labels in the chapter. Thus, the instructions

Appendix 1
b

(Issue 1)

< §

chapter[SPIDER*SPIDER]
fast

will bring the chapter containing block SPIDER down into the main store (if it
is not already there). In this example, the block SPIDER is in the same
program as the calling chapter; to bring down the block SPIDER in another
program WEB a 3-part identifier as required:

chapter[SPIDER*SPIDER*WER]
fast

Note that when the program containing the above instruction is being assembled,
the program WEB must already have been assembled.
chapter{A] is appropriate wherever consider[A] is appropriate, e.g.

chapter [R]
fix

will fix the chapter containing bloeck R in the mainstore.

C. TRANSFER orders and SUBROUTINES

A complete relocation system would ensure the adjustment of every reference
to each program word which is moved from one point to another in the store. The
system described here, however, is only able to cope with adjustments to those
references which lie in the same SPAN chapter as the point referred to,since a
full relocation system would be unacceptably slow. Therefore, although the
instruction

LoA

may be used when transferring control from one point to another in the same
chapter, it may not be used when transferring control from one chapter to
another, since A is a runtime variable. Inter-chapter jumps are effected
through special macros which are able to call on the system to calculate the
current position of any label to whic¢h a transfer is to be made.

Appendix 1

5
(Issue 1)

2.h.1

The simple transfers to an instruction labelled A (and A must be a global

or universal label) arewritten in SAPZ2:

trans[A] (=hoA,kL4A) wunconditional
ntrans[A] (z=41A,45A) negative
ztrans[A] (zh2A,46A) zero
otrans[A] (zL3A,4TA) overflow

The trans macros may also be used to transfer control to points in the
current chapter, and SAP2 will assemble such a call in one of two ways. Ir
the label A and the trans[A] instruction lie in the same chapter, then a simple
jump of the form UOA will be assembled. If the trans[A] instruction and the
label A lie in different chapters, then a small set of instructions (a macro)
will be assembled, which will cause control to be passed at runtime to a
special routine in SPAN, in which the current position of A will be calculated;
and. if necessary, the chapter containing the label A will be called into
mainstore before the transfer is made. Because of this optimisation of trans
instructions, it is recommended that all transfers between SAC blocks be
written in this form, so as to allow a greater flexibility to the progrem's

chapter structure.
The SAPl instructions
SUBR, A and EXIT, m
mey be used when entering at or exiting from a point in the same chapter, and
COMP, A and EXITCP, m
when entering and exiting from a program assembled by SAPl; such programs
must be in a binary form.
Intry to any chapter isany program in main or backigg stcre may be effected
with the SAPZ2 macros

enter[A,l] and ENTER[A]

Appendix 1
6
(Issue 1)

2.h.1

A, here, is either a global or a universal label, and N specifies the
number of parameter wholewords, if any, which have been written under the
enter instruction (to specify e.g. a print format). The enter macro is
assembled as 3 wholewords, and the accumulator, overflow and auxiliary
registers are preserved when it is obeyed. The ENTER macro is assembled as
2 wholewords, and is obeyed in about one half the time of the enter macro,

though only the accumulator register will be preserved.

Once in the destination chapter, the nth of the parameter wholewords
written by the programmer under an enter macro may be brought to the

accumulator with the macro

parameter(n], l1<n<HN. (current versions of SPAN impose

the restriction N £ 8)

This parameter macro can only access the N parameter words stored under

the last enter to be activated.

The prograrmer should arrange for each "enter” or "ENTER" instruction to

be paired with an
exit[m]

instruction, just as the SUBR instruction is paired with EXIT,m and the COMP
instruction with EXITCP,m. (llote, though, that "exit" is not a recognised
abbreviation for "exit[1]"™)The enter and ENTER macro cause link information
to be stored in the LIWK location of the block containing label A. This makes
it possible for the "exit" macro to be paired with a SUBR instructiom, so that
the same subroutine may be triggered with an "enter", an "ENTER" or a SUBR
instruction. However, EXIT may not be paired with enter or ENTER, nor is any

variation allowed in the pairing of COMP and EXITCP.

The 'enter' and 'ENTER' instructions may be used to make subroutine entries
to puinti in the same chapter. Such an 'enter' instruction will never be
optimised to a SUBR, in the way that 'trans' is sometimes optimised to a simple
jump. This allows entry to be made to a subroutine in the same chapter in

which some action is taken which results in the chapter being shifted; for

Aprendix 1

7
(Issue 1)

2.b.1

example, control might be passed from the subroutine to another chapter, in
which space is booked. The ordinary SUBR-EXIT combination does not cater

for such a chapter shift, while the enter-exit combination does.

The restriction explained at the beginning of this section should be
carefully noted: no machine code instruction may refer directly to a label
in anocther chapter. For example, the instruction 30 <+#B> is erroneous if
B is a block in some other chapter. Also an improved facility: there is
no important restriction on the use of compcund (i.e. identifier with added
integer) addresses; the identifier part may be unallocated at the time the
compound reference is met, even when used inside diamond brackets.

It is important that the parameters of the macros

enter[A,n]
trans[A]
n/zfortrans[A]
chapter[A]

should not refer to a program which is unavailable to SAP2 when the calling
program is being assembled.

D. INTRODUCTIONS

The introductions in a SAP2 program must be made in the following order:

prorsram
array

universal
bloeck

block
replace

Appendix 1

8

(Issue 1)

2ult 1

These instructions are optional, except for program tripgger block begin

end, which must be made once each. llote also that global items may only be
introduced at the head of a chapter; they may not be introduced between the
blocks of a chapter.

5]

RESTRICTIONS ON REPLACEMENTS
MACRO INSTRUCTIONS ALLOWED

The following restriction applies to all programs assembled by SAPl and
SAP2; an identifier which has been introduced as a replacement may not
subsequently appear between any underlined basic name and the terminating

semicolon. Also SAP2 does not recognise reader or typewriter replacements.

The following lists detail all the macro instructions permitted in a
SAP?2 program as standard replacements i.e. they may be quoted without the

formality of an introduction in a replacement statement.

1. PCP and SPANl lacros

SAP2 functions within the PCP/SPAN non-basic system, i.e. at least 1
unit of core backing store must be included in the configuration. A full
description of the meaning and use of the macros listed below can be found
in 2.5.2 and 2.5.3 of the 503 lianual, the only exceptions being the SPAN macros
Tkl[a,b] and Stl[a,b] which have been included recently:

Tkl[a,b] and Stl[a,b] may be used like the macros tkl and stl except
that the actual value of parameter a is to specify the name of a location
which contains the address of the SPAN codeword of the array referred to by
the macro. In tkl[a,b] and stl[a,b] the parameter a specifies the name of

some location which contains a codeword. For example, the two instructions:

Aprendix 1

9

(Issue 1)

2.h.1

tkl[array,count]
and Tkl [<+array>,count]
have the same effect.

SPAN:= alloc[A] PCP:= open device[D,N,EL]
ALLOC[a,b,c,d,] close device[D,N,EL]
consider(a] shut device[D,N,EL]
row[a] cancel device[D,N,EL]
take buffer(D,N,B,F,EL,M,C,K]
store BSUPPLY[<+n>]
tkl[a,b] BRETURN[BUFFER]
tk2[a,b,c,] return
stl[a,b] restart[label*block]
st2[a,b,c] stop
Tkl(a,b]

Stl[a,b]
insert

detach

delete

length
lowbound
newbounds[a,b]
slow

fast

SPAN:= setfile[a,b]
ewsetfile[a,b]
file[a]
cwfile[a]
popup[a]
cwpopup &)
chopfile[a]
ewchopfile[a]
fixed
free
read only
write also
retire
recall
banish H
collapse
setorigin[H,K]

Appendix 1
10
(Issue 1)

2.h.1

2. SAP2 Special Macros

ENTER[A]
enter[A,n]
exit[m]
parameter(K] (K € 8 in current version of SPAN)
trans A
n/z/otrans[A]
chapter([A]

where A is a global or universal label,

3. SAP1 macros Allowed in a SAP2 Program

SUBR, A

EXIT

EXIT,m

COMP,A,n (A must have been assembled by SAPL)

EXITCP

EXITCP,m

STOP

N/Z/0STOP

RAPprint

RAPlprint

RAPread

RAPsearch

RAPiprint (which displays & 4 digit integer from
the accumulator)

II. OPERATING INSTRUCTIONS

(This describes the operating procedure for SAP programs which use SPAN
but not PCP; a more general method is outlined in sections 3.2.1 and 3.2.2
of the overall description.) The procedure is as follows: the steps must

be executed in the order given:

Appendix 1

|

(Issue 1)

-} T |

(i) CLEAR THE STORE

INPUT RAP

SET PROTECTION
(ii) INPUT SPAN BY TYPING IN.

The rule is invariable; SPAN must always be stored from location 5
on-wards.

(iii) INPUT SAP2 by TYPING IN.

(iv)

(v)

SAP2 occupies about 2900 locations, and, throughout its use, stays fixed

in the position to which it has been input.

INPUT ANY PROGRAMS WHICH HAVE BEEN CODED IN RAP OR SAP1 BINARY

For example PTSREAD or EDIT8. Such programs may not be input once

step (iv) has been made.

TYPE SPAN:b. (where b units of CBS available).

This effectively divides the store into 3 SPAN-blocks each with a
SPAll-codevord generated for it in SPAN's workspace. The 3 blocks
are: 1) the low esddressed store containing SPAN, SAP2 and some of
the binary programs input during step iii, (2) the freestore area,
and 3) the high addressed store containing RAP and the rest of the
binary programs input during step iii. It also sets the appropriate

headerword in core-backing store.

LLOAD A SAP2 PROGRAM IN READER 1

SET THE WORD GENERATOR
TYPE SAP2.n.m. (other possible entries are detailed below)

The general format of a stored SAP2 program is: a main SPAN-codeword
block (containing the RAP head), a fixed SPAN-block for workspace and

Aprendix 1
|2
(Issue 1)

2.4.1

constants, the program chapters (which are relocatable), a relocatable
trigger chapter, and some universal dicticnary information. Bits 39,
36 and 34 on the word generator are used by SAP2 for the same purposes
as SAFl.

Bits 37,36 and 35 have no effect on the assembled program.

A program's relocatable chapters are always assembled directly onto
backing-store, so that SAP2 issue 2 cannot be used on machines without

backing-store.

SAP2 must be pgiven an estimate of the amount of data-space used in any
program it is required to assemble, and of the m ~ber of distinct
diamond bracket constants to be expected there. | iese are the numbers
"n" and "m" typed after the trigger to SAP2. Although these are not
easy numbers to estimate, it will usually be found sufficient if some
fairly generous aprroximation is given. SAP2 will end each assembly

with the message

END <FF> <LF>
EST <n> <m>

in which the displayed values of n and m are the smallest acceptable.

More exactly:

n = the amount of global and local dataspace introduced in the
program, plus the number of blocks, plus the number of
chapters, plus 2.

m = the number of blocks, plus the number of global labels,
plus the nmumber of diamond bracket constants which do

not refer to a label or a blockname,

Appendix 1

|3
(Issue 1)

2,4.1

If one of the typed estimates is found to be too small, one of the 2
messages "X data" and "X cnst" will be displayed, according to whether
n or m is the faulty number. SAP2 will then re-use the reserved
space to check the rest of the program (though the message "X cnst" is
almost sure to be followed by a number of spurious error indications)
and the corresponding estimate printed out at the end of the run will
be too small by the number of times the corresponding error message

has been displayed, times the amount of the original estimate.

Programs for which m end n are accurately known may have theseestimates
punched into their object tapes, thus: Drogram NAME(N,M);
The appropriate entry to SAP2 is then

SAPZ2,
If it is now required to override the punched tape with a typed estimate
the entry is

SAF2:;1l.n.m.
Programs may also be edited as they are assembled. To do this, type an
edit tape in the EDITS style, make sure that EDIT8 is input at stage iii,
load the edit tape in reader 2, and type either

SAP2:;23n;3m.
or SAP2;2.
(according to whether the g¢stimates are to be read from teape or typewriter).

Note that although the displayed freestore limits indicate a genuine
freestore area, the "first-free" location always contains the size of
this area, and should not be altered by any program other than SAP2 or
SPAN.

Appendix 1

14

(Issue 1)

(vi)

I1II.

(i)

2.h.1

ITAUSLATE IN THE SAME WAY ALL OTHER SAP2 PROGRAMS REQUIRED FOR THIS RUN

TRIGGER PROGRAMS AS IN THE SAPl SYSTEM

The procedure for triggering programs which use PCP is given in section 2

of the note on PCP.

The CANCEL;X. message is replaced by SAP2;3.X. when using SAP2.

FORMAT OF AN ASSEMBLED PROGRAM

The second issue of SAP2 gives its object programs the following store-

format, (the program is stored as a SPAN-array):-

BLOCK A,

alwvays 15 locations long, which contains the main

SPAll-codewords for the assembled program-array.

i.e.

i codewords, for block A

+0
TO0 : 000

block B (for universal data and array space)

block C (for the chapter codewords program
dataspace and block LINKs "label-
pseudo-codevords" - see 1ii 2 -
and constants)

block D (for the trigger chapter)

(not used)

(which is a "breaker", to tell SPAN that

there are no more codewords in the higher

addressed locations of the block).

a RAFP program head:

(5 locations)

(Note that the program is not given a RAP
store-sumcheck; the first location of
the head is therefore made to contain a
" abel-pseudo-codeword” for the beginning

of the program's trigger block).

a LINKCP location

& 2 locations to contain a trans instruction to the trigger

chapter.

Appendix 1

15

(Issue 1)

2.h.1

(ii)

(iii)

BLOCK B, for universal array and dataspace.
i.e. a location for each universal array item which has been newly

introduced. (These are arranged in alphabetical order.)
a "breaker" (700:000 - see i)

a location for each universal data item which has been newly introduced.

(These are arranged in alphabetical order.)

BLOCK C, for chepter codewords, data and constant space.

This block is divided into two parts:

1. The first part contains n locations (where "n" is the first

of the 2 integers typed after the name SAP2.) In these

locations are placed:-

a codeword for each chapter, (of the form 40 25T+r:00 x,
where r is the number of "relocation words" planted before
the chapter, and x is the address of the last of these

relocation words, (see iv).
a "breaker" (700:000 - see i).

a location for each global data item introduced before the
beginning of the first program block, arranged in order

of introduction.

a LINK location for each block of the program; these LINKs
happen to be arranged in alphabetical order: the lower case
alphabet is considered to lie alphabetically after the upper
case alphabet.

a location for each global or local data item introduced in or

after the first program block, arranged in order of introduction.

If too large a value was given for "n", there will follow a

number of spare locations.

Appendix 1
16
(Issue 1)

(iv)

(v)

(vi)

The pro

This 1is

jj‘Ill"ll-

The second part contains m locations (where "m" is the second

of the 2 integers typed after the name SAP2), In these

locations are placed:=-

a "label-pseudo-codeword" for each blockname and each global
label read in the block instruction. These label pseudo-
codewords are used by the enter ,ENTER and trans macros at
runtime, and they have the form 00 y:0 E 7 where y is the
address of the chapter codeword of the label, and z is the
relative position of the label within the chapter - the first

word of program in the chapter has relative address 1.

those "diamond bracket constants" used in the program which

do not refer to label or blocknames.

If too large a value was given for "m", there will follow a

number of spare locations.

gram chapters. (These will be on backing store after assembly)

the format of a chapter:

a headerword (see SPAN 2.5.2)

a special word, for use by SPAN

r relocation words:- one relocation word is planted for every
19 words of program.

the program proper.

BLOCK D This is a relocatable trigger block, which is entered

wheneve

BLOCK E

r the program is triggered. It has the form of a chapter.

This contains information about the universal items introduced

in or on behalf of the program. lote that block E contains its own

codewor

d.

Appendix 1

17
(Issue 1)

2.h.1

Blocks A B and C will be packed at the high addressed end of store.

BLOCK E is at the low addressed end.

The program chapters will be found on backing store after assembly,

but are brought into store as the program is run.

appendix 1
18
(Issue 1)

2.4:3

SECTION 3: 503 FORTRAN IV

2a%e3.

CONTENTS LIST

Page
CHAPTER 1
1.1 Introduction 1
1.2 503 Fortran representation 1
CHAPTER 2
Language Description 2
CHAPTER 3
Limitations 6
CHAPTER 4
h.1 Input/Output Statements 8
h,2 Special Effects 11
L3 Input/Output error messages 12
LY REWIND, BACKSPACE, ENDFILE 15
CHAFPTER 5
L | Error Indications 16
Bl Run Time Error Messeages 2}
CHAPTER 6
Format for punching source program
6.1 Cards 26
6.2 Paper tape 26
CHAPTER T
T.l Operating System 28
T.2 Dmping of compiled or part-compiled FORTRAN
program on magnetic tape 32

(i)
(Issue 1)

2.h,3

ChaEter 1

1.1 Introduction

The FORTRAN system implemented on the 503 conforms to the ECMA
standard with certain extensions and relaxations. This document does not set
out to describe the language in detail. It is intended to be used in
conjunction with a copy of the draft ECMA standard on FORTRAN which will be

supplied on request.

The FORTRAN system is intended for use on a 503 installation

which has one or more units of core backing store and magnetic tapes.

1 503 FORTRAN representation

Programs may be punched on cards or on paper tape. In both
cases the full character set as specified by the ECMA standard (section 3.1)
is acceptable. In addition the currency symbol £ may be used.

Programs read from paper tape should be punched on an

B-channel flexowriter according to the 503 Paper Tape Code conventions.

Programs read from cards should be punched according to the
conventions of the 503 Elliott Card Reader Code. (See Volume 1, Part b,
Section 6 of the 503 Technical Manual for details.)

=) o
(Tssue 1)

Chapter 2

2.1 Language DescriEtian

The FORTRAN IV compiler is implemented according to the
rules of the ECMA standard with the following exceptions.

2.1.1 The EQUIVALENCE statement has no effect.

2.1.2 All subprograms must be translated before the first

sentence to them is translated.

2.1.3 A dummy arrsy argument can only be replaced by an array
name. Any occurrence of an array element name in an argument list is

treated as an expression. Also the dummy array and the actual array must:

(a) have the same number of dimensions
and (b) each dimension has the same limit

in the two arrays.

5.1.4 The main program must start with a comment line. The first
six characters will be used as the program name. These characters must all

be alphanumeric, and the first one must be a letter.

2.1.5 Array subscripts may be any integer expression. There is
one exception to this. Evaluation of an array element in an input/output
list must not cause a transfer to a subprogram so in this case the subscript

expressions cannot include external function references.

-2 =

fMesue 10

2.4.3

2.1.0 The following additional input/output statements are

accepted:

Statement Interpretation
READ f,list Read from Paper Tape Reader 1
PRINT f,list Output on line printer
PUNCH f,list Output on Paper Tape Punch 1

2.1.7 The Statement IF (SENSESWITCH j)L;, L, is accepted,

and Ly must be statement labels and jJ is an integer constant such that
1 £ j 5 19. The effect of the statement will be that control will be

tranaferred to L; or L, depending on whether key j of the F2N2 keys of the

word generator is dempressed or not.

2.1.0 In the statements 'PAUSE n' and '"STOP n' n is treated
as a strinz of from one to five characters. When the statement is obeyed

the characters are displaved on the output typewriter.

The PAUSE statement causes the running program to wait. The

program may be continued by changing the sign key on the word generator.
2.1.% Any number of continuation lines (cards) are allowed.

2.1.10 Arithmetic expressions (see 6.1 page 10 of Draft ECMA

standard on FORTRAN).

- -
(Issue 2)

2.4,3

The standard rules here are relaxed, It is possible to

have mixed code arithmetic.

(i) By use of any arithmetic operator except /
two operands of type integer may be combined

to form a result of type integer

(ii) By use of any arithmetic operator except **
two operands of different types (or both real)
may be combined to form a result of type real.

(Note (integer) ** (real) is not defined).

Warning: This means that the result of I = hf3 + 2/

is 3 and not 2.

If immediate truncation after an integer division is required
the non-standard intrinsie function "DIV" should be used.

2.1.11 For input/out statements the ECMA standard applies with

two exceptions:

(1) For output with the FORMAT setting E w.d
the output slways has the decimal point
appearing after the first digit.

(ii) Each device has a standard physical record
length associated with it., Logical records
(i.e. records specified by the user) are
artificially segmented into physical records
of standard length. The appearance of a /
in a FORMAT results in one physical record
being skipped.

“- -
(Issue 1)

2.4.3

2,1.12 The standard list of intrinsic functions is increased by one.
This is the function DIV (a;, a;) where a; and a; are both of type integer
and the result is a; + a,, also type integer (see note in 2.10).

2.1.13 The standard list of basic external functions is increased
by one., This is the function TAN(a) where a is of type real. The result

if of type real.

Note: for all trigonometric basic external functions
the argument is assumed to be expressed in

radians.

2.1.14 The control variable of & DO loop must not be a COMION

element.

2.1.15 GOTO or ASSICN statements may not contain COMMON elements.

(Issue 2)

E|h|3

Chapter 3

3.1 Limitations

3.1.1 Array subseripts must be < LOok,
. P Any common block (including unlabelled common) must be < Loolk,
3.1.3 The total number of propgram units must be < 17.

3.1.4 Integers must be in the range
- 27h BTT 906 94k to + 2Th4 877 206 943
Reel numbers must be in the ranpge

- 5.79 x 107% to + 5,79 x 107% approx.

3.1.5 All assignment statements must have = sign punched on the
first line of the statement.

3.1.6 Subprograms must not have more than 63 dummy arguments,

3.1.T No executable program may have more than 32 named COMMON
blocks.

3.1.8 The number of consecutive slashes in a FORMAT statement
must be < 31.

Jedo9 The number of digits in the fractianal part "d" of an E or
F FORMAT descriptor must be £ 15.

6
(Issue 2)

2.h.3

3.1.10 The total field width specified in a FORMAT descriptor
must be £ 255.

3.1.11 The repeat cc .l preceding a descriptor in a FORMAT
s tatement must be s 51l.

3.1.12 The modulus of a scale factor specified in a FORMAT
statement must be £ 127.

- T =
(Issue 1)

24843

Chapter b Input/Output Statements
h.l The standard FORTRAN input/output statements may be used

directly by the programmer for transfer of information. The devices which
may be used and the modes of transfer allowed are listed in Table E.

Each device has a standard record length associated with
it. If the input/output statement demands the transfer of a larger
record then as many standard records as are necessary to exhaust the list

are transferred.

Warning

Care should be exercised in skipping records which are
larger than standard size. The slash (/) in a FORMAT statement results
in one physical record being transferred and if a logical record consisting
of n standard length records has to be skipped then n slashes will be
required. The same warning applies for the BACKSPACE statement.

Table A contains the full list of standard FORTRAN input/
output statements plus three others which the 503 FORTRAN system will

accept.

nB—

(Issue 1)

2.h.3

TABLE A

Statement

Effect

READ (n,f) list

Read from FORTRAN device number n in
character mode. If the list is empty

then one Eh§sical record (s standard

record size) 1s skipped.

READ (n) list

Read from FORTRAN device number n in
odd parity binary mode. If the list
is empty one physical reocord is skipped.

WRITE (n,f) list

Write on FORTRAN device number n in
character mode. If the list is empty
then one empty record is transferred.

WRITE (n) list

Write on FORTRANl device number n in odd
parity binary mode. If the list is
empty then one empty record is
transferred.

READ £, list

The same as 1 except that n is assumed
to indicate paper tape reader 1 i.e.
n=1

PRINT £, list

The same as 3 with n assumed = 5,
i.e. line printer.

PUNCH £, list

The same as 3 with n assumed = 3,
i z. paper tape punch 1

--'9-
(1ssue 1)

2.4.3

TABLE B
Data can be read from, or written to, the following devices in
binary or character form, according to the following table.
. . S d
EORTIAN N— Read Read Write Write bandar
UEVIAE NENICE Binar Character Binar Character record
NUMBER ¥y o|-ner ¥ ’ size
1 Paper Tape
Reader 1 Yes Yes o o 120
& Paper Tape
Reader 2 Yes Yes ilo Mo 120
3 Paper Tape
Punch 1 o llo Yes Yes 120
L Paper Tape
Tunch 2 e Ho Yes Yes 120
5 Linenprinter 13! o ilo Yes 121
6 Elliott
(‘ard Header o Yesg s ilo 8o
T=12 |Marnetic 'Tapd
llandlers
3=l Yos fes Yes Yes 501
The standard record length is in terms of 503 words. The

vackineg density for character mode is normally one T-bit character ner word.

For marnetic tape it is S5 T=hit characters per word,

(rcpr).

The input/output is done via the Peripheral Control Prorram

s

(Issue 2)

Standard length records are zllocated for all the
devices (see Table B). If the FORMAT control specifies a record of
greater length than the standard size then the record is artificially
segmented. On output any record of standard size which has not been filled
will be cut down so that no spurious blank characters are output. On input
any record of less than standard size is accepted. If, however, a record of
greater than standard length is read all but the first n words will be discarded.
(n = stendard length record).

4.2 Special Effects

L. On reading from peper tape a newline L character will
be interpreted as an end of record indication and no

further characters will be read.

2. Only 500 of the 501 words of the standard magnetic tape
record are used for transfer. The first word is used by

PCP for administration purposes.

3. Only 120 of the 121 words of the standerd lineprinter
record are transferred. The first word holds the character
used to control vertical format. This has to be set by the
FORTRAl source program for each logical record specified by
the FORMAT statement.

The characters are az follows:

\ Character : Effect ;
blank (space) I Throw one line]
0 Throw two lines
1 Qutput on lew page
{top of form)
+ ! Output on same line
I |

(Tssue 1)

2.4.3

If the FORMAT statement specifies a logical record longer
than 120 characters the first 120 characters are output and the 12lst
character is placed in the first word of the next physical record so
determining the vertical format for this record. If this is meaningless

according to the above table, one line will be thrown.

L. Repeated slashes in the FORMAT statement have the
following effect:
(i) On input the rest of the current record is ignored

and the following n-1 physical records are by-passed.

(ii) On output the current record is output and n-l

empty records are output.

5 If data written on magnetic tape is later required to be
read then a REWIND instruction must be given for that

handler. A manual rewind is not sufficient.

6. ON input leading spaces are ignored, and subsequent spaces

are treated as zeros,

1. Spaces,,slashes and Hollerith strings in output FORMAT
statements are not output unless they are followed by an

output element.

k.3 Input /Output error messages

The following error conditions are reported at run time.

4.3.1 If an illegal attempt (as specified in Table B) is made to
transfer to any device then the message DEVICE ERROR is output on the type-
writer and control returns to RAP, It is not possible to contiaue.

L,3.2 All the error conditions recognised by PCP are reported by
the FORTRAN system. The messapge displayed is CLASS X ERROR ¥ DEV NO Z

where X = class of error as specified on page 30
section 2.5.3 of the Technical Manual
Y = type of error as specified on same page,

and Z = device number

a 19w
(Issue 2)

2.4,3

For all errors except cla=s 1 no continuation is possible. By changing the

sign key it will be possible to continue after a class 1 error.

4,3.3 If a record »501 words is discovered on magnetic tape, the

message LONG RECORD n is displayed where n is the handler number.

It will be possible to continue by changing the sign key

but some information will be lost.

4.3.4 The End of Tape condition is detected and the message
END OF REEL n displayed where n = handler number. It will be possible to

continue by changing the sign.
4.3.5 The messages

(i) PRINT ERROR and

(ii) IPRINT ERROR

(iii) RPRINT ERROR

(iv) TYPE ERROR

are displayed in the following circumstances:

(i) Incorrect FORMAT specification on trying to print
a floating point number in E or F FORMAT. The
program comes to a keyboard wait and, on changing

sign, the number will be printed in FORMAT E, 15.9

and the program will continue.

i

(Issue 1)

2,4.3

(ii) Incorrect FORMAT specification on trying to print
an integer in I FORMAT. The program cc es to &
keyboard wait and, on changing sign, the number
will be printed according to FORMAT I 13 and the

program will continue,

(iii) An attempt has been made to print in E or F FORMAT
a real element which is not in standard floating

point form. llo continuation is possible.

(iv) FOBMAT descriptor does not agree with type of

element to be input/ocutput.

4,3.6 The message DATERR n may be display:d on trying to read a

number. lo continuation is possible.

In the following explanation

d = number of digits after decimal point as
specified by FORMAT descriptor.
w = total number of characters as specified
by FORMAT descriptor.
n=1 (a) d =z w.

(b) Humber of digits after decimal point # d

(e) decimal point or E in integer.
(d) two decimal points in number.
(e) decimal point after E in number.
(£) two E's in number.

(&) no decimal point or E in real number.

-1l -
(Issue 1)

2.3

(h) null integer strings before and after decimal
point.

(i) no number before E
n=2 (=) illegal number character input

(b) two ¥ signs on number

(ec) * sign in middle of number

(a) * sign last character according to format
n=3 (a) integer overflow

(b) real number overflow

ne=1. Wrong character found on trying to read a logical element.

L. L REWIND, BACKSPACE, ENDFILE

These instructions all apply to magnetic tape only. Any
attempt to apply them to any other device will result in DEVICE ERROR being
displayed at run time.

The effects of the instructions are as follows:

(a) REWIND n where n is an integer constant or integer
variable (7T £ n £ 12)

(v) BACKSPACE n
This instruction causes the handletr identified by n
to retreat one physical record.

(e) ENDFILE n
A tape mark is output on the handler identified by n.
Any subsequent attempt to read this tape mark results
in an error message CLASS I EERl being displayed. It
will be possible to continue by changing the sign digit.

-

(Issue 2)

2.h.3

Chapter 5 Error Indications

5.1 Compile Time Error Messages

The following error conditions in the source program are
detected and reported by the FORTRAN system.

The messege ERROR X STAT Y is output on & new line on
the lineprinter.

¥ = Error number

4
I

Statement number

The contents of an input buffer are also output on a new

line on the lineprinter.

If the lineprinter is in the manual state when an error

message is to be output then
LP IN MANUAL

will be output on the typewriter, and continuation of error output takes

place autometically when the lineprinter is taken out of the manual state.

If there is no lineprinter attached to a machine, or if the
line printer is switched off, then the error message will be output on the
typevriter.

In all error conditions except Error No. 75 (program too
large) the rest of the source code is checked for further errors.

In addition to the above mnemonic errors the messages
SPAN ERROR 1 or SPAN EREOR 2 may be displayed. This means that the
Storage Planning and Allocation Scheme is unable to find space in main store
or backing store respectively. To continuation is possible.

- 16 =
(Issue 2)

2.4,3

ERROR

NO DESCRIPTION OF ERROR

01 lio left hand side in assignment statements.

02 Error in IF statement. No arithmetic or Logical
operator found.

03 Error in READ or REAL statement. Cannot determine
type of statement.

ok Error in WRITE statement. Cennot determine type of
statement.

05 Statement not allowed in 503 FORTRAN.

06 Incorrect character in label.

o7 Character not allowed in FORTRAN.

08 Line contains more than T2 characters.

09 Parenthesis not matching.

10 Array with more than 3 dimensions,

2 5 § Empty Parenthesis.

12 Identifier name does not begin with letter.

13 Character in column T should be a letter.

1k Label on continuation line.

15 Identifier declared twice,

16 Two incompatible definitions of identifier.

17 Error in subscript of array declarator.

18 Left parenthesis not followed by identifier in
statement funetion definition.

19 Identifier not followed by comma or right parenthesis
in statement function definition.

20 Right parenthesis not followed by = in statement
function definition.

21 Comma not followed by identifier in statement functian
definition.

22 More than 63 parameters listed in statement function
definition.

28 In COMMON statement, identifier appearing twice in a
COMMOW block.

30 Class inconsistent in array declarator.

31 Dimension inconsistent in array declarator.

R

fIssue 1)

28,3

ERROR

O DESCRIPTION OF CERROR

32 First limit inconsistent in array declarator.

33 Second limit inconsistent in array declarator.

34 Third limit inconsistent in array declarator,

36 Array element has subscript which is too great.

3T Errcr in separator between subscripts in array declarator.

38 Subseript limit > LO94 in array declarator.

L1 Non a/n character other than L () , / = + * , ##

ho Identifier other than END followed by £

43 Full stop followed by non a/n character.

Lk Character other than full stop following full stop and
an identifier.

45 Unidentified operatoi between two full stops.

L6 a character other than E following digit(s) of a number.

LT a character following E following digit(s) of a number.

L8 lion a/n character other than * following E following
number.

49 Another [following a real mumber already conteining E.

50 Integer constant too larpge.

51 Decimal exnonent of more than 2 digits.

52 Same label used twice.

53 A non FORMAT label has been used previously as a FORMAT
label in a READ or WRITE statement.

5L Jumr not allowed to this label from outside the DO loop
(Forward Jump).

55 This statement causes jump into closed DO loop
(Backward jump).

56 The statement (READ,WRITE,...) refers to a label which is
not a FORMAT label.

5T In GOTO statements and COTO assignment statement, label
is not a digit string.

59 Unidentified item after the label in an Unconditional GOTO.

- 18 -

(Issue 1)

2.4.3

EEDR DESCRIPTION OF ERRCOR

60 In Assigned GOTO i, (Kl, ... KN)

and Computed GOTO (K1, ... KN),i
i should be an identifier.

61 Comma missing after identifier in an Assigned GOTO.

62 Parenthesis missing in ASSIGNED or COMPUTED GOTO.

63 Comma missing before identifier in Computed GOTO.

6l In Assigned and Computed GOTO, and in GOTO assignment
statement, i should be a simple integer variable
reference.

65 In ASSIGH k to i, i is not an identifier.

66 Error in ASSIGH k to 1 statement.

67 Symbol following target label in DO statement is nc
an identifier.

68 Control variable of DO statement not an integer variable.

69 Ho = sign in DO statement.

T0 o comma after parameter in DO statement.

1 Parameter of DO statement is not an integer constant
or identifier.

T2 Last statement of DO loop is RETURH,PAUSE,STOFP,DO,GUTO
or arithmetie IF.

T3 Dimension of LABELLED COMMON block > LOGL.

Th Dimension of UNLABELLED COMMON block > 409k,

15 Program too large to compile.

76 NO (after FORMAT.

17 Incorrect symbol following separator in FORMAT
specification.

78 Unknown conversion code in FORMAT specification.

79 , following) or , in FOFMAT SPECIFICATION.

80 Integer followed by incorrect symbol in FORMAT
specification.

81 Incorrect symbol following one or more slashes in
FORMAT specification.

82 , followed by one or more slashes in FORMAT specification.

83 Non-integer following E,F,I or L in FORMAT specification.

I 1 g
(Issue 1)

2. 5.3

ERROR
NO. DESCRIPTION OF ERROR
84 Incorrect specification following E or F in FORMAT
specification,
85 Field descriptor followed by incorrect symbol in FORMAT
specification.
86 Field width, repeat count or number of consecutive slashes
outside permissible range in FORMAT specification.
871 Incorrect character in subprogram definition.
88 Subprogram definition not followed by identifier.
89 Subprogram name not followed by (or L .
g0 Function with no parameters.
91 Formal parameter not an identifier.
92 Symbol after formal parameter not) or ,
93 More than 63 formal parameters in a subprogram definition.
9l Inadmissible continuation line in Hollerith string,
a5 In EXTFRNWAL statement, item not an external function nor a
subroutine,
96 In EXTERNAL statement, item not in dictionary.
100 Incorrect character(s) in label in arithmetic IF statement.
101 Symbol other than , or L following label in arithmetic IF
statement.
102 llo integer following SEHSESWITCH in IF (SENSESWITCHueseaes
statement
103 SENSESWITCH integer j outside range 1 £ J £ 19
10k More than 32 different COMMON block names used.
105 Logical IF statement followed by DO statement,
Logical IF statement or any non-executable statement.
110 First statement of progrem is not a COMMENT or subprogram
definition,
111 END statement is not preceded by GOTO, STOP, RETURN or
Arithmetic IF statement.
112 Statement in program body is not END, FORMAT or
executable statement.
113 Mo identifier following CALL.
11k CALL OF intrinsic function.
115 Reference to unintroduced subprogram.

- 20 -

(Issue 2)

2.h.3

ERROR

“*m DESCRIPTION OF ERROR

116 A dummy argument which is not of class "subprogrem"
has been used in a subprogram reference.

117 CALL of function or function reference to subroutine.

118 llo actual arguments in subprogram reference.

119 No (following instrinsie function reference in actual
argument list.

120 Actual arpument of eclass array or subprogram nct
followed by (,) or , .

121 Actual argument of impermissible class.

122 Eecursive call of subprogram.

123 Actual argument which replaces dummy arrey argument
has not been declared.

12k Actual armument which replaces dummy array argument
is not an array.

125 Actual array argument is not of same type as dummy
array argument.

126 Actual arpument which renlaces dummy Subprogram
ergument has not been declared.

127 Dummy argument which has been defined as being of
class external subprogram has not been replaced by
en ectual parameter of correct class.

128 Dummy argument of class external function has not
been replaced by an argument of the correct class.

129 Dummy argument of class external function has been
replaced by an actual function of incorrect type or
incorrect number of arguments.

130 Dummy ergument of class subroutine has been replaced
by an argument of incorrect class.

131 Actual argument in subprogram reference is not
followed by , or).

132 Insufficient arguments in subprogram reference.

133 Too many arguments in subprogram reference.

13k Symbol of incorrect class at start of actual argument
in a subprogram reference.

135 Second symbol of expression in actual argument is

incorrect.

-2 =

fIssue 1)

2.4.3

ERROR
NO. DESCEIPTION OF ERROR
136 Type of simple variable used as actual argument is not the
same as the dummy argument type.
137 Subprorram name is same as previously defined subprogram.
138 0 (after READ or WRITE statement.
139 Device parameter is not a +ve integer constant or an
identifier.
1ko Device parameter inteper constant is not in the range 1-12.
1k1 Device parameter identifier is not of integer type.
142 Incorrect sevarator, i.e. not , or) in READ/WRITE statement.
1k3 ot) , (or L after ARRAY identifier in the list.
1hh ot) , or L after a list.
145 lot enoush) , in list.
146 Too many)s in list,
147 o) after DO - imnlied loop in list.
148 Incorrect character in PRINT or PUNCH statement.
149 Undeclared label.
150 COIRi0N statement terminated by a single /.
151 Incorrect symbol following / in COMMON statement.
152 Incorrect symbol in COMNMOH statement.
153 Incorrect separator between two elements of a COMMON
statement (not / or , J.
154 COM0ll block name not followed by /.
155 Sixth character of apparent COMMON statement is not an N.
156-199 Unallocated.
200 In sub expression the first symbol is not:
left parenthesis, subnrogram name array name or
dummy armument.
201 Matching parenthesis of a sub expression not found.
202 Ho = sign found.
203 External function name on left hand side of assignment
statement is not name of current program unit.
20l Right hand side of assignment statement terminated by
symbol of incorrect class.
206 Empty arithmetic expression.
207 Logical operand in arithmetic expression.
208 Expression starts with operator other than + or -

- 08 o
(Issue 2)

2.L.3

. DESCRIPTION OF ERROR

209 Element of incorrect type in arithmetiec expression.

210 Identifier other than simple variable, external or
statement function, arrey or dummy argument in left
hand side of an assignment statement.

211 Missing operand.

212 No left parenthesis in array element.

213 o right parenthesis in array reference.

21k Number of subscripts used in array reference
different from number declared.

215 Result of & subscript expression not of type ihteger.

216 Empty Logical expression.

217 Non-Logical operand in lLogical expression.

218 Logical Sub-expression does not start with:
Arithmetic identifier, Logical identifier, constant,
arithmetic operator, .NOT or left parenthesis.

220 Inadmissible operand in Logical expression.

221 Impermissible start to Logical expression.

222 Right parenthesis missing in Logical assignment
statement.

223 No Relational operator in Relational expression.

-8y =
(Issue 1)

2.4.3

5el Run Time Error lessages

The following run time error messapes are always detected:

(1) Assigned GOTO statement has not had one of listed
labels assigned.

(2) Computed GOTO statement has had a value assigned to
its control variable which is out of range. For

both these errors the message

RUN ERROR 1 is displayed.

(3) Recursive call of a subprogram results in the message

RUN ERROR 2 being displayed.

(4) INTOFLO - integer overflow
log error - attempt to take log of number < 0O
exp error - attempt to evaluate e® yhere a > 25h lugae
trig error - parameter of SIN,COS or TAN is > 228
sqrt error - try to take square root of =ve number.
It will be possible to continue after these messages

by changing the sign digit.

The following error conditions are detected by the Storage
Planning and Allocation Scheme:
(1) No room in main store for program and/or data block.
SPAN ERROR 1 is displayed.
(2) o room in backing store for program and/or data

block
SPAN ERROR 2 is displayed

It is not possible to continue in either case.

- 24 -
(Issue 2)

state:

2.4.3

On a checked run SPAN also detects the following error

Subscript value in array reference is out of range.
This gives rise to one of the messages

SPAN ERROR b
SPAN ERROR 5

Again, no continuation is possible.

- 25 <

(Issue 1)

2.4.3

Chapter 6 Format for punching source program

The source program may be punched on either paper tape or

cards.

6.1 Cards

The format of the source program is as specified in the
ECMA standard. The last § columns will be ignored. There is no limit on

the number of continuation cards.

6.2 Paper Tape

The format of the source progrem is exactly the same as on

cards with the following exceptions:
(i) The character space is used instead of blank.

(ii) The character @ is used to indicate the end of
a line. If more than 72 characters are punched on

any one line effect is undefined.

(iii) The character tab G;) is normally taken to mean one
space. If, however, it is used in any position up
to and including the sixth character of a line it
is taken to indicate the end of the statement label
/ continuation mark field. On paper tape both
spaces and tabs are taken as significant. The last
line on paper tape must be followed by (:)(;], not

Jjust C;).
(iv) Blanks and erases are ignored. They do not increase

the character count on a line.

- 26 -
(Issue 2)

2.Lh.3

(v) The character halt code @ halts the input tape and
WAIT is displayed on the typewriter. Translation
continues on a change of the sign key. @ does not

increase the character count.

It is recommended that the standard program sheet
(see Appendix A) be used.

- 27 =
(Issue 2)

2.b4,3

Chapter T

Tl Operating System

The FORTRAN system consists of three separate programs which
will normally be kept as a batch on magnetic tape. The batch will normally
be called FORTRAN and will be input by BRING and LOAD. The programs of the
FORTRAN systems are

(1) The Compiler (FORTRAN)

(ii) The Dynamic Routines (FORTDR)

and (iii) The Peripheral Control Program (PCP).
The system may be operated in two ways:

I Hormal

II Under STAR control (see STAR description
section 9.3(b)).

I. Normal mode of operation

When the system has been loaded the compiler is entered by
typing FORTRAN;n. on the typewriter with the keyboard clear. The various

settings of n provide the following variations
n = 1, source program is punched on paper tape and is
loaded in reader 1

2, source program is read in from the Elliott card

reader

- 28 -

fIssue 1)

2.4.3.

n = 3, source nrogram is on mugnetic tape handler 2
packed five T-bit characters to a word and
written in standard length PCP records (120
words + 1 word for block number). The mode of
writing is odd parity character (PCP mode 3). The
megnetie tape is assumed to be positioned just

prior to the first record of the program.
L, same as 1 but subscripts will be checked at run time.
5, same as 2 but subscripts will be checked at run time.

6, same as 3 but subscripts will be checked at run time,

The entries FORTRAN;3. and FORTRAN;6. will normally be used
by the STAR system but may be used normally provided the scurce program is

written on magnetic tane according to the conventions described above.

The message RAP X at the start of compilation means RAP is

corrupt.

The store should be cleared and BAP reinput.

When the END of the final prorram unit of the runnable propram
has been read then the compiler deletes itself and translation of further
FORTRAN progrem is impossible without the re-introduction of the entire
FORTRAN system.

The program name is then displayed on the output typewriter
and control returns to RAP. The translated program may be entered by

typing on the input typewriter, the message

PCP. program name.

Re-entry to the vprogram can be accomplished by retyping

the same messapge.

- 20 -
(Issue 2)

2.4.3

Normal Operation

Action Result
Stage 1 (a) Ensure that batch reel Part of BRING and LOAD
containing FORTRAN system tape input and BRING 1is
is loaded on handler 1. displayed on
Put BRING & LOAD tape in typewriter.

reader 1 and type IN.

(b) Type BRING. FORTRAN. Rest of BRING and LOAD
tape is input and LOAD
is displayed.

Stage 2 Type FORTRAN;n. FORTRAN source program
is translated and the
program nameis
displayed.

Stage 3 Type PCP., program name. Translated program is
run.

If any mnemonic errors occur during stage 2 it will not be

possible to continue to stage 3.

For details of errors which may be displayed during stages
2 and 3 see, respectively, sections 5.1 and 5.2.

If the source program is being read from cards or magnetic
tape the message ERRINT4Y will be displayed if the particular device is
unavailable. Translation continues on typing CONT;ERRINT.

If the message MISREAD is displayed then either

(i) a parity error has been discovered on magnetic

tape, or

- 30 -

(Issue 1)

2.h.3

(ii) a card has been misread.

In both cases the run must be repeated from stage 1l(a).

II. Operation using Segment Tape Administrative

Houtines (STAR)

If the translation and running of a FORTRAN program occurs
as part of a STAR run then stages 1, 2 and 3 occur without any intervention

on the part of the operator. There are two warnings.

(i) The running vrogram should always be terminated

by a STOP instruction.

(ii) If the running program fails to come to a STOP
instruction then the STAR system will have to
be reloaded.

This is accomplished by typing INl. (See STAR

description, section 9.6).

- Y -

(Issue 2)

2.4.3.

T Dumping of a compiled or part-compiled FORTRAN

program on magnetic tape

(i) Part compiled program

If at the end of a subprogram the statement ENDL is
used instead of END,

DUMF WAIT

will be displayed on the typewriter. Trenslation can be continued on a
change of sign key. However, if translation is to be interrupnted and
continued at a later date, the part compiled program and compiler may be
dumped on magnetic tape. This is done by pressing the message button,
instead of changing the sign key, and then by typing

FORTRAN: T.
which will display

I
END

on the typewriter. The program DUMP may then be input by typing
IN,

and the store dumped on handler 1, (See description of DUMP, BRING and LOAD),
If, however, NO ROOM is displayed instead of END it will not be possible to

dump the store.

To continue translation the batch is brought back into store
using BRING and LOAD. Then, having loaded the remainder of the program in
the reader, type

FORTRAN; T.

which will display

and translation continues.

g
(Issue 1)

503 FORTRAN CODING FOR

2.4.3.

AUTHOR

PROGRAM

PAGE

OF

DATE

&

73

&7

=74

f?

Ay

17

1234567

33
(/ssee 1)

LN]

T

(ii) Compiled program

At the end of translation the program name
(PRNAME, say) is displayed on the typewriter, To run the program
directly type

PCP. PRNAME.

However to dump the compiled program on magnetic tape type instead
PRNAME; 2.

which will display

I
END

and. the store can be dumped as above.
To run the program subsequently, the batch is
brought back into store using BRING and LOAD. Then type
FCF. FRNAME; 2,

which will display
R

and the program will be entered.

34
(Issue 1)

2451

Operational Technigues

iy General

The philosophy of operation revolves around the use of magnetic tape
as the means of storage for the relevant part of the system (see BATCH 5,
2.3.2.25). This means that any awkward segquence of operations required to set
up the contents of main store and core-backing store need only be performed once
before that store configuration is copied to magnetic tape for fast retrieval

subsegquently.

The same applies to any store configuration created by making use
of the systems programs, for example the users program, once translated to main
store and core backing store, may be written to magnetic tape in order to aveid

the necessity to repeat the assembly stage on subsequent occasions.

This section is concerned primarily with an explanation of the

organisation of the component parts of the system within the store,

Certain of the component programs have been coded in a binary form
by SAP Mark 1. The reasons for this vary from program to program but are either
because the program concerned will always remain in main store, and thus are
better left out of the SPAN store administration scheme, or because, in the case

of SAP2, no advantage is gained by making full use of SPAN,

The presence of two types of coded program tapes causes no extra
difficulties for the operator except in the initial preparation of the system
(see part 2). All manipulation of and interchange of such programs once the

system is being used takes place automatically.

2.5

The appendix to the SPAN description (2.5.2) shows that two
versions of SPAN are required, the full version being automatically brousht teo
main store (from core backing store) when found necessary, Thus the binary
coded programs SETCBS and SPANSWAP have been produced and must be used when the
system is initially produced, and written to magnetic tave, SETCBS enables the
user to place a copy of the full version of SPAN in core backing store, and
SPANSWAP, as its name implies, brings down that version in place of the restricted
version when necessary. All trace of its presence in core backing store is

deleted at the time of the exchange,

It should be noted that the use of BATCH 5 is not mandatory.
Chould the user develop an alternative system, orovided the relevant sections of

store are written away this may equally well be used.

g Loading the basic systems tapes

The steps described below are those to be taken in preparing the
basic systems batch on magnetic tape. All further batches may be built up from
the stapge reached below,

1. Type RESKT,

2. Input SPAN (full) by tyoing IN,.

3. Input SETCES by typing IN.

L, Type SPAN;S.

5. Tyvoe SETCBS.N, , where Il is the number of units
(16,000 words ver unit) of core backing store
fitted. SPAN is now stored in the core backing

store,

6. Tvpe RESET.

24541

7. Input span (basic) by typing IN.
8. Input SAP2 by typing IN,.
9. Input SPAuGWAP by typing IH.

10. (opticnal) Input other binary programs

required at run-time,
L5 Type span;li, where N has the same value as in step 5.
At this stapge a batch may be dumped on magnetie tave,

Each remaining system program is coded in SAP2 form and may be
assembled to store using the basic batch created above. Thus, once the basic
batch has been retrieved from the magnetic tape (using BRING and LOAD), a further

systems batch may be created by compiling the required program(s),

- Assembling and Running Procedure

The technique for entry to the program assembled will vary
according to whether or not that program uses PCP, The technique for assembly
(or compilation), however, is not affected by the presence or absence or PCP.
The individual variations in the method of assembly for each assembler/compiler

will be found described in the appropriate section of the manual,

If the program is not to use PCP then it may be triggered in the
same way as programs input under the Mark 1 svstem, If the program uses PCP then
it must be triggered via PCP, The exact detail of the technique for running one
program or two programs together will be found in the appendix to the PCP

description (2.5.3).

503 TECHNICAL MANUAL

VOLUME 2: PROGRAMMING INFORMATION

PART 5: PROGRAMMING AND OPERATING AIDS FOR THE
NON-BASIC 503

SECTION 2: THE STORAGE PLANNING AND ALLOCATION
SYSTEM

2.5.2

CONTENTS LIST

Page
1. GENERAL INTRODUCTION .. . o cv sv e ee wn we ue 1

2. CODEWORD AND HEADER WORDS..« .« .« .« . 2

3. ALLOCATION OF SPAN BLOCKS .. . 3
1 ALEOC G o v i w56 wY vee e 3
4. HANDLING SINGLE BLOCKS . 5
4.1 insert 3
4.2 delete 6
4.3 k], sl ., 6
4.5 length 8

5. ARRAY STRUCTURE OF SPAN BLOCKS« . 8

6. ALLOCATION OF ARRAYS i eh e e ee ee ae aa 10
B.1 FOW .. vh eh e e e ae ee ae ee ae ee ee ae es 10

7. ARRAY HANDLINGMACROS o si er e we 1N
X WML M2 v B R E R OV Y Tk W W s & A W

7.2 row, take, store wh wh ar wr wr sr wx ws as 11
T.3 detaich .. . i i ae ws wn as we s ws mm es a 13

8. ADVANCE PLANNING OF STORAGE CONTROL 15

8.1 fast, slow, fixed, free & o e e e 16
8.2 banish, retire, recall o 4 e 16
8.3 read only, writealso o o w a e . 18

9. ADDITIONAL FACILITIES SR TR o SR R - 19
9.1 lowbound, newbounds o o e e e e a 19
9.2 file macros sh eh s er er es se ss ws as 20

10. CONTENTS OF A CODEWORD« o « « o o o 21

11. CONTENTS OF A HEADER WORD o & o e s a 22
1M1 alloe: i 5o & ah wd en men @ G Ee et w0 e e 23

12. ERRORS.. .. o w0 av ss we a8 s an as ss se. a4 4 23
13. FURTHER NOTES & « o s sr ar o se ae w 24
14. SUMMARY TABLE & 0 o e se e as ss s as 24

Appendix | Structure of a program block
Appendix Il Search for free store
Appendix Il Additional facilities

i
(Issue 2)

2.5.2

l. GENERAL INTRODUCTION

The Storage Planning and Allocation system (SPAN) is designed to help the programmer make
simple and efficient use of all forms of internal storage. The system allows fully dynamic alloca-
tion and reallocation of storage in blocks and permits the available storage to be used and
re-used in the most economical fashion,, according to the changing needs of the program.

1.1 Dynamie Allocation of Storage Space

The programmer can use SPAN to allocate storage space dynamically so that he only uses
sufficient storage for the needs of that run of the program. When the space is no longer
required it can be released, for re-use by the system (e.g. buffer space in PCP). Thus, by
providing a means of requisitioning storage space during the run of a program and then handing
it back for re-use, much larger tasks can be effected than would otherwise be possible.

1.2 Implementation

Under the control of SPAN, the core storage of the machine is divided into blocks of
consecutive words. Additional blocks may be held on magnetic tape. The first word of each
SPAN block (called the header word) describes the block, giving its length and the type of
information held in it (e.g. data, program, free space). Each block has also a codeword which
is effectively a pointer to the position of the block in whichever form of storage it has been
placed.

1.3 Program Segmentation

SPAN administers programs which are too large to fit into the main store by placing blocks
of the program on core backing store and/or magnetic tape. In the case of a SAC program,
SAP Mk. 2 allocates a SPAN block to each chapter of the program at compile time. The block
contains not only the object code but also relocation markers which record which addresses
have to be altered when the chapter is moved. Programs run under this scheme need have only
those blocks which are actually being used at any given time occupying space in main stor-
age, the rest are held on auxiliary store. When a block of the program held on auxiliary store is
required it is automatically brought into main store and if necessary, some of the unused
blocks moved out.

1.4 Multidimensional Structures

All data, allocated under the SPAN system, is held in blocks. Arrays are stored by means
of a tree structure. For a single dimensional array there is a single codeword pointing to a
data block which holds the array elements. For a dimensional array the main codeword points
to a block of codewords, each of which points to the elements of one row of the array. As a
result an array element in core store can be accessed by ‘chaining’ through the codewords, a
system which is much faster than the alternative multiplicative process. A further advant-
age of this method of representation is that the rows need not be held adjacent to each other in
the store and they can be of any length.

1.5 Single Level Storage Simulation

The operations which can be performed in main store can also be applied to blocks in
backing store or on magnetic tape, and the SPAN macros used by the programmer are identical
in all three cases. The SPAN system does this by keeping in fixed workspace sufficient
codewords to be able to determine at any moment, the position and type of storage in which

1
{lssue 2)

2.5.2

2.

every block is held. When a request is made for more space than is available in the main
store, blocks are moved to backing store or magnetic tape to make room. If a reference is
made to a block on magnetic tape the block is moved back into the main store. Operations for
taking and storing single elements of a block in core backing are implemented by single
word transfers, whereas entry to a program held on backing store initiates a block transfer to
the main store. Any such movement of program and data made necessary by immediate program
requirements is effected automatically.

Thus to the user, only one tape of reference is needed to access data wherever it is held,
giving single level storage simulation. SI"AN can be used {e,g. in ALGOL) such that the
programmer need never realise he is dealing with more than one level of storage.

1.6 Storage Planning

There are facilities for more direct control allowing the programmer to specify in advance
the type of storage required for his program and data. At any time during the run of the program,
the most convenient place to hold an allocated SPAN block can be indicated by the
programmer, giving improved efficiency of operation.

1.7 Time-sharing

Programs which consist almost exclusively of input and/or output, and contain hardly any
calculation to fill the gaps, are called background programs. Since it would be uneconomic to
run such programs by themselves means are provided for running several background programs
atthe same time as the main, fnregruund. program.

The normal users program is a foreground program and uses the full facilities of PCP and
SPAN. When the foreground program is held up waiting for a peripheral transfer, the central
processor is used by the background programs to initiate further data transfers.

In this way one foreground program can be time-shared with several background programs,
but background programs must occupy a fixed area of store and must not use directly the ma-
cros of SPAN.

1.8 How SPAN is used

The programmer may write SI’AN macros into any SAC program if required and the program
will be translated by SAP Mk. 2 in the normal way on assembly. The SAP Mk. 2 compiler uses
SPAN automatically to manage the storage of object programs.

The facilities of SPAN are also included in ALGOL Mk. 2 and in FORTRAN IV but will not
normally be apparent to the user, being used automatically by the translators.

1.9 Acknowledgement

Many of the methods used by SPAN are based on those described by]. K. Iliffe and J. G.
Jodeit in their article ‘Dynamic Storage Allocation’. (Computer Journal, Vol. 5, No. 3, pp 200-
209, Oct. 62).

CODEWORDS AND HEADER WORDS

The Storage Planning and Allocation system is implemented by use of codewords which act as

indirect addresses of blocks of information held in consecutive positions in some storage medium.

2
flssue 2)

2.5.2

There is only ope codeword for each block and it is always held in a block which is specially
marked as containing codewords.

Every SPAN block whether it contains information or is free, has as its first location a header
word indicating among other things the length of the block and its contents i.e. real numbers,
program, codewords or integers, etc., or whether the block is free.

For certain purposes it is more convenient that the address part of the codeword should not
always point directly to the header word of the block but to some other location depending on the
subscript bounds required for the elements of the block. This number is held in the codeword,
together with other information; and is called the offset and has the effect that the elements of
the block to which the codeword points are no longer numbered from 1 upwards but from (1 —offset)
upwards,

3. ALLOCATION OF SPAN BLOCKS

Storage space is allocated dynamically in a SAC program by use of the control word array and
the SPAN allocation macros. The blocks may be of any suitable length up to a maximum of 8191
locations, depending on the requirements of the user’s program. The identifier which the pro-
grammer intends to use to name the block should be introduced in an array declaration. A SPAN
allocation macro should then be used, which finds a block of consecutive locations of the required
length and plants the header word in its first location. It then constructs a codeword appropriate

to the block and places it in a special location which is called the codeword accumulator (or
CWACC).

A further SPAN macro (insert) will then place the codeword in the location specified by the
identifier.

3.1 ALLOC

The allocation macro is
ALLOC [size, type, position, offset]
where the necessary specification of the block is given by the four parameters.

This macro causes entry to a search routine to find a block of the required length, in the
type of storage specified. When this is found, it constructs the header word and places it in
the first location of the block and if the block is to contain codewords, all the elements of the
block are set to zero, to prevent any previous contents being interpreted as true codewords.

A codeword for the block is then constructed to point to the, possibly non-existent,
element with which the subsecript value of zero would be associated, and this is placed in the
codeword accumulator.

The parameters are either identifiers naming the locations containing the information or
constants enclosed in diamond brackets and are given in the following order:

size the total number of locations in the block i.e. one location for each data item
and a further location for the header word.

type this parameter can take one of four values which specify what the contents of the
block are to be, with the following meanings:

3
flssue 2)

2.5.2

position

offset

1 real numbers

2 program

3 codewords

0 others (e.g. integers)

If the programmer wishes the index of each element in a SPAN block to be checked
when referred to, to see that it is within the range of the block, then the integers
5,6, 7 and 4 should be used in place of 1,2, 3 and 0 respectively.

this parameter also can take one of four values 0, 1, 2 and 3 which specify the
type of storage in which the block should be placed initially. The following
meanings are attached to the values:

1 main store
core backing store

3 this value is used for blocks which must be fixed in main store; for
example, certain codeword blocks must not be moved, also blocks
must be fixed while input/output transfers take place.

0 to be allocated in either main or core backing store, and its position
thereafter being under the control of SPAN.

The position parameter can be regurﬂeﬂ as a storage status marker.

the use of the offset has no other purpose or effect than to cause a shift in the
index range of the block so that the elements are no longer numbered from 1 to
({-1) where { is the length of the block, but rather from (1-offset) to (l-offset-1).
The offset and lower subseript bound are connected by

offset + lowerbound = 1
e.g. if lowest subscript required = - 5
then the offset = B

This parameter must lie in the range
~ 256 to+ (8191 - 256)

The codeword pointer is adjusted to point to the poasibl}r non - existent element
with which the suhacript value of zero is associated.

Note that codeword blocks must be allocated in main store so that SPAN can locate all
codewords and update them as necessary when blocks are moved around in the store.

Examples:

(a)

To request a SIPAN block which is to contain 20 words of data which are to be
indexed from 1to 20. The block can be in either main store or backing store.

ALLOC[<+ 21>, <+ 15, <+ 0>, <+ 0>]

4
(lssue 2)

4.

2.5.2

{b) To requesta SPAN block in which the number of words of data is to be as specified
by the content of location ‘size’ and whose elements are to be indexed from 0
upwards. The block should be in core backing store.

02 size
20 number
ALLOC [number, <+ 13, <+ 23, <+ 13]

HANDLING SINGLE BLOCKS

Each of the SPAN macros described in this paragraph, with the exception of ‘tk 1" and ‘st 1',

must be preceded by the general introductory macro ‘consider’ each time one is used. This is
written as

consider [< + A3

and indicates that a subsequent macro refers to the block or array whose codeword is held in the
location with symbolic name A.

4.1 Storage of Codeword — the ‘insert’ macro

The action of the allocation macro is to place the codeword for the new block into the
codeword accumulator, CWACC. The user's program should then transfer this codeword to
another location. This enables later reference to the block to be made by reference to this
location in which the codeword has been placed. The location so used must be introduced as
an array identifier in a SAC program.

The macro ‘insert’ is pmviﬂcd in order to transfer the codeword from CWACC to the user’s
symbolic location. The macro is always preceded by the consider macro: the action of the
sequence

consider [< + A>]
insert

is to place the content of CWACC into the location specified by the identifier, A, which will
necessarily have been introduced as an array identifier. Any block previously referred to by the
codeword in location A is properly deleted and CWACC is set to zero. The block whose
codeword has been stored as above, can subsequently be referred to by name as A.

For example, to allocate a SPAN block which is to hold an array of 20 numbers, and may be
in either main or core backing store; and to name the array by the identifier Mine.

array Mine:

begin example;
ALLOC[<+ 21>, <+ 1>, <+ 0>, <+ 0>]
consider [< + Mine>]
insert

5
flssue 2)

2.5.2

4.2 Deletion of Blocks

Whenever a programmer no longer requires a SPAN block he should delete it so that the
store space occupied is released for further use. A block can be deleted and retuned to the
scheme's control by writing

consider [<+ A>]
delete

Deletion of a block sets the codeword of the block to zero and all digits of the header word are
cleared except those which indicate the length of the block.

Thus if the user attempts to reference a block which has been deleted by giving the address
of the codeword, the SPAN routines will be unable to locate the block since there is no pointer
in the location which previously held the codeword. Attempting to delete a block which has

aJren:iy been deleted has no effect.

When a search for space is made the header word of the deleted block indicates that the
block is free and it may be re-used for other information.
4.3 Reference to Elements of a SPAN block

Each reference to an element of a block should he made by means of SPAN macros.

Suppose a block is given the symbolic name A and the index i of a particular element is
held as an integer in a location which has symbolic name I: then, the following macro should
be used to fetch the i th element of block A into the accumulator.

tk 1[A, 1]
Similarly, to store the contents of the accumulator in the i th position of block A, the macro
st 1[A, 1]
should be used.

These macros can be used to refer to blocks held in any form of storage. If the block is
known to be in main store the address of an element can be computed by forming the sum of the
codeword and the index of the desired element and using this in a B-lined instruction. How-
ever, there are cases in which the block referred to is not immediately accessible and the
above method is not valid. (In all such cases the sign bit is present in the codeword).

4.4 Example

The Symbolic Assembly Code program below illustrates the use of SPAN macros. It reads
in a set of real numbers, stores them in a data block, forms their sum and then deletes the

block. The first number on the data tape is an integer showing how many real numbers are to

I'.'It I.'I:ﬂ[l H.Ild BI].I'I'.I.IIIEd.

Comments
program Example 1;
.T,I black REAT (integer, real), X;
Brra RENOS; this declaration reserves the named loca-
tion RENOS for the codeword of the
data block — see description of SAP

k

Mk. 2.
6

flssue 2)

be gin
data

start)

read)

EE

£

X;

ITEMS, COUNT, SIZE, TYPE,

POSITION, OFFSET, SUM;

SUBR, integer * READ

20 ITEMS
02 ITEMS
20 SIZE

020

20 TYPE

26 POSITION
26 OFFSET

2.5.2

Comments

reads first number on data tape as an
int:ger.

SIZE holds the length of block required.

= 1 i.e. real numbers.
= 0 i.e. initial storage left to SPAN
= () indexing starts at 1.

ALLOC [SIZE, TYPE, POSITION, OFFSET]

consider [< + RENOS>]
insert

26 COUNT

SUBR, real * READ
22 COUNT

st 1 [RENOS, COUNT]

30 COUNT
05 ITEMS
41 read

26 SUM

26 COUNT

22 COUNT

tk 1 [RENOS, COUNT]

60 SUM

20 SUM

30 COUNT
85 ITEMS
41 add

consider [< + RENOS>]
delgte

X;

READ;

(block to read data)

READ;
X;

(Issue 2)

this places the codeword of the block of
real numbers thus allocated in RENOS.

read next real number from data tape.
index of element read.
store number in required

block RENOS.

element of

if more numbers on data tape jump to
‘read” next number otherwise continue.

bring to accumulator next element of

RENOS.

{ﬂl‘l’l‘t BUMm.

if more numbers to be summed jump to
‘add’ otherwise continue.

delete SPAN block named RENOS.

2.5.2

4.5 The Macro ‘length*
The length of a SPAN block may be obtained by use of the macro ‘length’.

consider [< + A>]
length

placed in the accumulator, as an integer, the number of usable locations in the block A (not
including the header word).

This macro is most useful to the programmer, when writing a subroutine to operate on the
elements of SPAN blocks, and who needs to know the length of each block he has to process.

It should be noted that the formal facility is not included in SAP2. The following macros
are provided in order to provide the equivalent facility:
Tkl [X,1]
and Stl [X,1]

These will now reference the i th position of block A where | contains the value i and X
contains the address of the codeword of hlock A.

i.e. Tkll<+X>,1]is
equivalent to tk1 [X,1]

There are, however, no equivalent indirect standard macros for tk2 and st2.
The programmer may, however, include his own replacements for Tk2 and S5t2 as follows:

replace Tk2 [ALJ; 67T A
300; 041
73 15: 4133
2018/ 300
04] : 41 35
20 18/ 30 0],
St2 [ALJ; 2018:67 A
a0 0:041
73 15: 4137
2019 /300
04] :4139
1018 420 0]

5. ARRAY STRUCTURE OF SPAN BLOCKS

The natural representation of a single dimensional array is a block of consecutive locations in
the store. The basic SPAN blocks are therefore convenient for this purpose. However, a multi-
dimensional array would be very difficult to handle if it was necessary to deal with one row at a
time each with a separate name. For this reason a special scheme of blocks is built up for
representation of these arrays.

The rows are held in separate blocks which need not be adjacent to each other in the store,

and may each have a different length. Thus non-rectangular arrays are stored without waste of
space.

8
(lssue 3)

2.5.2

One name codeword is given to the whole array, which points to a block of codewords each
of which can point to a block of codewords or data. For each extra dimension of the array another
level of codewords is added between the name codeword and the data.

The macro ‘row’ moves one level in the codewords of the array each time it is called and
corresponds to row selection.

A diagram showing the way in which a simple three-dimensional array is held in the store is
given below. The array B of size 3 x 2 x 4 is shown. (For readers familiar with ALGOL. terminol -
ogy the array would be declared in ALGOI. as:

LIIIIITLJJI li[]::]fl:‘.f,] :-H:}

ARRAY STORAGE

104

-
e @@

B e
MAME FIRET SECOND B
CODEWORD LEVEL LEVEL A
CODEWORD CODEWORD e
BLOCK BLOCKS —
n
» IEE
L LLE]
e 3da
i —
¥
CODEWORDS DATA

B is a codeword pointing to the block of 3 codewords B,, B,, B,. Each of these point to a
separate block of codewords which in turn point to the data blocks.

Note that the codeword points to the possibly non-existent element, with which the subscript

value of zero is associated.

It should also be noted that a codeword structure may not be nested to a depth of more than six.

]

{lzsne 2)

2.5.2

6. ALLOCATION OF ARRAYS

To set up an array structure by program it is necessary to work from the name codeword
towards the data blocks, allocating blocks on the way and placing the resultant codewords in the
next higher level of codeword blocks.

6.1 To allocate storage for a two-dimensional array the SAC programmer must adopt the
following procedure.

The identifier which is to be used to identify the array must be introduced, in a SAC
program, by the control name array. This reserves storage for the main codeword. Then « block
must be allocated to contain the codewords of the rows of the array and the name codeword for
this block must be inserted in the reserved location. A block for each row of the two-
dimensional array must now be allocated and the codewords inserted in the appropriate
positions in the codeword block.

The SPAN macro ‘row” must be used in conjunction with the macros ‘consider’ and ‘insert’
to insert the codewords into the correct positions in the codeword block.

e.g. consider [<+ Matrix >
row [<+ 2>]
insert

in which the parameter < + 2 > of the ‘row’ macro specifies the element of the codeword block
required. The parameter could be an identifier of a location which contains the index. In the
above example the contents of the codeword accumulator would be placed in the second
element of the codeword block for the array ‘Matrix’.

6.2 This is an example of a section of program to perform the setting up and allocation of a
three -dimensional array A of size 8 x 10 x 13, in which the lower subscripts are 1, 21 and-6
respectively.

(For readers familiar with ALGOL terminology, the array would be declared in ALGOL as
real array A[1:8,21:30,-6:6];)

Comments
array A;
ALLOC[<+ 9>, <+ 3>, <+0>, <+ 03] This allocates a block of 9
consider [< + A>] locations which is to contain
insert codewords and places the

codeword for the block in A.
This is the name codeword
for the whole array.

10
flssue 2)

T

2.5.2

0< - 7> Lomments
20 COUNT 1
020
20 INDEX 1
REP 1) ALLOC[<+ 11> <+ 3>, <403, <= 203] This allocates 8 blocks of 11
consider [< + A>] locations each to contain
row [INDEX 1] codewords, the codeword for
insert each block being stored in
A wpex 1. (INDEX 1 taking
values from 1 to B).
W<-9
20 COUNT 2
04<-12>
21 INDEX 2
REP 2) ALLOC[<+ 14>, <+ 13, <+0>, <+ 7>] This allocates 10 x 8 blocks

consider [< + A>]
row [INDEX 1]
row [INDEX 2]

insert

22 INDEX 2
32 COUNT 2
41 REP 2
22 INDEX 1
32 COUNT 1
41 REP 1

ARRAY HANDLING MACROS

of 14 locations each to contain
real numbers. The codeword
for each block is stored in
A INDEX 1, INDEX 2.

(INDEX 2 takes values from
21 to 30.)

7.1 Similar macros to those described for handling the elements of blocks are provided in
order to take and store elements of two - dimensional arrays. These are:

tk 2[A, 1, 7]

which brings to the accumulator, the element A'I of the array A, and

st 2[A, 1, J]

which stores the contents of the accumulator in the j th element of the i th row of the two-

dimensional array A,

In both cases | and] are the locations containing the integer subscripts i and j respectively.

7.2 In order to handle arrays of more than two dimensions, the subscripts of the element
required must be specified by the macro ‘consider’ followed by alist of three or more ‘row” macros.

11
{lssue 2)

2.5.2

The ‘row’ macro moves one level in the codewords of the array each time it is called and
corresponds to row selection. It is written immediately after the ‘consider’ macro,and specifies
the index number of the row in question. Use of this method of specification enables SI"AN
to operate on individual rows or on elements of particular rows e.g.

consider [<+ P3]

row [<+1>]
row [<+ 231
row [<+52>]

This selects the element Py, of the three - dimensional array P. If P was a four-dimensional
array, this would be the codeword for the row I’,,,.

These macros together with a ‘take’ or ‘store’ macro can be used to take or store the
elements of any multi-dimensional array. ‘take’ brings to the accumulator the specified array
element and ‘store’ plants, in the selected array element, the contents of a special location
in SPAN named ‘reserve’ takes the absolute address 18, so that when the programmer uses
‘reserve’ he should include the appropriate replacement declaration in his program.

e.g. The macros below give equivalent effects but the simpler macros on the left should
always be used in place of those on the right wherever possible, since they perform the same
operation in very much less time.

tk 1[A 1] consider [<+ A>]
row [[]
take

tk 2[A, 1, 11 consider [< + A>]
row [1]
row [J]
take

st 1 [.ﬁ. ” 20 reserve
consider [<+ A>]
row [11]

store

st 2[A, 1]] 20 reserve
consider [< + A>]
row [11]
row []]

store

The fact that the macro ‘consider’ destru}rs the accumulator makes it necessary for the
programmer to include the additional ‘20 reserve' instruction in order to preserve the contents
before specifying the element of the block required for storage. ‘reserve’ is an identifier
naming location 18 which is used by SPAN for the operation of the macro ‘store’ i.e. ‘store’
places the contents of ‘reserve’ in the element specified.

12
flssue 2)

2.5.2

Since faster macros are provided for single and two-dimensional arrays the main use of
this method of handling array elements is for arrays of more than two dimensions e.g. the
operations below on the four- dimensional array MATRIX.

Comments
20 reserve store accumulator in ‘reserve’
consider[< + MATRIX > |
row [<43>]
row [<+5>]
row [<+ 23]
row [<4+ 8>] element MATRIX 4, 4, 5 &
store p] ace contents of ‘reserve’ in this element
consider [< + MATRIX > |
row [<+3>]
row [<4+5>]
row [<+ 23]
row [<4+T7>] element MATRIX ., 50 00 o
take bring element to accumulator

It should be noted that the maximum number of row macros in succession is six.

7.3 The selection of each element of a two - dimensional array takes about twice as long as
that of a single-dimensional array; and selection of elements of arrays of more dimensions
takes very much lrmger still. It is often PG‘HBiblﬂ to process an array one row at a time; when
this is so, it is aﬂvantageoua to detach each row from the array and process it as an array of
lesser dimension, and finally to re - attach it to the original array prior to repeating the process
on the next row. Apart from a gain in efficiency, this may also lead to a simplification of the
program.

The required effect may be obtained by transferring in turn the codeword for each row of the
original array from its place in an array of codewords into a fixed location which has a symbolic
name and has been declared in an array declaration. The row is now processed under this
name, and afterwards, the transfer is made in the opposite direction.

The macros ‘detach” and ‘insert’ can be used for this purpose.

consider [< + A>]
row [<+ 23]
detach

places a copy of the codeword specified (element 2 of the first codeword block of A) in the
codeword accumulator, CWACC, and sets the location which held the codeword to zero.

Considering the example in 7.2 to be part of a routine operating on the row 3, 5, 2 of the
array MATRIX the same effect could be achieved by writing

13
(lssue 2)

2.5.2

20 reserve

consider [< + MATRIX>]
row[< 4+ 3>]

row[< 4+ 5>]

row[< 4+ 251

detach

consider [< + TFT>]
insert

30 reserve
st 1 [TFT,<+8>]

tk 1 [TFT, <+ 7>]
(rest of routine)

consider [< 4+ TFT>]
detach

consider [< + MATRIX >]
row[< 4+ 3>

row[< + 5>]

row[< 4+ 2>]

insert

Ccmmen.!s
store accumulator in ‘reserve’

array name MATRIX

select codeword for row 3, 5, 2.
atore codeword in CWACC
array name TFT

place the contents of ‘reserve’ in element B of TFT

hring to accumulator element 7

store codeword for TFT in CWACC

store CWACC in element 3, 5, 2 of array MATRIX
i.e. re - attach to original array.

Thus ‘insert’ copies the contents of CWACC into a named location and clears CWACC; ‘detach’
places a copy of the codeword in the specified position in the array structure, in CWACC and
clears the original codeword. This ensures that a block in store cannot be referenced by more
than one codeword.

7.4 As was shown by the example in 6.2, the macro "ALLOC" provides a single block only,
and arrays are allocated by buildingup a tree structure of linked blocks and using the ‘consider’,
‘row’ and ‘insert’ macros to store the codewords in the correct positions in the codeword blocks.

The ‘insert’ and 'lengﬂl' macros operate on the block ﬂirect]}’ pointed to h]f the codeword

specified and on no subsequent blocks linked in an array structure. Conversely, the ‘delete’
and ‘detach’ macros operate on all subsequent blocks linked in an array structure.

14
(lssue 2)

2.5.2

e.g. The operations on the two-dimensional array A (5 x 3) shown diagrammatically below
have the following effects.

HAME —
CODEWORD e
M | ww
‘\\x
~
G
DA TA
BLOCKS
MaACros effect
consider [< + A>] the length of block I} is placed in the acecumulator
length (= 5)
consider [<+ A>] the]englh of block I is pfaced in the accumulator
row [<+ 4>] {=3)
length
consider [< + A>] blocks A, B, C, D, E, ¥ and G are deleted. All
delete codewords are replaced by zeros.
consider [€+ A>] block F is deleted and zero is plnced in the 4th
row <+ 4% element of block B. A, C, D, E, G and other
delete codewords in B are unaffected.

8. ADVANCE PLANNING OF STORAGE CONTROL

SPAN is written so that when data is referred to by a program it is brought into the main store
if it is not already present. The scheme is, however, limited because it cannot look ahead in a
program to see what data is to be needed next, so that if maximum speed of operation is required
the programmer must do the necessary advance planning. By using special SPAN macros, the
programmer can ensure that blocks that have been moved out of main store are hruughl back before
they are needed by the program. Settingthe value of the ‘position” parameter of "ALLOC" specifies
the initial type of storage needed for the block: the following macros are for use once the block

has been allocated.
15

flssue 2)

2.5.2

All the macros described in this chapter have the same range of effect as the ‘delete’ and
‘detach’ macros operating on all subsequent blocks linked in an array structure.

8.1 Core Store Macros

To ensure that a block is placed in main store when it may be in either main store orcore
backing store write

consider [< + A>]
fast

This transfers, if necessary, the block or array named A and alters the status marker in the
header word (see detailed desecription of contents of header word). Alternatively, the block or
array can be moved to core hncking store h}*

consider [<+ A>]

slow

There is another pair of macros which do not have the effect of moving a block — ‘fixed’
and ‘free’. Thus, before these are used, any positioning should be carried out by other means.
These particular macros will normally only be used by systems control programs and have
effect as follows

consider [<+ A>]
fixed

This sets the position parameter to the value 3 so that the block or array A will not be moved
by any storage collapsing (see APPENDIX 11} which may be required to find space.

consider [< + A>]
free

This sets the position parameter to the value 0 for the block or array A thus nullifying the
effect of ‘fixed’.

8.2 Magnetic Tape Macros

If the programmer knows that a shortage of space is likely, it is possible to make
space available by writing some of the information held in main store or core backing store on to
magnetic tape. This is particularly effective if it is known that the information being written
away will not be required for a reasonable period afterwards. The macro which performs the
operation is written as

consider [< + A>]
banish [HANDLER]

and the named block or array A is immediately copied on to the tape handler whose number is
the integer held in the location with mnemonic name HANDLER. The block or array is then
removed from core store and a reference is left to the magnetic tape copy in the name codeword

for the block or array.

When an array is banished all related codeword blocks are copied to tape automatically,

with the exception of the main codeword.

16
flssue 2)

2.5.2

The actual operation of writing a block to tape is fully timeshared with background program
operation but the foreground program is held up until it is completed.

It is sometimes useful to be able to specify that a block will not be used for a considerable
period without causingthe block necessarily to be written to tape. This may be done by setting
a special bit in the header word of the block. This then indicates to the system that the block
should be written to magnetic tape if the space it occupies is required for another purpose. The

macros

consider [< + A>]
retire

are provided for this operation and set up the retire marker in the header word of the block or
blocks of array A.

In order to bring back into the main store data previously written to magnetic tape write

consider [< 4+ A>]
recall

Any necessary searching of the tape and transfer operations associated with the recall
are timeshared with the background programs.

If the programmer fails to give a ‘recall’ instruction before referring to an element of a
block of programs currently held on magnetic tape, the ‘recall’ is automatically inserted by
SPAN.

A “recall’ macro may be given when a block has been acted upon by the ‘retire’ macro and
the programmer may not know whether the block is held in core store or on magnetic tape. In
this case, if the block is still in main store, the ‘retire’ marker is deleted and no further action
takes place; if, however, it has been written to tape, space is found in the main store and the
block contents are copied into it.

A program may use the magnetic tape macros of SPAN without specifying the handler to be
used. This may be done by writing ‘banish [0]" and SPAN will automatically use the handler
which has been selected as number 8 by the operator.

At this point, SI’AN will also set its own origin from which to begin its block reference
count for the magnetic tape alias of a block whose contents it may write away. This origin
will be set equal to the current value of ‘block max” for that handler, which is kept by PCP to
indicate the number of blocks, already written on that tape. If the programmer wishes to set
this origin, he must do so by altering the contents of ‘block max’.

Should a programmer wish to *hanish’ information to a specific handler (i.e. one other than
the standard handler), the handler must have been previously booked through PCIP’. He must
first set the SPAN origin for that handler by using the macro-

set origin [H,0RIGIN]

where 1 contains the handler number and ORIGIN contains the number of blocks already
written on that tape. (H may not refer to the standard handler).

17
flssue 3)

2.5.2

By setting ORIGIN to a value less than the ‘block max’ indication for that handler the
user may cause unwanted information to be overwritten.

8.3 ‘read only' and 'write also’

Normally, when a block has been banished and recalled no record is kept of where the
block was held on tape. If, therefore, the block is banished for a second time, a new copy has
to be made on tape. Furthermore, owing to the characteristics of the tape, it is impractical
to reclaim the space occupied by old copies and may cause a considerable length of tape to
be used.

If the values of one or more elements of the block have heen changed between successive
banishments of the block, then the making of a new copy would be essential anyway. If,
however, all elements have remained unaltered during their stay in core storage, the making
of the second copy can be avoided. In order to do this the macro ‘read only’ must be given
before the block is banished, i.e.

consider [< + A>]
read only

causes a merker to be set in the header word of A which indicates that the contents of the
block (or array) are to remain unaltered and once the block is written to tape, further ‘banish’
macros do not cause rewriting but merely adjust the codeword to point to the copy already
present on tape.

When a ‘banish’ is encountered referring to a ‘read only" block, it is written to tape in the
normal way, but when the block is recalled the tape address where the block was written (i.e.
the alias) is held permanently in the top half of the header word of the block. On a further
‘banish’ instruction SPAN recognises the existence of the alias and does not copy the block
to tape but merely adjusts the codeword to point to the previous copy on magnetic tape and

deletes the block from the store.

The most important use of ‘read only’ blocks is for holding program which is not changed
throughout the running.

If at some later stage in the program it is necessary to alter the values of a block which is

declared as ‘read unly' the macro ‘write also” must be given as

consider [< + A>]

write also
This cancels the effect of the ‘read only’ by removing the marker in the header word.

A subsequent ‘read only” can be given, if required, and again further repeated rewritings
on magnetic tape would be prevented.

‘read only’ and ‘write also’ may be used by the programmer in conjunction with core backing
store with a similar effect. When a block is brought into main store from backing store; the
‘read only’ marker is examined and if set, the core backing store address (i.e. the alias) is
stored in the header word of the hlock.

18

{lssue 3)

2.5.2

The copy of the block in core backing store is kept unaltered and if it is required at a later
stage to transfer the main store block to backing store again SPAN recognises the alias in the
header word. The block is then merely deleted from the main store and the codeword adjusted
to point to the copy already in backing store.

ADDITIONAL FACILITIES

9.1 The programmer when writing a subroutine may wish to discover the properties of code-
words used as parameters of his subroutine.

The least permissible subscript reference to a block can be discovered by means of

consider [< + A>]
lowbound

which places the lowest subscript reference i.e. the value of the index appropriate to the
first data word (the next word after the header word) of the block in the accumulator. Con-
sequently, the highest subscript which may be usedis equal to (lowbound + length —.1).

Once a block has been allocated a need may arise to add or subtract locations from either
end of it. This can be done by the macros

consider [<+ A>]
newbounds [L, U]

‘newbounds’ provides a new block with upper and lower subscript range limits as specified by
the integers held in [/ and L. respectively, and copies over the common elements.

Thus in changing the subscript bounds any elements common to the old and new blocks
retain their values, and any new elements are undefined.

e.g. if a block A originally held =g 8=, 8, 8, a—, a, 4,
and after held 8, 8,8,

the elements a, and a, are copied and a, and a, are undefined. Note that ‘newbounds’ cannot
be used for fixed blocks as space may notbe available ifthe new bounds lie outside the old ones.

The macros ‘newbounds’ and *lowbound’ have the same range of effect as the macro ‘length’,
operating only on the block directly pointed to by the codeword specified. This facility is
most useful for modifying the lengths of individual rows of an array.

The following example written in Algol shows how a two-dimensional array can be turned
into a lower triangular array.

array All:n, 1:nl;

integer i;
fori: 1 step 1 until n do
begin

consider (4):
row (i);

newhounds (One, ”

19
flssue 2)

2.5.2

9.2 Table Handling

Sometimes the array facilities are not needed in the form outlined so far; instead numbers
are to be stored, one at a time in order, with no particular need for use of a subseript. In this
case a ‘file’ of numbers can be made which can he accessed quickly for storage and removal
of numbers.

Each file is given a name codeword on allocation. A pointer in the codeword is auto-
matically stepped on each time a number is filed, to point to the next storage location; and the
extraction macro similarly causes the file position pointer to be moved back one. Therefore
the files may be used either in a conventional manner or as a push-down list. Also there are
two versions of each operation, one which applies to tahles of ordinary values and one which

applies to tables of codewords.
The macros intended for use with tables of numbers are as follows:
9.2.1 A file is opened by means of
setfile [A, size]

where size contains an integer n, the length of file required plus one location for the header
word. This allocates a block of n locations and places the codeword in the location called A.
Note that the length of the file as allocated initially is automatically increased when the file
is in use if it becomes necessary. Also if size contains zero or one, a block of 5 locations is
allocated, for the integers 2 upwards the number of locations specified is provided.

9.2.2 A number is filed from the accumulator by means of
file [A]

The operation of filing contains a test that there is room in the table for each new element and
if not, the size of the table is automatically extended. SPAN does this by allocating a new
block if necessary and transferring the contents. The position pointer in the codeword for the

file is moved on one each time a number is filed.
9.2.3 The last number filed in Amay beretrieved and placed inthe accumulator by
popup [A]

which, at the same time, moves the pointer back one place. The location thus freed remains in
the file for possible re-use, later. The ‘popup’ macro may be written repeatedly with no
intervening ‘file’ macros, as long as there are numbers in the table before the pointer.

If there is no number in the table before the pointer then the pointer is not moved back

and zero is placed in the accumulator.

924 When a file is not to be used for some time the space 'heyund the pointer can he
reclaimed for SPAN by

chopfile [A]

20

flssue 2)

2.5.2

The use of ‘chopfile’ in no way prevents further use of ‘file’ or ‘popup’ macros, but any *file’
macros leading to an increase in the new overall length of the table results in a call for more
space at once and the creation of a new block when the space has been found.

9.2.5 The operations given below operate with codewords and the codeword accumul -
ator, CWACC. The need for making files of codewords will usually arise in the writing of
systems programs such as SAP, ALGOL, etc. Briefly the macros are:

cwsetfile [A, size] which corresponds to setfile, and allocates a file for codewords of
name A and length as specified by the content of location *size’.

ewlile [A] files a codeword from CWACC in file A and adjusts the position pointer.

cwpopup [A] picks up the last word filed in A and transfers it to CWACC. The

position pointer is moved back one.
ewchopfile [A] removes surplus space from the codeword file A.

9.2.6 A file may be considered as a single dimensional array with a special index
pointer. The programmer may use any of th- macros described for use on blocks, for handling
files, although care must be taken when using the macros tk 1 and st 1, since the subscript
values of the elements of a file are changed whenever the pointer is moved i.e. whenever a
number is filed or extracted.

The subseripts of the elements of a file can, however, be obtained by using the macro
‘lowbound’ and the relationship,
number of entries before pointer = 1 — lowbound

The pointer points to the position in which to file the next word.
10, CONTENTS OF A CODEWORD

The forms of codeword and information content are summarised in the table below. The
meanings to he attached to the letters are:

256 + offset

size i.e. length of block + header word
magnetic tape handler number

record number on magnetic tape

= = =T 3 W

offset + header word address

Codeword types:

10s: 00 a main store block

0s: a backing store block

425 : 00 a main store block tagged
42s /' a backing store block tagged
44n: 0h ¢ magnetic tape block

21

flesue 2)

2.5.2

The F1 digits of the codeword, with the exception of bits 38 and 34, indicate the type of
storage in which the block is held. Bit 38 is used by the Binary Input/Output Program to mark
blocks which are to be output. It is ignored by SPAN and the allocation routines set it to zero:
assemblers and compilers set it to one in program, main codeword and constants blocks. Bit 34
is used by PCP in main store blocks to mark a buffer which has been obtained from SPAN by PCP.

‘a’ can occupy digit positions 1 to 19 in the codewords for backing store blocks for the reason
that the header word address of backing store blocks can exceed 8191.

When blocks are moved from one type of storage to another by SPAN macros or space finding
routines, SPAN automatically adjusts their codewords so that they always point to the correct
place.

11. CONTENTS OF A HEADER WORD

The forms of header word used are summarised in the table below using the name notation as
above as far as possible

O0:00n free block
40 s Bxyn normal block
Shr Byxn block with magnetic tape alias
6 b Bxyn block with backing store alias
7
The other symbols have the following meanings:

b This represents the hacking store address of the alias.
B (bit 20) This hit holds the ‘retire’ marker:

if the marker is not set B=0

if the marker is set B=1

and the block will be written to magnetic tape if space is required.

x (hit 19) This bit holds the ‘check suhscripls’ marker:

if the marker is not set hit 19 =0
if the marker is set bit19=1
and a check of the subscripts is made on each reference to the hlock.
(The block also has a taggedd codeword.)
(bits 18,17) The content of the block is indicated by these bits as follows:

value content
1 real numbers (floating point)
2 program
3 codewords
0 others e.g. integers
y (bit 16) This bhit holds the ‘read only” marker:

if the marker is not set hit 16 = 0

if the marker is set bit 16 = 1
(bits 15, 14) The type of storage is indicated by these bits (except in the case of magnetic
tape blocks when this value hasno meaning). The only possible values are:

22

flssue 2)

2|5l2

value storage type
1 main store
2 backing store
3 fixed in main store
0 main store or backing store.

The blocks with a magnetic tape alias hold the tape address i.e. the record number and
handler number, where the block was written, in the first half of the header word. Similarly blocks
with a core backing store alias hold the backing store address (b) of the copy in the first half of
the header word. Since b can occupy bit positions 21 to 37, the first F1 digit is affected, and
may be either 6 or 7.

When the ‘retire’, ‘read only’ and ‘check subscripts’ markers are set for an array, the header
word is set in each individual block of codewords and data.

11.1 Allocation of blocks when header word known

An alternative method of allocation is provided which in some cases is more convenient,
since it takes less space in the user's program. [t is, however, most commonly used in
routines such as those in the ALGOL compiler.

In this method of allocation the header word is given as the parameter of the macro, ‘alloc’
e.g.
alloc [HEADER]
where IEANER is a location holding the header word required.

The replacement texts for "ALLOC" and “alloc’® are different to take account of the different
form of specification of parameters, but they use the same allocation subroutine to find a block
of store.

An example of the use of ‘alloc’ is

alloe [< 40 256 : 10 22]

which allocates a block of real numbers in either the main or core backing store of length 21
usable locations: the ‘retire’ marker ‘read only' marker and ‘check subscripts' marker are not
set.

12. ERRORS
Error indications are gien if one of the following occurs:

1. Error in tree structure, i.e. the correspondence between codewords and header words of
allocated blocks has got out of step.

. Not enuugh space of the type required.
An attempt to store data in a ‘read only’ block.

Subscript out of range.

a2 e

Mo codeword in ‘row" reference (liable to occur when a row of a multi-dimensional matrix
has been detached or deleled}.

23
(lssue 2)

2.5.2

13.

L.

14.

FURTHER NOTES

All blocks used by SPAN must have their mnemonic names introduced in the SAC program
by the control name array

Note that there are indirect equivalents to the macros tk 1 and st 1 (see page 8, issue 3).
There are, however, NO indirect equivalents to tk 2 and st 2.

Note that the macro "ALLOC" should now be written in capital letters and not as ‘Alloc’ as
described in TIS.503.13.

If SPAN macros are written in a 503 ALGOL Mk. 2 program, the square brackets should be
replaced by round brackets.

The effects of the following sequences of instructions should be noted.

(i) The macros consider [< + A>]
consider [< + B>]
consider [<+ (>
retire

result in block (or array) C only being marked with retire. A ‘retire” or similar macro must be
repeated for each ‘consider’ i.e. for each block to be dealt with.

(ii) The macros consider [< + A>]
SAP instruction(s)or SPAN macrofs)other than ‘row"
row [1]
insert

A SPAN macro or SAC instruction other than ‘row’ may destroy the contents of registers set
up by a ‘consider’ macro. Therefore the following macros must be immediately preceded
by a ‘consider’ with, if necessary, a series of ‘row” macros only in between:

insert, detach, take, store, delete, length, lowbound, newbounds, [L, U], fast, slow.

(iii) The macro ‘length’ can be used to determine the length of any block
but account must be taken of array structures, i.e.

consider [< + A>]
length

if A is an array, will give the length of the first codeword block only.
SUMMARY TABLE

14.1 The following macros have explicit parameters and need no introduction by ‘consider’
and ‘row':
ALLOC [size, type, position, offset |

alloc [header]

tk 1 [A 1] tk 2[A, 1, J1

st 1 [A, 1] st 2[A, 1,]1
setfile [A, sizel cwsetfile [A, sizel
file [A] ewfile [A]

popup [A] cwpopup [A]
chopfile [A] cwchopfile [A]

24
flssue 2)

2.5.2.

14.2 The following macros have a parameter implied by calls of the type

consider [<+ A>]

and row [1]
which come immediately before them.
insert delete detuch
length
lowbound newhounds [L, U]
read only write also
fast slow
fixed free
retire banish [handler] recall
take store

14.3 The *check subscripts’ marker may be set in the headerword by adding 4 to the parameter
‘type’ when using *ALLOC’, or by placing the marker in the headerword specified in an ‘alloc’
macro (see page 22 description). The effect is such that whepever reference is made to the
block, the index of the element referred to is checked to ensure that it lies within the lower
and upper subscript bounds. The codeword of the block will take the special ‘tagged’ form
which it also takes when the ‘retire’ operation is carried out.

25
(lssue 2)

2.5.2

APPENDIX 1
Structure of a program block

Program words start in 1, of a program block (i.e. the word after that pointed to by the codeword).
The word immediately after the header word is special and contains information for use by
relocation routines.

The first pair of relocation bits refer to 1, of the block. There are no relocation bits for the
special word.

Appendix 1
1
(Issue 2)

2.5.2

APPENDIX 2
Search for free store

If the programmer specifies that a block must be allocated in the main store, or it is necessary
for immediate program requirements to bring a block from auxiliary store into main store then
SPAN enters a search routine and finds free store in the following manner. It examines the
header words of the blocks in the main store to determine whether the block is free and if in this
search two adjacent free blocks are found these are immediately amalgamated. If there is
insufficient consecutive free storage in the main store the following action is taken:

If the block requested is a ‘normal’ block, a similar search is made of backing store, and if
there is still insufficient space then a ‘collapse’ of main store takes place. This happens in
the following manner:

Main store is first cleared of as many blocks as possible by writing blocks with the ‘retire’
marker set to magnetic tape and writing all others possible to backing store. The remaining
blocks in main store that are moveable are then moved as far as possible towards the low
addressed end of store.

SPAN will never move a codeword block out of main store, during a ‘collapse’, and the
programmer must always make sure that codewords for every main store block are held in main
store, either in a moveable or fixed block. All fixed blocks (position parameter set to 3 when
allocated) are usually grouped together at the high addressed end of store by the allocation
routine and no fixed block is ever moved when collapsing the store.

ﬁpp endix 2

1
flssue 2)

2.5.2

APPENDIX 3

This appendix contains details of additional facilities which have been included in SPAN
together with details of the basic version of SPAN which has been produced for the reasons
described below.

A list of the error messages which SPAN may display is also included, together with the
meaning attached to each error message. No continuation is possible once a message of this
type has been displayed.

Trace Facility

In the event of an error occurring, which the user attributes to SPAN for some reason, a trace
facility may be invoked by setting certain keys of the word generator on the control console. The
detail of this trace will assist diagnosis of the error should the user wish to supply details of the
error to Elliotts or merely in order to provide a more comprehensive program trace (in addition to
a store picture).

If Key 19 is depressed during a program run, the address of the label- pseudo codeword (see
detail SAP2 description) of each ‘enter’, ‘exist’ or ‘trans’ obeyed is output on punch 2.

If Key 18 is depressed, each time a ‘collapse’ of store occurs ‘CLAPSEE’ is displayed on
the typewriter. The last E is output on completion of the collapse so that the occurrence of a
program loop inside ‘collapse’ itself may be readily observed.

Extra maero

The macro ‘collapse’ is now included. This will force a collapse of store and, on retum to
the main program, the size of the longest free block of main store is held in location 18 (reserve).

Restriction

It should be noted that a block on core backing store can be neither fixed nor banished. An
error message to this effect will be output in each case.

Setting-up Entry

Before SPAN may be used in any way an entry must be made to SPPAN in order to cause it to
set up both main store and core backing store. At the same time the operator must inform SPAN
how many units of core backing store are available by choosing the appropriate entry:

Size Entey
1 unit SPAN
2 units SPAN;2.
3 units SPAN;3.
4 units SPAN:4.
No units SPAN;5.

Error Indications

No continuation is possible after each of the messages below have been displayed:

Appindix 3
flssue 2)

2.5.2

MESSAGE MEANING

SPAN ERROR An error has been found in the tree structure of the store,
e.g. zero headerword or meaningless codeword.

SPANERROR 1 No room in main store to meet space request, despite
action of the ‘collapse’ routine.

SPANERROR 2 No room in core backing store.

SPANERROR 3 An attempt has been made to write into a block marked
‘read only’.

SPANERROR 4 The subscript used in a ‘row’ macro is too small (out of
range).

SPANERROR 5 As for error 4 but the subscript is too large.

SPANERROR 6 A zero codeword has been specified in a ‘row’ macro.

SPANERROR 7 Codeword of unknown form, e.g. Fl bits are 65, 66 or 67.

SPANERROR 8 Magnetic Tape codeword referred to in error.

NEAN e § LBS =at wal fahie e hecaamfe of pacbr failaee

SPAN ERROR NBOFLO Newbounds overflow, i.e. 1i:;:nwar subscript is higher than
the upper subscript.

SPANERROR MTBNTL The number of the magnetic tape block number specified
in a ‘banish” instruction is too large.

CLAPSE ERROR An unusual headerword found during a ‘collapse’.

I'wo versions of SPAN

SPAN must always be the first program input and therefore occupies the low-numbered end
of the store. Since it is coded in SAP binary it occupies a large, fixed block of store and thus
restricts the size of the free area into which SAP2 may assemble a program, although SAP2
itaelf only makes use of the most basic facilities provided by SPAN. Due to a rapid build-up of
the dictionaries required by SAP2 when assembling large systems programs such as PCP, the
need has arisen to reduce the space occupied by SPAN at assembly time.

The assumption is made that all necessary programs are assembled to store before one of the
programs is run. It follows that, at run-time, the space occupied by SAP2 may be claimed. This
assumption makes it possible to use a restricted version of SPAN (code:span) at assembly time
which contains only those facilities required by SAP2. At run time, both SAP2 and the restricted
SPAN are replaced by the full version of SPAN. Before the assembly of a further set of SAP2

programs the SAP2 store configuration must be set up again.

In order that the exchange of programs may take place automatically the full version of SPAN
is stored in the core-backing store (using the program SETCBS as described in 2.5.4 and news-
letter P8) and is brought down to replace SAP2 and span by the action of the program SPANSWAP
{which removes itself also). The space occupied by SPAN in core backing store is also released
for use by the program at run - time.

The procedure for setting up the store as described above is found in detail in section 2.5.4
and newsletter P8. It is there recommended that the basic store configuration (and others) be held
as a batch on magnetic tape where fitted. This provides for fast retrieval of the standard store
configuration described above ready for the next program run.

Appendix 3
2
flssue 2)

503 TECHNICAL MANUAL

VOLUME 2: PROGRAMMING INFORMATION
PART S: PROGRAMMING AND OPERATING AIDS FOR THE NON-BASIC 503
SECTION 3: PERIPHERAL CONTROL PROGRAM (PCP)

l.

3.

S5a

6.
Te

94

CONTENTS LIST

INTRODUCTION

1.1 PCP in the Non-Basic Software System
1.2 General Scheme for Time-Sharing
PROGRAMS TO BE TIME-SHARED

2.1 Foreground Programs
2al Background Frograms

FORM OF DATA FOR PCP
BUFFERS

QUEUEING

METHOD OF CONTROL

MACRO INSTRUCTIONS

T«l Data Transfer Macro
T.2 Example

T3 Device Macros
DEVICES

8.1 Device Classes (D)

8.2 Device NHumber (N)

ALLOCATION OF BUFFERS (B)

9.1 Storage Control
9.2 PCP Buffer Allocator
9.2.1 Buffer Specification
9.2.2 Example
9.3 Own Buffers
9.3.1 Example
9.3.2 Undetectable error in own buffers

(i)
(Issue 1)

2¢5.3

et lﬁ
m

N

| = O

11

11
13
1k

16
16
17
17

17
18

19

21
21
22

2.5.

10.

11,

12,

13.

1k,

9.0

Buffers for Background Frograms
9.4,1 Buffers from SPAN
9.4.,2 Own buffers

FUNCTIONS (F)

10.1
10.2

Input Functions

Output Functions

ERROR EXITS (EL)

11l.1
11.2
11.3
11.b
11.5

Error Labels

Effects of an Error Exit
Error Classes and Types
Error Messages

Continuation after Error kxit

OTHER PARAMETERS

12.1
12.2

TAFE

13.1
13.2
13.3
13.4

TAPE

1h.1
14.2
14.3

Mode (M)
Special Purpose (C and K)

READERS
Functions
Error Exit
Conditions for Buffer Full
End of Tape Messages

PUIICHES

Use of Character Printer
Functions

Error Exit

i)

(Issue 1)

25

26
27

28

28
28
29
31
32

32
32

33

33

3k
3k
35

36

36
36
36

154

16.

17.

18.

19.

20.

LINE PRINTER

15.1 Functions
15.2 Error Exit

ELLIOTT CARD READER

16.1 Functions
16.2 Error Exit
16.3 Modes

ELLIOTT CARD READER/PUNCH

17.1 Functicns

17.2 Mode

17.3 Preselection of Pockets
17.4 Error Exits

DIGITAL PLOTTER

18.1 Functions
18.2 Error Exits
18.3 Modes

TYPEWRITER

19.1 Functions

MAGNETIC TAPE HANDLERS

20.1 Macro Instructions

20.2 Recording Modes

20.3 Input
20.3.1 Input Functions
20.3.2 Control Word
20.3.3 Special Purpose (K)

(iii)
(Issue 1)

2'5.3

37

37
38

38

38
39
39

Iy

Lo
Lo
41
L1

b2

42
43
L3

Lk
Ly

L

45
L6
uT
b7
b7
L8

2.5.3

20.4

20.5

20.6

20.7

20.8

APPENDIX I:

Output

20.4.1 Output Functions

20.4.2 Block number parameter K
Tape Movement

Block Numbering System

20.6.1 Block Counts

20.6.2 Input and Output on same tape
Tape Markings

20.T.1 Tape Mark

20.T.2 Beginning of Tape

20.7.3 End of Tape

Errors

20.8.1 Programming Errors (Class 2)
20.8.2 Parity Errors (Class 3)
20.8.3 Special Magnetic Tape Errors (Class L)

SUMMARY TABLE

(iv)
(Issue 1)

2.5.3

l. INTRODUCTION

1.1 PCP_in the Hon-Basic Software System

Although this section is concerned with a detailed description of
the facilities in the Peripheral Control Program, this program is itself an
integral part of the software system, so that it cannot be considered and
certainly not used in strict isolation from the other programs, The PCP and
the Storage Planning and Allocation (SPAN - 2.5.2.) are the most basic of the
programming systems and SPAN, at least, must always be in store when running a
program written in SAP Mk,2, ALCOL Mk.2 or FORTRAN EE (all specified in
Vol.2, Part L); even though the programmer may not be using these programs
directly, he may be using other systems programs or writing in a language,

which automatically use the facilities of PCP and SPAN,

This section of the Manual is concerned only with details of how
to use PCP directly, but it should be realised that the time-sharing fecilities
are in many cases being used automatically, The ALGOL Mk.2 and FORTRAN
compilers incorporate the time-sharing and storage allocation facilities

eutomatically,

1.2 General Scheme

A non-basic 503 computer configuration is one which includes one
or several peripheral devices in addition to the basic tape readers and punches,
and typewriter, For the purposes of the non-basic software system, the minimum
configuration for the full system is two tape units and a unit of core backing

store,

The attachment of peripheral devices to a central processor, gives
the system greatly increased potentisl and versatility, but this can only be

fully realised with the aid of a time-sharina system.

1
(Issue 2)

2.5.3

Without some form of time-sharing eny instruction from the orogram
to a busy device causes the program to be held up until that instruection can be
accepted. This both wastes central processor time and means that other devices
which could well be in operation are idle, Instructions are carried out
sequentially in striet order and cannot be "postvoned" until they become
acceptable., The programmer has some assistance in organising perivheral
transfers from the Autonomous Data Transfer and the Interrupt Facilities
(see 503 Manual 1.3.1 and 2,1.1,2 resvectivelv), but it is by no means as easy

programming task to use these to best advantage.

For this reason, Peripheral Control Program (PCP) is designed to
administer a time-sharing scheme for non-bzsic configurations, Tt takes over
from the programmer the task of arranging ADT's and Interrupts, so as to obtain
maximum efficiency from all peripheral deviees, without impairing the efficiency

of the central processor,

Under the scheme, the program can set all peripheral devices in
operation and concurrently be carrying out calculetions in the central vrocessor.
1T the program gives an instruction to a device elready engaged on a previous
operation (i.e, busy), the instruction is held over by the PCP until the device
is free, thereby allowing the program to continue its own calculations and also
keep other devices busy. If yet another instruction is given for the same
device, a whole gueue of tasks is formed and carried out in order as the device
becomes free. Thus a peripheral device need never be idle nor a program kept

waiting by a peripheral device,

The supervision of holding instructions for each device on & queus
and handing over the instruction when the device becomes free is carried out

quite automatically by PCP and requires no effort on the programmer's part,

2
(Issue 2)

2:5.3

The scheme outlined so far only refers tc time-sharing of
separate parts within a single program. However, some programs consist almost
exclusively of input and/or output, and in these cases there would not be
sufficient calculation to keep the central processor running concurrently with
peripheral devices, Provision is made, therefore, to run such programs
(known as background programs) independently yvet concurrently with a main

(foreground) program.

It may occur guite frequently that a foreground program cannot
usefully continue until the input/output instruction just reached has been
carried out. In this case the foreground program can wait until the essential
transfer is complete and the background program take over control of the

central processor.

The time-sharing scheme achieves maximum efficiency when all the
peripheral devices sre kept running continually st their maximum speeds and

there is no hold up or lull in work for the central processor.

2. PROGRAMS TO EE TIME-SHARED

As outlined in the Introduction, there are two aspects of time-
sharing incorporated in the overall scheme, in order to accomodate two differing

yet complementary types of program,

In a user's main (foreground) program the input/output routines
are regarded as semi-autonomous vrograms and are time-shared with that program's
work for the central processor; once the initial order to & peripheral has been
issued, the main program can continue running concurrently with the input/output

routine. This scheme would achieve high efficiency if all programs had the

3
(Issue 2)

characteristics of a foreground program. However, the scheme has been designed
to include other programs in which there is little, if any, processing of data
but rather conversion or transfer, of data; these are known as background
programs. It would be extremely uneconomic to run such programs alone since
+he central processor would be largely unoccupied during the run, Therefore

a background program can be time-shared with the foreground program. This does
not mean that both programs may use the central processor simultaneously: only
one program may be in control at any one time, but this may be either of the
programs currently being time-shared. The gllocation of central processor time

to each program is dealt with automatically by the control section of PCP.

In practice most of the central processor time is claimed by the
foreground progrem with only very short periods given over to the background

program so that it may initiate further peripheral transfers.

No two programs to be time-shared in the same run may make use of
the same peripheral devices; & device must be allocated exclusively to one
program for that run. Very rarely, if at all, does a foreground program use
all peripheral devices, so by judicious choice of the background program to be
run with a particular foreground program, all devices may be in action during
the yun. Thus whilst background programs are a most uneconomic proposition if
run alone, they do in fact increase the efficiency of a system by complementing
a foreground program: they can fill up any central processor time caused by
hold-up in a foreground program and employ any devices which would otherwise
be idle.

L
(Issue 2)

2.5.3

2.1 Foreground Programs

A user's main program is classed as a foreground program; only
one program of this type may be active in the store at any one time, This
master program may control several slave (common) programs or subroutines,
which can only be entered on an instruction from the master program. A slave

program may only use those devices reserved for its master program.

A foreground program may use the full facilities of PCP.
It may also make direct use of SPAN thereby having available the full range of
dynamic storage allocation facilities. A slave program may use the same

facilities as its master.

2.2 Background Programs

A background program is, as the name implies, a less important
program, supporting yet independent of the main program. It is very often
in the nature of a pseudo off-line conversion program e.g, printing up data
from magnetic tape to the line printer, transferring data to or from punched

cards, etc,

So that it does not impinge in any way on the foreground program,
a background program has the restriction that it may not make direct use of SPAN.
PCP implements some of the facilities of SPAN in order to obtain and return space
dynamically for the programs under its control; this is permitted for background
programs, as being indirect usage, on condition that the special entries to PCP

for buffer allocation and deletion are used (see 9.3.3).

The ALGOL and FORTRAN compilers make extensive use of facilities
not available to background programs, which are, therefore, always written in

the SAP 2 programming language.

5
(Issue 2)

2!5-3

3. FORM_OF DATA FOR PCP

Data to be input or output by means of PCF macro instructions
must be presented in one of two forms: either binary wholewords or
alphanumeric characters. It should be noted that PCP itself does not contain
any routines for converting numeric characters into binary wholewords and vice

Yersa.

If output takes place in binary wholewords, it is assumed that the
information is intended for re-input in a subsequent run; this form is not valid
for the line printer or the typewriter since the orint-up produced would be
unintelligible. In character format the data is intended for eventusl, if not
immediate printing. For example, output from a foreground program in character
form to be printed on the line printer, may first be output to magnetic tape as
being a much faster device; the subsequent printing from magnetic tape to line

printer later forms a typical background program,

b, BUFFERS

All transfers of data to and from the computer takes place via
buffer areas: a buffer is any area of store in which data 1s held as an
intermediate stage during transfer between devices, and which compensates either
for the difference in the speed of the two devices, or for the time lapg between

two events. {In this context the main store is alse econsidered as = device.)

An area of store which is to be used as a buffer must be allocated
as such, either by the programmer himself or by PCP. In either case, the
locations are obtained from and constructed to function within the SPAN system.
Each buffer forms a separate SPAN bleck and ss such has a codeword associated
with it, held in a SPAN codeword block; the codeword is m pointer to the
vosition of the buffer, holding in bits 1-13 the address of the first word of

6
(Issue 2)

2453

the buffer. FHReference to a buffer is always made via the address of its
codeword. The first word of a buffer is a headerword containing in bits

1-13 the size of the buffer.

For inout the buffer may be obtained by the programmer using
SPAN macros directly or antomatically by PCP from SPAN whenever a transfer
is requested. In the latter case, the programmer does not know the position
of the buffer. If he wishes to have close control over the position of a
buffer, he would obviously allocate the area himself, but if this is of little
consequence, he would do better to leave it to PCP; the advantages of this
are that the area is not reserved until it is actually reouired and SPAN can
then choose the best position for it at that moment. If the buffer is
supplied in this way, then on execution of the transfer instruction the ccdeword
of the buffer is in bits 1-13 of the accumulator. All bits should be preserved

for any future rcference to that buffer.

On input it is not usually necessary for the programmer to know
where the data will be placed, but for output the codeword of the buffer must
always be specified, so that the intended data is output. The same buffer
area cen be filled and/or emptied over and over again but whenever a buffer

becomes redundant it should be returned to SPAN for re-use,

5. UEUEING

The first time in a program that transfer to any peripheral is
requested, that transfer will be carried out immediately, since the device is
reserved for that program as being free. However, if a transfer is requested
for the same device before the previous operation is completed, then the request

1s normally held over by PCP until the device is free, whilst the program is

(Izssue 2)

2.5.3

able to continue. When the device is available again, it informs PCP which then
hands over the next operation to be performed. 1In this way, PCP can build up a
queue of operations for each device, adding and removing requests to and from the
queue whenever they are made by the prorram or executed by the device, Each
entry on the queue contains exact details of the buffer concerned and the function
to be performed; all requests are dealt with strietly in the order in which they
appear in the queue, except with controlling funetions for magnetic tape

handlers (Chapter 20).

In some cases the calling program may be unable to continue until
the transfer has been carried out, It i1s, therefore, possible to specify that
the program must wait until the data has been input/output. Control is then
transferred to the other active program in store which can make use of the
central processor or failing this a wait ensues until the essential transfer is

completed,

When time-sharing methods are not beins used, instructions to
invut/output data normally occur at the beginnine/end of a program, with little
neripheral activity in the middle. In order to gain full advantages from PCP,
this bunching of input and output should be avoided. Peripheral transfers
should, as far as possible, be soread evenly throuchout the program, so that

the length of queue for a device is reasonably constant,

6. METHOD OF CONTROL

PCP falls structurally into two distinct sections; the core of
the program is the control section which handles the administration for all
transfers to peripheral devices, shares out central processcr time to the active

programs and holds information on the current state of these programs,

8
(Issue 2)

24543

The other section consists of device routines, one routine for
each device to be controlled. hs further devices become available, the
relevant routine will be added to PCP. In addition to carrying out the physical
input/output, of data, the rc tines check, where possible, accurate functioning
of each device before using it and, in the case of magnetic tape, contain re-read

facilities for parity failures etc.

Information on the current state of each program is held in the
Control List of PCP. Since PCP has details of each program, it can transfer
control to the background program when, and if, the main program is held up. The

program or device routine currently in control is indicated by the Current Program

Pointer.

The administration of queues is handled automatically by the control
section of PCP, Whenever a device becomes free it sends through an interrupt
to PCP indicating that it is awaiting further instructions. PCP then directs
the next instruction on the queue to the appropriate device routine, If the
gueue is empty, the device remains idle until a further request occurs in its

calling program.

The following diagram shows the lines of communication and flow of

data between PCP control section, the device routines and the devices.

P e s F o h ™
f'IM/]u’TP:"? f) (P} ‘E’JI_I---@E @/:

b

CRP
PCP CONTROL
TW = Typewriter DP = Digital Plotter MT = Magnetic Tape
TR = Tape Reader LP =Line Printer CRP = Card Reader/Punch

TP = Tape Punch ECR=Elliott Card Reader
Noce ehat [wndrcates & program and O indicares & device
9
(Issue 2)

24943

Communication between PCP control and device routines is two-way: from device

routine to PCP whenever a device interrupts to say it is free, from PCP to routine

to re-direct peripheral transfers.

bBetween device and device routine data flows according to whether it

is for input and/or output.

10
(Issue 1)

2.5.3

Te MACRO INSTRUCTIONS

All instructions in the user's programs to the PCP are in the
form of macro-.nstructions i.e. one instruction which is replaced by many when
the program is translated: ' consists of one or more words followed by a set
of parameters in square brackets. The macro is written following the
conventions of Symbolic Assembly Code. Fach parameter of the macro is normally
an identifier which specifies the location holding the actual value of the
parameter; this means that the effect of a particular macro can be changed by
substituting a different value in the parameter location rather than by re-

writing the actual macro.

T.l Data Transfer Macro

Each macro concerned with filling, emptying and transferring
buffers is made up of the word "buffer" followed by the parameters in square
brackets. However, since only the first six letters are significant, the name

"buffer" may be gualified to distinguish its function, e.g.

buffer in

[
buffer out [
buffer fill [

[

buffer empty

A standard list of parameters is provided to make the macro as
general as possible, but only the relevant pammeters for each device need be

included, as exnlained below.

11
{Issue 1)

2.5.3

The full parameter list is:

Deviece Class
Device Number

Buffer Specification

| o= O

Function

EL Error Label
Mode

c Special Purpose

Special Purpose

The parameters must appear in the order specified above, Where certain of the
parameters are not applicable, its position must be occupied by the digit zero.
Trailing null parameters may not be omitted. Note that the parameters are not
absolute values, but identifiers for the location holding the walue.

Since the parameter is merely an identifier for a location, it
is not necessary to use the mnemonics given in the above list; the identifier
may be any meaningful name, but they must, of course, appear in the correct

order.

The permitted ranges of wvalues for each parameter and their

meanings for each device are specified in chapters 13-20.

N.B. The error label must be one which has been declared globally
and must at all times be quoted in the form:

<error label> * <block name>

12
(Issue 2)

24543

T.2 Example

This short section of program would cause a buffer of standard
size to be input from reader 1 and output on punch 2,

L

26 device (set device = 0, i.e, tape readers)
30 <+1>

20 number (set device number = 1)

30 2>

20 funection (set functiom = 2, i.e. provide)

26 mode (set mode = 0, i.e, character)

buffer in [device, number, 0, function, (PCP to provide buffer)
E*B, mode, O, O]

20 BUFFER (store sddress of codeword for buffer
just input, in location BUFFER)

30 <41>

20 device (set device = 1, i.e. tape punches)
20 funetion (set function = 1, i,e., output)

30 <+2>

20 number (set number = 2)

buffer out [device, number, BUFFER, function,
E*B, mode, 0, O] (output to punch 2)

The program now continues although the buffer will not have
been output completely.

13
(Issue 2)

2.5.3

Although the above example uses parameter identifiers, it is also
permissible to write the sbsolute values required for that maecro, in the
parameter list; this means, however, that to change the values of the parameters,
the macro must be rewritten. Using asbsolute parameters the above example could

be written:

buffer in [0, <+#1>, 0, <+2>, E¥*B, 0,0,0]
20 BUFFER
buffer out [<+1>, <+1>, BUFFER, <+1>, E¥B, 0,0,0]

Te3 Device Macros

Since a device may be used by only one program at any one time, the
nrogram must ascertain whether the required device is available (i,e. not
reserved for any other current program) and if so, reserve it. This is done by
using the following mecro in the calling program (the parameters have the same

significance as in the macro "buffer"):
open device [D,N,EL]
which reserves device D (N) for that calling program, If the device is
unavailable, exit is made to the error label.
Before the end of each program, the instruction
close deviece [D,N,EL]

should be given for each device used by that program. This causes all output
requests on the queue for the device to be carried out in turn and all input
queues, if any, to be cancelled; the calling program is not re-entered until
the output queue for that device is empty. Failure to give the close device

instruction may cause output to be incomplete.

1k
(Issue 2)

2.5.3

The instruction
cancel device [D,N,EL]

hes more immediate effects than the "close" macro. It causes all requests on
the queue for that device to be cancelled including those partially obeyed,

and should, therefore, be used with caution.
There is a further device macro
shut device [D,N,EL)

which simply causes the calling program to wait until all the instructions
already on the queue at that time have been executed. The device is still
available for that program since the device remains booked to it until either

a "close device" or "cancel device" instruction is issued.

PARAMETERS AND DEVICES

The following chapters (8-12) explain the purpose of each
parameter in the macro instructions insofar as this is common to all devices,
Where the meaning of a parameter is peculiar to a particular device, full
details are given in the chanter for the device concerned. The actual values
to be used in setting a parameter to achieve the required effect are given in

the chapter for each device (13-20).

As and when further peripheral devices are available for
inclusion in a 503 computer configuration, the relevant device chapter (2l,.u4.)

will be added to correspond with the device routine incorvorated in PCP,

15
(Issue 2)

2:5.3

8. DEVICES

8.1 Device Clesses (D)

The number assigned to each class of device administered by PCP

iz as follows:

D=0 Tape Readers
1 Tape Punches *
2 Line Printer
3 Elliott Card Reader

I Card Feader/Punch

5 Digital Plotter
6 Control Typewriter
T Magnetic Tapes

These numbers are used to set parameter D of the 'buffer' macro.

8.2 Device lumber (H)

If there is more than one device in a class, the parameter N is
used to specify the device concerned. This will be relevant, for example,
for the tape readers and tape punches (1 or 2), and the magnetic tape handlers
(1 up to 8). Where there is only one device in a class, this parameter is

irrelevant,

9. ALLOCATION OF BUFFERS (B)

Buffer areas are always obtained from SPAN, either directly by
the programmer, or via the PCP Buffer Allocator. After using the buffer the

programmer must always ensure that it is returned to SPAN for further use.

16
(Issue 2)

2-5-3

g.1 Storage Control

When an input request to 'prepare' a buffer via the PCF Buffer
Allocator appears at the top of a queue, PCP requests an area from SPAN, If,
however, SPA is unable to provide a buffer of the required size without
collapsing the store (i.e. ving everything in store closer together so that
the required number of adjacent locations can be provided), then no action is
taken at that moment. When the queue for that device is re-examined, a further
attempt to obtaln space is made, If space is still unavailable when the
'prepare' instruction becomes '"provide', the request is repeated until space
becomes available due either to the fact that an output queue is exhausted,

thus releasing space, or to the recognition by PCP that & collapse must be

enforced.

9.2 PCP Buffer Allocator

Buffer areas for the input and/or output of data may be obtained
from SPAN by the PCP Buffer Allocator., The advantage in obtaining buffers
via PCP is that the space is not sllocated until it is actuelly reguired; the
programmer does not know the position of the buffer until the buffer
specification (address of codeword) is placed in the accumulator cnce the full
buffer has been provided. The specification must be stored immedistely and
any reference to that buffer or any of the elements in it must always be made

via its codeword.

When PCP obtains a buffer for input, although the area's position
is unspecified, the size of the area may be specified. If it is not, then a
standard size buffer of 121 words is provided, unless buffers for that device
are of some other standard size (e.g#. 80 words for card equipment). For output

the size is implicit in the buffer specification.

17
(Issue 2)

2.5.3
Buffers for input may be obtained by the macro
'"buffer in' with parameter B = 0

After input, the buffer area must either be used subsequently
for output or returned to SPAN for use. It may be returned by using the

macro:
BRETURN [Buffer Specification]
For output, either a buffer previously obtained for input is
used, or a new buffer obtained via PCP, thus:
BSUPPLY [<+N>)

would provide a buffer of size N, to be filled and output. All buffers

obtained via PCP are automatically returned to SPAN as soon as output is

-

ccmElete. il .

The methods for obtaining and disposing of buffers via FCP

can be shown as follows:

(a) buffer in [with B = 0]
20 Buffer Specification

process buffer

e —
R ‘—‘-—-—._.___‘_____‘_
g w— ——

:) e ; e g R
output [with B = Buffer Specifieation] BRETURN [Buffer Specification]

(b) BSUPPLY [<+5>]
20 Buffer Specification
fill B

buffer out [with B = Buffer Specification]

(Issue 2)

2.5.3

9.2.1 Buffer Specification

After a buffer has been obtained via PCP, the accumulator holds the
13-bit buffer specification: the address of the SPAN codeword for the buffer.
If on exit from the subroutine which supplies the buffer, the accumulator is
empty, then it is not possible to provide a buffer of that size without

collapsing the store. The procedure taken is described in section 9.1 above

Any further communication with PCP concerning the buffer must be
made via the buffer specification. The SPAN macros Tkl and Stl (described
fully in 2.5.2., 503 Manual) may be used to deal with the elements of the buffer.
For exemple, the instruction to bring to the accumulator, the first word of a

buffer whose specification is stored in location BUFFER is:
Tkl [BUFFER, <+1>]
Q.2.2 Example

In the following example a buffer is input, its first word tested
and if negative, the buffer is output; otherwise the buffer area 1s returned

to PCP and & further buffer input.

The macros are written with absolute parameter values:

input) buffer in [<+0>, <+1>, 0, <+2>, E¥*block, 0,0,0] (PCP to provide

buffer from reader

20 BUFFER (store buffer
specification in
BUFFER)

Tkl (BUFFER, <+1>] (bring first word
to acc.)

b1 output (test if negative)

19

(Issue 2)

2.5.3

BRETURN [BUFFER] (return unwanted
buffer to PCP)

Lo input (jump to input new
buffer)

output) buffer out [<+1>, <+2>, BUFFER, <+1>, E*block,0,0,0] (output buffer to
punch 23 the buffer
area is auto=
matically returned
to PCP)

9.3 Own Buffers

When the programmer wishes to allocate his own buffers, this must
be done using the macros of SPAN (a fuller description is given in SPAN, 2.5.2, -
and in SAP Mk,II, 2.k,1), Although the space for 'own' buffers is not allocated
until run time, at assembly time each buffer must have one location reserved for
its codeword. This is done by writing the SAP 2 control word array followed by
an identifier. Later in the program when the space is requested, the codeword

for the buffer must be placed in the location specified by this identifier.

Space for the buffer area is reserved by means of the SPAN
allocation macro. This consists of the mnemonic 'ALLOC' followed by four
identifiers for the locations holding information on the size, type, storage

status and offset of the required buffer, thus:
ALLOC [Size, Type, Status, Offset]

As with the macro 'buffer', the absolute values may be written in place of the

identifiers,

When the ALLOC instruction has been carried out, the codeword for

the buffer is in the accumulator and must then be stored in the reserved

20
(Issue 2)

2.5 pa

location by the pair of macros 'consider [X]' and 'insert'; these two macros
have the effect of placing the content of the Accumulator in the location

specified by the parameter of 'consider'.
9.3.1 Example

The full scheme for allocating "own" buffers is shown in the example
below which allocates a buffer, named by the identifier "Mine", of 80 locations;
inputs the data from paper tape, sdds the numbers together and outputs the
original numbers to cards.

array Mine;

-
-
-

begin example;
ALLOC [<+81>, <+1>, <+1>, <+0>] (allocate 81 word buffer)
consider [<+Mine>]
insert

buffer in [<+0>, <+1>, <+Mine>, <+2>,E*B,0,0,0](input data from
tape reader 1)

26 sum
o2 0
20 1
next) Tkl [<+Mine>, I] {pick up element I of buffer
add to total)
24 sum
32 I
05 <+80>
L1 next

buffer out [<th>, 0, <HMined>, <+3>, E*R, 42>, <43>, 0]
(eutvut numbers to card punch)

consider [<+Mine>) {return the buffer area to
SPAN for re-use),

delete

end examnle; By

(Issue 2)

2.5.3

9.3.2 Undetectable Frror in handling 'own' buffers

When a vprogrammer is dealing with information held in buffers
shich he himself obtained from OPAN, then unless certain rules are followed,
the correct data may not necessarily be found in a buffer at the exact time

of input or output.
He must ensure that he does not attempt

(a) to output data which may not yet have been

fully input.
(b) to use a buffer area which is still part of a queue.
For example, it is permissible for the instruction

"srepare to fill ‘own' buffer from Tape Handler ir
to be followed immediately by

"output same buffer to Tape Handler 1."

These instructions would be obeyed in the order in which they appear in the
program and the correct information could be transferred. However, the

following sequence of instructions,
"srepare 'own' buffer from Tape Handler 1

followed by

"output same buffer to Tepe Handler 2"

would rot give correct results in the case where at the time of attaching the
request to a queue, Handler 1 was busy but Handler 2 was untusy; the input of
data would be postponed until Handler 1 became unbusy, yet the contents of the
specified buffer, whatever they may be at the time, would be output immediately
to Handler 2. PCF will not detect that this may occur, but it is neverthe less

regarded as & DProgramming e€rror.

22
(Issue 2)

24543

9.k Buffers for Background Programs

The allocation of buffers for background programs works under
the same broad scheme as with foreground programs; buffers may either be
cbtained from SPAN or provided Ly the programmer, liowever, certain

restrictions apply.

9,4,1 Buffers from SPAN

Although a background program may not use any of the storage
control facilities directly, it may obtain space required for buffers from
SPAN provided that it obtains them through PCP., However, this does not mean
that parameter B in a buffer input instruction may be set to zero, as it is in
a foreground program. Background programs must use the macros BSUPPLY and

FRETURN to obtain and return buffers.

These two macros therefore provide the only method by which a

background program can use SPAN.

Thus the instructions for obtaining from SPAN a buffer of, for

example, 20 Locations for a background progrem are:

30 <+20> (store no. of locations required in SIZE)

20 SI2E

BSUPPLY [SIZE] (provide buffer area)

20 BUFFSPEC (store tuffer's codeword address in
BUFFSFEC)

The codeword address for the buffer can then be used to set parameter B of the

input "buffer" macro:

buffer in [<+0>, <+1>, BUFFSPEC, <+2>, E*3, 0,0,0]

23

(Issue 2)

24543

After input, the buffer area may either be used for output (in which case it is
automatically returned to SPAN when empty) or it must be returned to SPAN by

means of the macro:

BRETURN [BUFFSPEC)

9.4.2 Own Buffers

If the programmer wishes to allocate his own buffer areas, he cannot
do this in the normal way, since this involves direct use of the SPAN macros,
ALLOC, consider, etc. Instead he must construct the same scheme for buffers
as would be obtained automatieally by SPAN: this entails reserving the
necessary fixed space, composing the codeword and headerword, and storing them
in the appropriate locations. Thus PCP accepts a buffer for queueing under
the same conditions as if obtained from SPAN, except that the buffer cannot be
deleted dynamically after use. The contents and meanings of headerwords and
codewords are given in detail in Chapters 10 and 11 of 2.5.2 (Storage Planning

and Allocation).

The following example shows the method of allocating 'own' buffers
in background programs:

Instruction leaning
array holdcode; reserve one location for buffer's codeword
data B (20); reserve 20 locations for buffer + 1

location for headerword

30 <10 256 : 00 B > Form codeword in Accumulator

20 holdcode Store in reserved location

30 <o 256 : 11 21> Form headerword in Accumulator

20 B Store in 1st location of buffer

buffer in [<+0>, <+1>, <+holdcode>, <+2>, E¥B, 0,0,0] Use codeword's

address to set
parameter B

2}
(Issue 2)

2.5.3

10. TINCTIONS (F)

Several alternatives for both standard inout and output functions
are provided in order to accommodate both methods of time-sharing and to cover
as many of the veripheral ¢ " ices as possible., However, as a result of their
peculiar functions, certain perivheral devices (e.g. the card reader/punch,
the typewriter) either cannot be included under the -eneral scheme of standard
input/output functions, or require extensions to the standard functions.
Therefore, wherever the functions of a perirheral deviate from those described
in 10.1 and 10,2 full details are given in the section on instructions for the

relevant device.

The programmer will, of course, use whichever alternative is best
suited to his type of program and his purposes; for example, normally in a
backpground program he would use those functions which ensure time-sharing
between independent programs. The actual values to be used in setting

parameter F are given in the section for each deviece in Chapter 13 onwards,

10.1 Input Functions

In order to share calculation and inout time within a single
program, a buffer must first be 'orepared': the request toc fill the buffer
is attached to a queue (if any) for the specified device and control returns
immediately to the main program. (Any number of 'ovrepare' orders can be
piven for the same device and they will all be queued in correct seguence,)
The buffer is then filled automatically as scon as possible, whilst the main
program is free to continue, When the buffer is actually reguired, a
'provide' instruction is given and, if the buffer is full, it is handed over

to the calling program.

If the buffer is not vet full, the calling program waits for
it; during this wait control passes to any other program which is ready to

use the central processor, If parameter B # 0 in the 'provide' order, then

25
(Issue 2)

2.5.3

the specified buffer is provided, but if B = 0, the next completed buffer on
the queue is provided. This is the enly case in which setting B =0 does

not require PCP to allocate a buffer area,

Alternetively, a 'prepare' instruction can be followed by an
order to 'provide and prepare' buffers. In this case, the next available
full buffer is handed to the ealling program and another buffer as specified

by parameter B (which may be zero) is prepared. The length of the gueue for

thet device thus remains unchanged.

Generally a buffer is filled by a prevare instructien, & function
which is time-shared with the calling program, iiowever, this ies not obligatory.
If a provide order is piven for a buffer not vreviously prepared, the request
is aueued and the calling program waits until the buffer is orovided, If any
other program can use the central vprocessor durins the wait control will opass
to it. When input of the buffer is complete, the buffer is nanded to the calling
program which can then continue, I1f the gueue is emoty when a 'vrovide and
prepare' order is miven, two reguests to prenare tuffers are queued;, the first
of these, always allocated by PCP, is filled while the ralling program waits,
and then provided. The second specified by parameter Ii (which may of course

be zero) is prepared,

In both cases of time-sharing the 'orovide anc prepare' function
is eouivalent to a "provide' with E = 0 (i.e, provide the next available buffer)

followed by a'prenare',

10,2 Outvut Functions

For all output functions nerameter P cof the macro Thbuffer' must

never be set to zero, but must specifv the address of the buffer's codeword,

In respect of the time-scale and effect, outrut functions are
broadly analogous to input functions, The equivalent of 'vrepare' a buffer

for invut is 'output' a buffer. This causes a tuffer to be put on the queue

26

{Issue 2}

2.5.3

for output while control returns to the main program, which can then continue.
Subsequently the programmer can given an instruction to 'wait' until the
specified buffer has been outprut; in this way he can determine whether a

buffer has yet been output and, if not, the calling vrogram waits for it,

Alternatively, toc ensure time-sharing betwveen independent programs,
the instruction to "output and wait' should be given; the buffer is then placed
on the eppropriate queue, the calling program waits and control passes to any
other program which ecan use the central processor. The calling vrogram will
not indicate to the control section of PCP that it is free to continue until

the buffer has been emntied.

11. ¥RROR EXITS (EL)

j 3 e | Error Labels

All the macros availsble in PCP have as aone of thelir rarameters
(EL) a label to which exit is made if the svystem detects an error, either in
the propramming or in the functioning of a device, This label (which specifies

the entry point to another mortion of program) must have been declared a clobal

label as defined in ©SAP Mk, IIj; this means thet is aveilable to anv rart of

the nrogram within which it was declared,

11.2 Effects of an Frror Exit

On detecting an error, the system tries where possible to correct
this (e.p. by re-readine a pre-determined number of times from marnetic tape if
a naritv error occurs), If this is imrnossible, control returns to a specified
roint of the calling program. Althourh the buffer on which exit was made, and
any other buffers on that gqueue, remain under control of the system, no further
input or outnut takes vplace on the same device until, and unless, the calling

program wishes to continue (see 11,L),

27
(Issue 2)

2.5.3

An error exit means that a jump is made to another part of the
program; therefore there must be some way of indicating where to return after
the error routine and of restoring the status guo: all the information
required for the return is copied across from the continuation register, a part
of the control list which keeps n "running commentary" on the state of the
program, to 5 locations of a "SAVE" block for later use. This block is part
of PCP's own workspace; its aveilability (i.e. whether it is already in use
from a previous error exit) is determined by the setting of the FERREX marker,
If the "SAVE" are occupied already, the program is held up until the ERREX
marker indicates they are available. If this hold-up occurs, control may pass
to any other program. This procedure is effected automatically by the control
section of PCP, and unlike the interrupt scheme for the basic 503 system, does

not entail any action on the programmer's part.

The portion of program to which control passes on exit, normally
consists of a short diagnostic routine and, particularly in the case of machine

errors, correction if possible.

11.3 Error Classes and Types

On exit to the error label, the class number of the error is held
in the accumulator. Thus the first action of a diapgnostic routine would be

to determine the cause of the error from the number in the accumulator, as follows:

Class llo. Interpretation
1 Device Unavailable
2 Program error
3 Parity error
L Special Magnetic Tape Errors.

In order to qualify the error further, each class is sub-divided into types.
This information together with the device mumber is, where relevant, held in

the auxiliary register in the following standard form:

00 Device Number : 00 Error Type No. = f1f

28
(Issue 2)

2453

After the error class had been determined, the accumulator should
be cleared, The deviee no. can then be brousht to the accumulator by a 5L 18
order; after clearing the accumulator again, a 54 20 order brings the error
type no. to the accumulator, The table below shows the error types which

exist for each class of error and for each device,
Where an error label has not been sunplied in the parameter
list, this is detected when the instruction is issued and
[0 EL

is displayed before the program is removed from the PCP Control List.

29
(Issue 2)

+23

Device

ERROR CLASS

1

2

3

l

(Device
Unavailable)

(Program
Errors)

(Parity
Error)

(Special Mag.
Tape Errors)

Tepe-readers
Punches and
Plotter *

See Standard
Programming
Error list below

Lineprinter

Manual
Paper nearly
cut or
throat open

Card Header

Manual
Read Error

Card Reader/
Punch

Manual

Read Error
Punch Error
Read/Punch
irror

Prog. button

|
! set

51 and 52
empty

Fnd state (i.e}

Magnetic Tapes

l. Manual

1, Read Error
P. Write Error
3. Wrong Parity
specified

1.Tape Mark input

2 ,Tape Mark input
and EOT passed

3.Fast EOT on
cutput

4 . Writing not
permitted

5.Function not
allowed(B.0.T.)

6.Function not

E.llDUEd{E -DaTi }
]

* 1t is not possible to give an indication by program when these devices are fn;
some reason unaveilsble. The operator should, therefore, keep a close watch for
any indication on the various lamps and buttons.

30

{Issue 1)

2.5.3

The conditions which cause a Class 2 (Standard Programming
Errors) exit are defined under the following types:

Error e Interpretation

Device not attached to this program
Parameter B=0 for output instruction
Parameters D or N out of range
Parameter F out of range

Parameter M out of range.
Parameters C or K out of range.

v oW o

Notes on Class 2 Error types:

1 Occurs when the macro
open device [b,H,EL] (see Ch. T.3.)
has not been given for the required device, or when the device

has already been attached to another program.

2 The specification of a buffer to be emptied (output) must
always be given, otherwise the programmer would obviously
have no control over the information to be output.

3 Parameter D must lie within the range

O0gDg T. The range for N, where relevant, is

defined in the section for each device.

L &5 The permitted ranges for parameters F, M, C, K are defined

in the section for each device.

11.4 Error Messages

If the programmer wishes to have a message displayed indicating
an error, he must make provision for this within the error routine. After
analysing the information on type, class and device, an output order should

be given to the typewriter to print out some form of message, for example:

31
(Issue 1)

2,5.3

LP, ERROR 1, TYPE 1
or LP IN MANUAL.

11.5 Continuation after Error Exit

The programmer, if and when he has dealt with the cause of error,

has three courses of action available:

1, Return to the point in the program at which error exit
occurred; this is held in one of the "SAVE" locations
and results in the continuation registers being restored
in accordance with the SAVE locations., The transfer of

control 1s thus poverned by PCP.

This course is taken simoply by writine the macro

"return" at the end of the error routirne,

2 Abandon the continuation vpoint preserved in SAVE and
re=enter the prorram at another restart point., This
roint is determined by the macro "restart" followed by

parameters specifyving the label and block name, thus:

restart [label * block 1
The label used must be declared as global at the head
of the propram. (See SAP Mk,.II, 2,h,1,, Chapter T.1l).

3. Stop the program, i.e, return control to the supervisory
program = STAR or RAF. This course, only taken when
the error is irretrievable, is taken by writing the

macro "stop".

12, OTEER PARAMETERS
12,1 Mode (M)

In general the mode specifies in what form information is to be
input, stored and output. In binary mode, the form is normal 503 vwholewords
(see 503 Manual 2.2,1.); in character mode, one character is stored in bit

positions 1 to 7 of each word, using the 503 standard T-bit paper tepe code,

32
(Issue 2)

2-513

Where the modes for a particular device vary from this, full details are given

in the relevant section.

12,2 Special Purpose Parameters (C & K)

These are purpose parameters which take various meanings

according to the needs peculiar to each device,

The most general use of C is to specify the size of a buffer
area (for input) which is to be vrovided bv PCP, i.e, when B =0, The size
epecified must never exceed the maximum permitted size for a SPAN block
i.e. 096 locations, However, it can be omitted, in which case a buffer of
standard size (121 words) is vrovided. For the card/reader nunch and certain

magnetic tape functions, C has special significance.
Parameter K is generally used as a terminating character, to
delimit the data for input into & buffer,
=== (g=——

The following chavters detail the actual values wnich parameters
can take for each device. The general structure of the macro instruction
"buffer" was given in Chapter 7, and exvlanation of the meaning and effect of

varameters in Chapters 6-12,

13. TAPE READERS

The macro instruction is

tuffer [D,N,B,F,EL,M,C,K]

0 for tape readers

where

1 or 2 according to the lo, of the reader

0 or address of buffer specification

Function o, 1, 2 or 3

Label for error exit

n

0 for character mode, 1 for binary mode
Buffer Size if B =0
the value of a T bit terminating character.

Hn:ﬁ“ﬂmﬂu
n

33
(Issue 2)

2453

13.1 The Functions specified by Parameter F are:

F =1 prepare to provide a buffer

F =2 provide a completed buffer

"
n

3 provide and prepare: provide & completed buffer

and prepare another buffer

Briefly, 'provide and prepare' is equivalent to 'provide' with

B = 0, followed by 'prepare'.

13.2 Error Exit (EL)

The conditions which cause an error exit are given in

Chapter 1l- 3 The permitted ranges for parameters when D = O (tape reader) are:

l1gNe2
lcFg3
OgMsgl
0 5 C g Lo96
0 &K g128

13.3 Conditions for buffer full

(a) On character mode

Generally a buffer is considered full when one
character has been input and stored in every
location of the buffer area. However, if the
character specified by parameter K or a Halt
code(value T6) is input, the buffer is then
considered full. The terminating character is
stored in the current position of the buffer and the
remaining words are cleared. This does not affect
the size of the buffer as specified in the header-

word.

If the option to complete a buffer by a terminating
character is not required, parameter K can either be
omitted (as a trailing null parameter) or set to 128.

34
(Issue 1)

2.5.3

(b) On binary mode

A buffer is normally considered full when six
characters have been input and packed into each word
of the buffer, In this mode parameter K has no
significance, Since a Halt code cannot be recognised
in binery mode, the buffer is considered full if four
inches of blanks are read in (i.e, 40 blanks). The
remaining words of the buffer area are cleared, but
the size of the buffer as specified in the headerword

is not changed,

13.4 End of Tape Messages

If a buffer is completed by reading a Halt character (in

character mode)or by four inches of blanks (in binary mode), the message

EN TAPE R N
is displayed, where N = 1 or 2 (no. of tape reader). Any further input
instructions for that reader are delayed until a new tape has been loaded

in the reader. The operator must depress the MESSAGE button and type
PCP:2;:N.
where Il = 1 or 2.
If a "provide" instruction is received before the new tape

is loaded, the message
LOAD TAFE R N

will be displayed and the program is held up until the newv tape has been loaded

and the above procedure followed,

35
(Issue 2)

2.5.3

1k, TAPE PUNCHES

The macro instruction is

buffer [D,N,B,F,EL,M,0,0]

where D = 1 for tape punches
M =1 or 2 according to ilo. of tare punch
B = Punction number 1, 2 or 3
EL = Label for error exit

M =0 for character mode, 1 for binary.

14,1 Use of Cheracter Printer

If the high speed character printer is connected to the system
in the place of a tape punch, the macro instruction remains the same except

that M must always be set to O (character), binary being invalid for printing.
1k.,2 Functions

The functions smtecified by narameter F are:

F=1 output - mnlace specified buffer on queue
for outmput, return control

immediatelyv,

F=2 wait - see if specifiad buffer outout;

if not do not return control

until it is free,

F = 3 output and wait = wvplace specifiel buffer

on gueue for output and do not

return control until it is free.

36
(Issue 2)

2.5.3

14,3 Error Exit (EL)

The conditions which cause an error exit are given in Chapter 11.

The permitted ranges for parameters when D = 1 are:

l1gMg?
l1EFg3
0gMg1l

15. LINE PRINTER

The macro instruction is
buffer [D,0,B,F,EL,0,0,0]

where D = 2 for line printer
B

F

EL

1]

Buffer snecification; buffer size = 121 words

n

Function 1, ? or 3

I

Label for error exit,
15,1 Functions

The functions snecified bv vparameter F are:

F=1 output - ©place specified buffer on aucue outrvut,

return control irmmediately

51
n

? wait - see if specified buffer output; if

not, do not return control until free,

=
n

3 output and wait - oplace specified buffer on aueue for

output and do not return control until it

is free,

37
(Issue ?)

2453

15.2 Error Exit (EL)

The conditions which cause an error exit are given in Chapter 11.
Note that error type 1 of Class 1 i.e. printer in Manual, may be the result of
a variety of errors e.g. hammer drive fuse blown, paper runs away etc. Since
these all cause the printer to go into the MANUAL state, they are grouped
together.

The permitted range for F when D = 2 is

1 =P zx3.

16. ELLIOTT CARD READER

The macro instruection is

buffer [D,0,B,F,EL,M,0,0]

where D = 3 for card reader
B = Buffer specification or zeroj buffer size = B0 words
F = function no. 1, 2 or 3
EL = Label for error exit
M =0 or 1 (explained below in 16.3)

16.1 Functions
The functions specified by parameter F are:

F=1 prepare to provide a buffer

F =2 provide a completed buffer

F =3 provide and prepare provide a completed buffer and
initiate reading of next buffer.

38
(1ssue 2)

2.5.3

16.2 Error Exit (EL)

The conditions which cause error exit are given in Chapter 11.
Full details of device error conditions which cause Class 1 exits, Manual and

Read Error, can be found in 1.4.6 of the 503 Manual.

The permitted ranges for parameters where D = 3 are:

.

lsFg3
OgMg1l

o Ia

16.3 Modes

Parameter M does not in this case define how a buffer is to
be coded. It is provided, to cater for a different card reader to be
introduced as an optional model later in 1965. For the present 80 column
Elliott card reader, M should be set to 0. Setting M to 1 will specify the

optional card reader when it is introduced.

39
(Issue 1)

E.5l3

17. ELLIOTT CARD READER/PUNCH

The macro instruction is
vuffer [D,0,B,F,EL,M,C,K]

wvhere [}

L specifying the card reader/punch

=
0

address of buffer's codeword; size of
buffer = 80 words.

17.1 Functions specified by parameter F are:

F=1 Read a Card. The first available buffer is taken from the read

stack and read.

F=2 Send Card. The card last read is sent to a given pocket (specified

by parameter C).

F=3 Punch a Card. Punch the contents of a specified buffer on a blank

card and send it to a given pooket (specified by parameter C).

F=l Overpunch. Overpunch the card last read with the contents of the
specified buffer (B) and send it to a given pocket (specified by
parameter C).

N.B. All punching on cards from the main track, whether blank

or not, is regarded as overpunching.

F=5 Find Type. Find type number of next card on read stack. This
only applies when reading ahead is allowed, which is governed by

the value of parameter K, i.e. not allowed if K = 0, and allowed

if K # 0.

17.2 The Mode (M)

This is the actual operating mode of the machine (controlled by
switches on the console) rather than an indication of how the buffer is to be

de-coded. The values and the machine state they indicate as follows:

Lo
(Issue 1)

2.5.3

M=12 Read only

M=2 Punch only
= L Read and Punch
M= | Read and Punch on both Main and Sub. tracks.

When overpunching, any attempt to punch into an existing hole is
forbidden and may cause a parity failure. PCP will make no check to ensure that

this does not occur.

173 Freselection of Pockets

The preselection of card pocket destinations is combined with output

orders. The selected pocket is specified by parameter C as follows:

c=1 for pocket 1
cC=2 for pocket 2

c=3 for main pocket

The preselect order always over-rides any previous pocket selection
for the card in question. If, however, a card is subsequently vpunched and found

to be in error it will automatically be sent to pocket 1.

If no preselect order is given, cards originating from the main hopper
will go to the main pocket and cards from the subsidiary hoprer to pocket 2. 1In

each case punch errors cause the error cards to be sent to pocket 1.

17.4 Error Exits

The conditions which cause error exits are given in Chapter 11.
Further details of the six types of Class 1 errors can be found in the functional
specification for the card reader/punch (1.4.4 of the 503 Manual).

If a read error (type 2) occurs, the operator should reload the cards
present on the main track using the ejection and reloading facilities provided on
the device. If a punch error (type 3) occurs, the buffer of information punched

onto that card is retained in order that the instruction can be repeated to punch

bl
(Issue 1)

245.3

the buffer onto ancther card. However, in the case of punching onto a

non=blank card, immediate repunching is not possible,

The permitted ranges for parameters when D = L are:

35S FsS
1SMSh
1503
0 <K <128

18. DIGITAL PLOTTER

18.1

The macro instruction is

where D
B
F
EL
M

Fe=1

buffer [D,0,B,F,EL,M,0,0]

= 5 for digital plotter

= address of buffer's codeword

= function, 1, 2 or 3

= label to which error exit occurs

= 1 for unracked mode, 2 for packed mode,

Functions

output = place specified buffer on queue for output,

return control immediately,

wait - see if specified buffer output; if not, do

not return control until it is free,

output and wait - place specified buffer on queue for

output and do not return control until it

is free.

L2

(Issue 2)

2.5.3

18.2 Error Exits

The conditions which cause error exits are given in Chapter 1l. It is
not possible to give an indication by program when the plotter is for some reason
unavailable, (i.e. Error Class 1 does not exist). 'The operator should, therefore,
ensure that the plotter is set up correctly for operation and keep a careful watch

on the switches, paper, etc.

The permitted ranges of parameters when D = 5 are:

ls Fg3
1€ Ms2

18.3 Modes

Both modes provided deal with 6 bit characters; the significance of
these is described in 1.4.T of the 503 Manual. The character is added to a T2 7168

instruction to form the actual instruction obeyed.

If 1 = 1 there is one character in each word of the buffer (unpacked).

If 11 = 7 there are six characters packed into each word of the buffer.
The top three bits of each word are zero (i.e. the 3 most
significant bits). The most significant character is the

first to be used.

1f there are less than six characters in & word, the word must be left justified,

j.e. any unused space is at the least significant (right) end of the word.

o E-':iﬂ

000 1 2 3 L 5 00D00O0D

bit 39 bit 1

For example, the above word contains 5 characters, numbered in the order in which

they are used.

L3
(Issue 1)

2.5.3

19. TYPEWRITER
The macro instruction is

buffer [D,0,B,F,EL,0,C,K]

where D = 6 for the typewriter
B
F

Buffer specification

function 1 or 2

EL = label to which error exit is made
C = buffer size(if B = 0)

a T-bit terminating character.

19.1 Functions

Since messages via the typewriter usually require immediate action,
any instruction for the typewriter has absolute priority; it is obeyed immediately
whilst the program waits, so that there is never a queue of instructions wvaiting for

the typewriter.

F = 1 input - the program waits until the message/data
has been typed and input into the buffer.
The parameters B,C and K have the same

significance as for tape reader input.

F = 2 output - the program waits until the buffer has been
printed out. This function might cccur
particularly in error routines to print
out messages in accordance with the

program's analysis of class and type.

20. MAGNETIC TAPE HANDLERS

The 503 magnetic tape systems functions under the scheme of variable
length blocks. The length of a block is determined by one program write instructio
and may be of any length between 3 and L096 computer words.

Ly

(Issue 1)

2-513

On output a buffer of information in store is written to tape as
one block. On input one block is read into a buffer: if the block is longer
than the buffer, the remaining words on tape are skipped over and not stored, if
Bhorter, the end words of the buffer are cleared.

Information is recorded on tape usually either in binary or character
form with odd parity. However, an even parity character mode is available for the
sake of IBM compatibility. In the odd parity modes a block numbering system is
used: on output each block is given a number which is used to identify it in'tape
move "and input instructions thereafter.

The system automatically carries out certain checks and gives

indications on detecting any errors.

The rest of this chapter deals fully with magnetic tepe in relation
to the PCP magnetic tape functions. However, for any reader unfamiliar with
megnetic tape systems in general, it is advisable to read section 1.4.2 in Vol.l
of the 503 Manual in conjunction with this chapter.

20.1 Macro Instructions

Two macro instructions are provided to cover the range of functions

for magnetic tape. Firstly, the normal input/output macro:

buffer (D,N,B,F,EL,M,C,K]

where = T for magnetic tape handlers.
= handler number, 1 ¢ N g 8

Buffer specification

M EH = 9
|

= function number 1 to 9 or 1k,

EL = label to which error exit occurs

M = recording mode, 1, 2 or 3.

C = size of buffer if B = 0

K = number of block for input or output

L5
(Issue 1)

2.5.3

Secondly, a separate macro used only for moving backwards and

forwards along tape, and not involving any transfer of data:

20.2

tape move [N,F,EL,C]

where N = handler number, 1 § N € 8
F = function number, 10 £ F <13
EL
C

label to which error exit occurs

number of blocks to be traversed

Recording Modes

There are three ways of recording a 39-bit computer word of magnetic

tape. This is determined by setting parameter M as below. A block must be input

using the same mode in which it was output.

M=1

Binary mode with odd parity

All 39 bits of each word are recorded with odd parity in seven
6-bit sets, the top three digits of the first set being zero.

Character mode with even parity

The 3 most significant bits of each word are ignored; the
remaining 36 bits are recorded with even parity in six 6-bit
sets. On re-input the 3 most significant bits of each word
stored are zero. This mode is compatible with IBM binary

coded decimal tapes.

Character mode with odd parity

This mode is identical to M = 2 except that odd parity is used.

L6
(Issue 1)

2.5.3

20.3 Input

20.3.1 Input Functions

The input functions specified by parameter F are:

1 prepare to provide a buffer; the request is queued and control

returns to the main program.
2 provide a completed buffer

3 provide and prepare - provide a completed buffer and prepare

another buffer

L provide immediately:- this is a special function used to input

a block which has been written beyond the end of reel marker.
The instruction is placed at the head of the queue and carried

out immediately.

20.3.2 Control Word

When ccntrol returns to the main progrem after an instruction with

F=2, 3 or b, the accumulator holds a control word giving information on the

buffer provided, as follows:

39 31 30 29 23 13
0—0C o 0 O0—0 BUFFER SPEC
Short Long End of writ?
block block reel permit
indicator indicator
(i) The buffer specification is (as normal) in the 13

least significant digits.

LT
(Issue 1)

2-5’43

(ii) Writing is permitted on tape (i.e. the write permit ring
has been inserted) if bit 23 is set to 1. If it is zero,
and the programmer wishes to write on tape, he should
arrange for a message to be output for the operator's

attention.

(iii) If bit 29 is set to 1, the tape is at the end of reel
marker., To input a further block, the special function

F = 4 must be used.

(iv) If bits 30 (31) are set to one, then the block on tape

was longer (shorter) than the size of the buffer.

The number of the block just input is found in the first word of
the buffer (for modes 1 and 3 only).

20.3.3 Special Purpose Parameter K

This parameter is only significant for modes 1 and 3. If K =0,
then the next block on tape is input. If K # 0, the block whose number is

specified by K is input. Any advancing or retreating over tape in order to

arrive at the specified block is carried out automatically.

20.h Output

20.4.1 Output Functions

The output functions specified by parameter F are:

F=5 output =~ place specified buffer on queue for output, return

control immediately.

F=6 wait - see if specified buffer output; if not, do not

return control until it is free.

L8
(Issue 1)

*.5.3

) output and wait - place specified buffer on queue for output

and do not return control until it is free.

F=28 output tape mark - write special single character block used to

delimit files and reels etc. (see section 8); this must be

written in mode 2, i.e. even parity character mode. Paresmeter B
should be set to zeroj; this will not eause an error exit, as

happens in all other output instructions.

F=9 output and wait immediately - this instruction is the output

equivalent of "provide immediately" with F = 2, It is placed
at the head of the output queue to output data beyond the end

of reel marker.

F =14 Output tape mark immediately - this instruction is provided so

that the user may, if he wishes, adopt the standard procedure
of outputting a tape mark after the end of reel marker; the
order is placed at the head of the queue and the mark output

immediately.

20.L4.2 Block number parameter K

This parameter is only significant for modes 1 and 3.

If K = 0 the block is written on tape at its current position.
If K =1 the block is written after the highest numbered block written since
the tape was wpurrently opened, i.e. any writing on tape from a previous run is

ignored.

If the tape is only in use for output both values of K have the
same effect. But if after output of several blocks it is required to retreat
and re-read some of them and then continue writing where one left off before, then
parameter K = 1 is used. In this case any advancing or retreating required to
arrive at the specified block or position is carried out automatically, and a

check made thet the tape halts at the correct block number.

k9
(Issue 1)

2.5.3

However, if the output is in fact selective overwriting, the

programmer must deal with tape movement and checks.

20.5 Tape lHovement

Tape movement is, in effect, an off-line operation, so that as
many of the handlers as regquired can carry out one of these functions

simultaneously.

For the "tape move" macro, the number of blocks to be moved as

specified in parameter C. The functions specified by parameter F are:

F=10 advance =~ C blocks, where C>0, This ceauses C blocks to
be skipped.

F=11 retreat = C blocks, where C>0,

F =12 rewind - positions the tape at the beginning of reel marker,
If the tape is already in that position, the instruction is
ignored.

F=13 erase - the next four inches of tape are erased.

20.6 Block Numbering System

This sytem applies to modes 1 and 3 (odd parity modes) but is not

used for even parity character mode.

Fach block written is mumbered sequentially by the system and its
number stored in the first word of the block; on input this number 1s checked

to ensure that the required buffer is being input.

20.6.1 Block Counts

Three counts are kept for each handler within PCP's workspace. These
are available for use by any of the other systems, e.g. SPAN, STAR, SAP2. They
mey be referred to as detailed in the three sections below provided the following

replacements are declared at the head of the program:
current block [3HM], last block [3;186], block max [3194]

50
(Issue 2)

(i)

(ii)

2-5-3

current block count heclds the number of the block which has just

been written, read or advanced over or one less than the block
just retreated over. Before an output instruction is obeyed,
the current block number is stored in word 1 of the buffer in
store, so that it will be output to tape in the correct position.

On input the block number in word 1 is checked against the
current block count. If they are not equal, the system initiates
a search until the required block is reached. This may occur as
a result of 'noise' blocks due to irregularities in the tape
surface: if one of these spurious blocks is encountered it is
considered as a legitimate block written by program and will
throw the counting system out of step. Thus the necessityfor a
checking system.

In fact, due to the possibility of these noise blocks,after
any retreats or advances the tape position is considered unchecked.
The current block count has a marker to indicate that it is
unchecked. If an input instruction then occurs, the unchecked
state is cancelled, since the input instruction itself incorporates
a check. Output instructions will not be obeyed if the tape is in

an unchecked state, but see section 2 of this chapter.

last block on queue holds the number of the block referred to in

the last instruction on the queue (or one less for & retreat
instruction). If the last instruction was to advance or retreat,
there is a marker indicating that the last block on queue is
unchecked. On return to the main program after an output
instruction has been placed on the queue, the number of the last
block on the queue is also in the accumulator (in bits 1-16

inclusive).

51
(Issue 1)

2.5.3

(1ii) block max. holds the number of the highest numbered block put on
the queue, and also the mode of this block:

39-37 16 i 1
mode location
1lor 3 9 block no. block max

This count is used to determine the position on tape for
output if K = 1. The last section of a tape may effectively
be deleted if block max and the mode are reset to the number

and mode of the last block in which the programmer is interested.

20.6.2 Input and Output on same tape

After advancing or retreating, the position on tape is unchecked,
as stated in 20.6.1(i). It is not, therefore, safe for an output instruction to
be executed immediately, since this may result in overwriting wanted blocks., The
position on tape must first be checked by an input instruction; this is done
automatically when the instruction is to output after the highest numbered block
written so far, i.e. output instruction with K = 1. But if the programmer wishes
to overwrite Blocks already written (output with K = 0) he should check the position

himself by giving an input instruction.

If any tape movement is to occur between writing blocks, the
instruction to write the first block must be followed by an erase instruction
(or output of a dummy block e.g. output tape mark). This is because after redding
a block and then returning to write the second block, the tape may not stop in
exactly the same place as it did after writing the first block and thus spurious
digits may be left between the two blocks. Therefore, a retreat after output of
a block whose number is equal to block max is preceded by an erase instruction.
This is carried out automatically. However, if the blocks for output entail

selective overwriting, the programmer himself should give the erase instruction.

G2
(Issue 1)

2.5.3

llote especially that if the programmer wishes to overwrite
a tape written during & previous run, he must set the
count in block max equal to the last block on tape in
which he is interested. Otherwise, under the scheme
outlined in the preceding paragraph,wanted blocks may
be accider.zlly erased.

SUMMARY

In short, when a tape is used solely for input, solely for output,
or for both but with no selective overwriting, all checks are carried out
automatically by the system. However, all safety precautions for overwriting
are the programmer's responsibility. As a general rule a wide safety margin
of blank tape should be allowed both after the block to be overwritten and after
the replacement block. Overwriting is best carried out with full understanding
of the magnetic tape system rather than by mechanical rule; full details can be
found in 1.4.2 of the 503 Manual, particularly in the section Special Effects.

20.T7 Tape Markings

20.T.1 Tape Mark

This is a special single character block written on even parity
(character mode), used if required to delimit files of data on tape and always
to indicate the end of writing on tape. A tape mark is output using the special
function "output tape mark" (F = 8); it is the only exception to the rule for

minimum block size of 3 words.

Whenever a tape mark is input, an alarm exit occurs to the error
label (EL), giving an error class L, type 1 indication (see Chapter 21), This
type of indication is given for every tape mark except the last, (for which, see
section 3 of this chapter). This in no way implies an error but is merely so
that the programmer knows the tape is positioned at the end of a file of data.

53
(Issue 2)

2,5.3

20.T.2 Beginning of Tape

On each reel of tape there is a physical begimning of tape

marker (BOT) just before the position where the first block can be written

on tape. A tape is positioned at this marker when it is loaded manually or
when a rewindinstruction (F = 12) is obeyed. When the tape is already in this
position , & rewind instruction is ignored and a retreat instruction ceauses an

error exit (error class b, tyre 5).

20.T.3 End of Tape

There is a similar physical end of tape marker (EOT) sbout 25

feet bLefore the end of a reel of tape. When on output the system encounters

this marker, an alarm exit occurs indicating that the handler is in the end of reel
state (error class LU, type 3). If he is adopting the standard practice, the
programmer should then output a tape mark using the function'output tape mark
immediately'(F = 14); thereafter he may write further blocks using the funetion
'output and wait immediately' (F = 9), There is no actual program restriction

on the number of blocks which may be written beyond the EOT marker, so the
programmer must ensure that the safety limit of approximately 15 feet beyond the
marker is not exceeded: it is recommended that not more than 2 blocks of 256

words be written.

On input the alarm exit occurs when both the EOT marker has been
passed and the tape mark which follows it has been input (error class L, type 2).
This indicates that any further blocks written beyond this point cen only be input
using the function 'provide immediately" (F = L),

Rewind and retreat instructions are alsc allowed yhen the handler
is in the EOT state, but all other instructions cause an error exit (class L,

type 6).

5k
(Issue 1)

2.5.3

20.8 ERRORS

The conditions which cause error exits are given in the table in
Chapter 11. The error classes and types are rather more complex for magnetic

tape handlers, so further amplification where necessary is given below.

20.8.1 Programming Errors (Class 2)

The permitted ranges of parameters when D = T are:

1 <K= §

1 SF< 14

1 <M< 3

buffer size 3 <C < L4096, or C = 0
tape move C > 0

20.8.2 Parity Errors - Class 3

Within this class three types of indications are given (as shown in
the table in Chapter 11) so that the programmer can determine which form of parity
error has occurred - read error, write error or wrong parity specified. All checking
involved in the detection of parity errors is carried out automatically by the system;

for interested readers a fuller description of how this is done is given below.

Type 1 = Read Error and Type 3 - Wrong Parity

If a parity error occurs on reading a block and if there is also a
short block indication set, this may be either noise on tape or a tape mark read on
wrong (odd) parity. The block is first re-read by an instruction set to mode 2
(even parity, character - same mode as a tape mark) and with block size set to 3
words. If on re-read there is still a short block indication set, then it must be
either noise or a tape mark (since it is <3 words long). The system then tests
the short block to see if it is a tape mark: if it is, an alarm exit occurs
indicating a tape mark input (see 20.7.1)., If it is not, then it must be noise on
tape; 1in this case, the pseudo-block is ignored and the original instruction is
repeated to read the next block.

55
(Issue 1)

2.9.3

If the short block indication is not set, either in the first
instance or on the snecial short re-read (see Tvype 1 above) and if the mode
used is 2 or 3 (character), it is re-read on the ovvosite parity to that
orisinally used. If there is then no parity error, an error exit (type 3)

occurs indiecating that wrong parity has been specified in the instruction,

However, if on re-reading there is still a parity error, then up
to four further attempts are made to re-read the block using the original
parity specified. If any of these is successful, the progrem continues;

otherwise after the fourth attemvt an error exit occcurs (tvpe 1),

Tvpe 2 - Write Lrror

Each block written on tare is checked immediately. If a pvarity
error has occurred, an attempt is made to rewrite the block. If there is now
no narity error the program continues; otherwise the cyele: retreat 1 block,
erase, rewrite, is repeated, If there is still m parity error after a total

of four attempts to rewrite, an error exit occurs (tvoe 2),

If the EOT marker has been passed vhen a parity error is found,

only one attempt is made to rewrite the btlock,

20.8.3 Cvecial Masnetic Tape Frrors - Class b

This class of errors refers only to masnetic tere and includes
exits which are not strictly errors, but rather an alarm indication of the

tape's position.

Types 1, 2 and 3

These three types are alarms to warn the vprogrammer of specific
conditions so that he may take appropriate action. They indicate on input
either a tape mark inout (1) or the EOT passed and a tape mark input (2), on

output that the EOT is passed and therefore very little tape remains,

56
(Issue 2)

EIS.B

Type b

This error exit occurs if the programmer attempts to write on a tape
which does not carry a 'write permit' ring. It is in addition to the indication
given by bit 29 of the control word on exit from a provide instruction. In fact,
this error should only occur once in a program: the first time it occurs a message

should be ocutput requesting the operator to insert the ring.

Types 5 and 6

Apart from the normal operating state of a tape handler, the
programmer has indication of two other states, the BOT and EOT states; these must
be treated in a special way as described in the previous chapter. The following
table shows how each of the fourteen instructions are treated when a handler is in
either of the states; ‘'error' indicates that the program will jump to the label

specified by parameter EL when the instruction comes to be obeyed.

STATES
INSTRN
B.O.T E.Q.T
/' Prepare Error
2 Provide Error
3 Prepare and Provide Error
4 Provide Immediately
5 Output Error
6 Wait
7 Output and Wait Error
& Output TM Error
9 QOutput and Wait Immediately
/0 Advance Error
/' Retreat Ertor
/2 Rewind Ignored
13 Erase Error
4 Output TM Immediately

57
(Issue 1)

253

ch - 4] N B r EL L c K
Davice ":E' Davice Davica Buffer Funetion Error Hode Bpecinl Bpecial
Class numbar Bpec. Label Purposs Purpoas
number
tape 13 o 1or2 Addrenn of 1. Proviae Exit made a Char. Buffer sise | Terminating
Rander buffer's codevord | 4. Frepare for progres 1 Binary ire=o, Character
ar TATO « Provide & srrore ITceD
prepars (Class 2] wtandard
wice required
Tapa 1k 1 1 ar 2 Addresa of 1. Cutput Fxlt mada O Char.
Punch vaffar's codeword | 2. Wait for progrem | L Bloary - -
1, Output & arrors
Walt {Clans 2}
Line 15 2 - Addrass of 1. Dutput Exit sade LF - - -
Frioter codeward of 2. Weit device un-
buffer, 121 3. Output & avallatle
words in slse Wait (Class 1} or
prosTEm arro
(Cluss 2)
Elliott 16 L] - Address of L. Prepars Exit made 'F |
Card Bsader codevord of 2. Provide device un- - - =
buffer, BO 1. Provide & available
words ln slue, Frepara ({Clasw 1} or J
Br Lero program arror
[Cluam 2)
Card Rasdar/ k - Address of 1, Mead n curd |Exit made Lf | M specifies|Fc ket Ko, Raadipg ahesd
Punch 17 codeverd of 2. Bend card device un= the oper= |for functions | for functiom 3
buffer, B0 to speeisl available sting mode | 2,0 amd b, allowed if
words in slge pocket [clnes 1) or |of the device]l = Focket 1) K ¢ O, oot
Y, Puneh card & | progras srrors(1 = Resd m:l.z]? = Pocket 7| mdlowsd if
send to {Clanm 2} 2 ® Punch 3 = Madn E=0
specinl ooly pocket
pocket b= Pasd &
k., Owerpunch & Punch
send to glven o= Mesd &
pocket Funch
%. Find type of on both
mextl eard trachs
Digital] - Address of 1. Dutput Exit made L. Unpacked
PFlotter 18 codeward of 2. Wait fer progras chars, - .
buffer 3. Output & errore i.e. one
Wait (Class 2} in sach
word
2. Packed
chars .
Lw. &
in each
word
Typevriter] - Address of 1, Provide . - Buffar sise Teraninating
19 tuffer's 2. Dutput ira=0, Character
codeword, or If C= D
Lero standard
size pegu,
le T T Haadler hddrena of 1. Prepars Filt mede 1f |1.Bioary, Buffer sine InpUT
“-'i:ihr:" No. 1 to B buffer's code= 2. Provide device uwn= cdd parity] iFf B =0 K= 0,loput
werd, or serc 3. Prepars & |avainble 2.char, sven If C= 0, mert block
Provide (Class 1), parity standard Ko 0, dnput
b, Provide progrem arrors| J.cher, odd | siss req. spaci fled
imsedistaly |(Cluss 2}, parivy block K.
« Dut parity errore
"vutfer = At [Claas 30, = O,outyut
mecre” 7. trtput & special mag. st ourrent
Walt taps arrors poalilon of
B. Output T™ (Clean). tapa
g 0utput b ¥ait K= 1,output
{mmedintely aftar higheat
1k, Output T mambered blook
imeedintaly written.
- - 10. Advarcs - - mambar of -
"tvape move” ::“:..:.- (] 11, Metrent Blochs to
o " 12, Feslod be traversed
1% Frasa for femctions
10 snd 1l.

Appen'dix i
(fsswe 1)

2.5.3

APPENDIX 2

Program Running Procedure

Programs are now run under the combined control of PCP and RAF.
Programs which make use of PCP nust be tricpered via PCP in the manner described
below. The first entry to PCP enables the operator to then type exactly the
same message as he would were the program a SAFl program and the message rejection
works in exactly the same way (except that in certain cases, when a mistake is
made, only the current identifier need be repeated rather than the complete

message).

The user may either run one (main) vprorram alone or he may
choose to run a background program (see 2.5,3.1 defirition) in eorjunction with

the main program. The sample messages below show how this may be done.

To run the main program, alone, tvroe:

PCP."PROGRAM NAME" ;"TRIGGER NUMBER".

To run both main and background programs, type:

PCP."PROGL NAME"3;"TRIG1";"PROG2 HAME";"TRIG2".

Aprendix 2

2.5.3

APPENDIX 3

PCPP

INTRODUCTION

PCPP is a version of PCP which is coded by SAP Mark 1 and
is independent of SPAN. Administration of the free main store available

for buffer transfers is performed by PCPP (see SPECTAL FEATURES, No.2).

PCPP provides time-sharine facilities on machines with
or without core backine store. If it is used on a 503 which has core
backing store fitted, the programmer may make use of the backing store

provided he follows the precautions detailed later (SPECIAL FEATURES,No.k).

In general, PCPP performs the same functions as PCP,
although certain restrictions are imposed with regard to the facilities
provided and these are also changes in the method of use. These are

detailed below.

References in round brackets (where given) are to the
appropriate section of the description of PCP, where greater detail may

be found.

TAPE

Binary code for input by RAP,

STORE USED

Approximately 1800 locations, including workspace.

Appendix 3

Page 1

2.5.3

RESTRICTIONS

1.

2.

3.

The device booking facilities are not available, i.e. all
devices are available to each program. The user must

therefore ensure that any two programs beine run together
do not interact, and that output queues are empty before

the program ends - (2.5.3:7.3).

If two programs are run together, only one may obtain its
buffers through PCPP by use of the zero setting for

parameter B,

(2.5.3:7) Replacements for the PCPP macros are not included
as standard in SAP1, and the following replacement statements
mist be declared at the head of the program if they are
called:=
vuffer [D,N,B,F,EL,M,C,K3

720 : 30F

COMP, PCPP, 2

00 K : 00 B

o0D : 00N

00 C : OO M
4O FL: 00 O]

Appendix 3

Page 2

2.5.3

BSUPPLY [SIZE; T2 0 : 30 SIZE
coMP, PCPP, 6 1

BRETURN [BSPEC; T2 0 : 30 BSPEC
coMP, PCPP, T |

L, The 'tape move' macro may be written as a special case of
the 'buffer' macro by using the approoriate function value

(2.5.3:20.1)
Se All parameters must be supplied, though those not required
by PCPP will be igmored. Trailing null parameters may not

be omitted.

SPECIAL FEATURES OF PCPP

(2.5.3:8) The devices controlled by PCPP are:-

Magnetic Tapes
Line Printer
Tape Readers

Tape Punches

Typewriter

Appendix 3

Page 3

2.5.3

2. PCPP assumes that the first and last free pointers of RAP
indicate the free store from which it may allocate buffers at the request

of the user's program.

If PCPP is unable to supply the space requested through the
BSUPPLY macro, the accumilator will be zero on return to the user's program.

[2-5I3=h H.'ﬂd 2-5-3:9]+

3. In order to safepuard the error retrieval mechanism, PCPP
writes & block number in bits 21-36 (inclusive) of the first word of each
block written on magnetic tave. No significance is attached to the value

of parameter K in the 'buffer' instructions.

b, Use of core backing store

PCPP provides no control of core backing store but interrupts
caused by ADT transfers between main and backing store will nevertheless send
control to PCPP. If this happens shortly after a '76' (prepare transfer)
instruction for backing store has been issued by the user's program, then the
effect of that inctruction may well be destroyed by group T instructions

issued by PCPP.

Appendix 3

Page b

2.5.3

To avoid the above effect, the programmer using core backing
store must prevent the occurrence of interrupts between the execution of

the 76 and 77 instructions by the following method:=-

72 0
:
76 , BS
No Interrupts Allowed
77 X
67 7886
72 256

5. Error Indications

The following list gives the standard error (STERR) indications

which may be displayed, together with the definition of the error.

Appendix 3

Page 5

2.5.3

PROGRAM ERRORS
INDICATION DEFINITION

STERR 1 No parameter specified where one
is required.

STERR 2 Parameters N,F or M out of range

STERR 3 Parameters C or K negative, or D
out of rance

STERR T Attempting to remove a request
from a non-existent queue: this
is a PCPP error and should be
reported if it occurs.

STERR 22 Instructions not allowed (see
2-5‘3:2{}15-3]
STERR 23 Buffer size error (e.g. less than
Magnetic 3 words)
STERR 2L Tape Parameter B error
STERR 25 Errors Handler number error
STFRR 26 Function value error
Appendix 3

Page 6

2.5.3

RUN-TIME ERRORS

MESSAGE ACTION
CANNOT READ BLOCK "B" ON H"N" Type CONT, to cause the block to
CTLWD "INTEGER" be ienored, or tyme STOP, to end

off. The walue of the last
handler control word is displayed
to assist the decision.

CANNOT WRITE BLOCK "B" oN H"N" As sbove; continuation is not
CTLWD "INTEGER" normally worthwile.
WPERR HANDLER "N" Writine is not permitted on

handler M. Insert the write-
vermit ring, and the program will
continue as soon as the handler
is reloaded.

H"N" NOT READY Handler ¥ in manual, Set handler
to remote and chanre keyboard sign
to eontinue,

LP NOT READY Lineprinter is in manuasl, Set
it to auto and change keyboard
sien to continue,

Appendix 3

Page T

2.5.h

The Controlling Programs

Programs to be run under the control of the Mark 2 system, fall
into the following two catepories: those which make use of the Peripheral
Control Program (PCP) and those which do not. Just as under the !ark 1 system,
overall control of the machine is through the Reserved Area Program. Programs
not making use of PCP for peripheral activity may be triggered through RAP
exactly as under the Mark 1 system. Programs which use PCP are run under the
control of PCP and the method of program entry is amended accordingly. Once
the operator has entered PCP, the message to cause entry to a program is the
same as if RAP were receiving it. Precise details of the form of the message

will be found in the Appendix to the PCP description.

When programs are to be run under the control of STAR, then RAP must
be replaced by a special STAR version of RAP known as "STRAP", Certain of the
facilities of RAP which, under the Mark 2 system, have no useful application,
have been replaced by such facilities as are described in detail in section
2.5.5.10, Broadly these enable STEAP to detect whether or not STAR is in
operation., STRAP may also be used to replace RAP for normal operation except

for the use of the facilities which have been removed.

When a program ends and returns control to STRAP by means of the
STOP instruction, a test is made to determine whether STAR is controlling the
running of programs. If so, then STRAP sends control to STAR for the next
command to be obeyed. In this case 'END' is not displayed on the output writer.
When STAR is in control, all programs being run are run under the immediate

control of PCP whether or not they make use of PCP.

When control comes to STRAP as a result of an error interrupt or
manual interrupt then the operator has the option of making a decision as to
whether to meke a diapnosis (in the case of error interrupt) before sending control
back to STAR. The precise details on which such control decisions are based will

be found in the description of STRAP.

-1 =
(Issue 2)

503 TECHNICAL MANUAL

VOLUME 2: PROGRAMMING INFORMATION
PART 5: PROGRAMMING AND OPERATING AIDS FOR THE NON-BASIC 503

SECTION 5: SEGMENTED TAPE ADMINISTRATIVE ROUTINES (STAR)

1.

3.

Js

CONTENTS LIST

PREFACE

INTRODUCTION
1.1 Purpose of STAR
1.2 The STAR run

1.3 Example

A STAR BATCH TAPE
2.1 Segments and files

2.2 Layout of the tape

OPERATION OF A STAR RUN

3.1 General
3.2 FPhase 1
3.3 Phase 2

THE STAR COMMANDS TAPE

TABLE OF COMMANDS

5.1 Introductory commands
5e2 Input/edit commands
5«3 Output commands

5.4 Executive commands
5.5 Example

LISTING OF FILES

(Issue 2)

2.5.5

A= T = - B = L W « A}

10

11
1
12
16
16

20

21

2.5.5

Te

10.

11,

12.

13.

ERROR DETECTION IN STAR

ERROR INDICATIONS

8.1 Table of error numbers

8.2 Other error messages

8.3 Errors while closing the batch tape
8.4 Errors in particular commands

OPERATING INSTRUCTIONS

9.1 Device requirements

9.2 Preparing STAR systems tape

9.3 Preparing compiler batch tapes

9.4 Messages from STAR (not error messages)
9.5 Operating a STAR run

9.6 Continuation after errors

9.7 Entries to STAR

9.8 Interrupting phase 1

9.9 Interrupting phase 2

RAP MT

STORAGE OF DATA ON MAGNETIC TAPE
11.1 Format of storapme
11.2 Access to data
NOTES ON PERFORMANCE FIGURES
RESTRICTIONS

- 1] =

(Issue 2)

21

2k
2k
29
29
29

31
31
32
33
36
39
42
L3
b7
L8

51
23
23
23

25
58

21515

PREFACE

STAR is an operating system which improves the operating
efficiency of the 503 by allowing the user to hold programs and compilers on
magnetic tape. In this way the amount of paper tape handling necessary is
minimised and throughput is increased. Once a program is on magnetic tape,
¢he user may edit it before the next run by supplying a set of edit instructions

on paper tape.

The operating instructions for each STAR run, during which many
jobs will be processed, are prepared before the run and the complete set is

read in and obeyed in sequence.

The STAR system is most suitable for the updating and running
of programs under test. It is not suitable for running a sequence of production
jobs since it is not possible to omit the compilation stage and no facilities

are provided for producing binary versions of the programs on magnetic tape.

iii

2-5-5

STAR

1. INTRODUCTION

Tal The Purpose of STAR

The STAR system aims to make easier the updating and running
of programs on the 503. It allows the programmer to store on a segment
of magnetic tape all the programs and data he is currently developing, and
it allows the contents of a batch of such segments to be modified and later
used one after the other with the minimum of clerical work and operator
intervention. The complete set of instructions for the processing of the
batch is read into the machine before the processing begins, and thereafter
the operator has only to keep the devices loaded and to obey any instructions

that STAR may give via the output writer.

STAR operates on a non-basic 503 with a minimum configuration
of a lineprinter, 3 magnetic tape handlers and backing store. The
peripherals are administered by SPAN and PCP, with the exception of the

tape readers and punches.

Many of the ideas used in STAR are similar to those of the
Programmer's Utility Filing System (P.U.F.S) developed by Dr. M.V. Wilkes
of Cambridge University. Other ideas have been borrowed from the very
powerful Compatible Time-Sharing System (C.T.S.S.) developed for the T090

at Massachusetts Institute of Technology.

- 1 =

(Issue 2)

2.5.5

1.2 The STAR Run

A STAR run is divided into 2 phases. During the first phase

a new STAR batch tape is created containing mnemonic programs and their data;
these are either new versions input from paper tape, copies or edited
versions of existing programs on the old batch tape. Programs specified by
the user are translated and run during the second phase. These programs
must all be written in the same language although programs in various
languages may be stored in the same segment/batch. The running program may
use either one set of data from the new batch tape or from an external
source, or both or neither. e.g. An external source is any device other

than handlers 1,2.

1.3 EXAMPLE 1.

Suppose that the programmer is developing 2 programs, one
written in SAC and the other in FORTRAN say, and he wishes to make use of
the STAR system. Then he should prepare a list of commands to input, translate

and run his programs as follows:-

Command Purpose of Meaning
batch ;0,FORT. This usually identifies the old batch tape. In

the case of the first STAR run there is no old
batch tape.

FORT is the name of the batch to be used in phase 2.

T T

(Issue 2)

24545

Command Purpose or Meaning
new;segl. This opens a new segment called segl,
inpute;tests. This inputs the SAC program, testS, and writes

it onto the new batch tape.

inputc;dataS, This inputs the data for testS.

new;segz. This opens a new segment, called seg2.
inputc jtestA. This inputs the FORTRAN program testA.
inputc j;datad. This inputs data for testA.
FORTRAN;33testA;datald, The program testA is translated by FORTRAN

(the 3rd entry to FORTRAN is a special one
used by STAR) and run using data (dataA)
from the new batch tape.

] End of the commands tape.

i -

(Issue 2)

2.35.5

To run the SAC program, the following commands tape is needed:

Command Purpose or Meaning
batch;1,SAPBATCH. Load what was the 'new' batch tape on handler 3.

SAPBATCH is the batch to be used in phase 2.

update jsegl, Prepare to process segl.

SAP2 ;L ;testS,10,20;1;datas. The program testS is assembled by SAP2 (entry 4
] is a special one used by STAR) and run using
data (dataS) from the new batch tape. 10,20

are the estimates required by SAP2.

N.B. seg2 is copied across without alteration.

2. The STAR Tape

2.1 Segments and Files

A reel of magnetic tape is used to hold one batch of programs,
each program comprising one STAR file. The batch is composed of a number
of segments, each of which is processed independently of the rest of the
batch. All files specified by the user in one segment are edited/copied/
deleted/output (phase 1) or translated and run (phase 2) before STAR processes
the next segment. It follows that data files must be in the same segment as
the program files with which they are associated. Each segment is divided
into files as specified by the user. The file is the basic unit on which

STAR operations are carried out.

-

(Issue 2)

2.5.5

A file is written on the magnetic tape as a sequence of SPAN
blocks of 122 words each, including the headerword. All files are written

in binary mode with 5 T-bit characters per word.

Odd parity is always used on magnetic tape.

The last block in each segment is the segment directory. This
contains an entry for each file in the segment. A file is named by an
identifier of up to 6 alphanumeric characters, together with an integer
version number. 'This allows the user to have several versions of the same
file, each being the result of modifying the previous version. When a file
contains a program its name should be that of the program. Each directory
is preceded by a 5 word dummy block in binary mode containing <-1> in its 2nd,
3rd, bth and 5th words. The last segment directory is followed by a 5 word

binary block with <9LAST> in 2nd word.

If the user calls for a file by its identifier, he accesses
the latest version; if he refers to <identifier>/n, he accesses the last
version but n. Version numbers are updated automatically by STAR., Up to 8
versions of a file may be held in the segment i.e. versions 0 (the latest one),
1y 2, eseees To All files with version numbers greater than T are deleted

automatically by STAR.

e

(Issue 2)

24545

2,2 Layout of the Tape

The first block on the batch tape after the reel label contains
the batch directory, which has an entry for each segment. The batch
directory is followed by several erases, a 5 word dummy block, and the

individual segments.

3. Operation of a STAR Run
3.1 General

A STAR systems tape must be prepared by the user before the
first STAR run. This contains all the programs required during phase 1
of the STAR run and is loaded on handler 1 (see '"Operating Instructions' for
details). Handler 3 holds the old batch tape. Handler 2 holds the new
batch tape and has writing permitted. Handlers 1 and 3 must be set to read

only. DNo other program may write on these handlers during the STAR run.

One compiler batch must be prepared (see 9.3) also, for each
language used by the programmer, in addition a further batch is required
when running ALGOL programs. The two batches required for ALGOL must be
on the same magnetic tape. The SAP2 and FORTRAN batches may be written on
any magnetic tape, and in fact, all the batches required for phase 1 and
phase 2 may be put on the same magnetic tape, although this increases the

loading time and will reduce the speed of phase 2, which is not advisable.

-6 -

(Issue 2)

2-5-5

The first step in the operation is to input RAP MT under the

initial instructions and then to protect the reserved area.

The operator must type IN; 'name of phase 1 batch'. to load
the STAR batch from Handler 1 into main and backing store, and transfer
control to STAR. While this is golng on, the operator should load the

commands tape in TR1.

When the store is set up, STAR inputs the commands from TR1
and cbeys them one by one. All commands to create new segments are dealt
with first, then the segments of the old batch tape are processed in the
order in which the 'update' commands occur. The user can obtain maximum
efficiency of the run by ensuring that the 'update' commands are given in
the order in which the segments occur on the old batch tape, that commands
relating to files are given in the order in which they occur in the segment

and that data files follow the program files with which they are associated.

The commands relating to any segment fall into three sections,
the edit and input section, the output section and thirdly the execute
gsection. In phase 1, all commands are input, those in sections 1 and 2 are
obeyed and a new batch tape is created. The execute commands for phase 2
are added to the directories of the segments (on the new batch tape] to which

they apply by STAR. At the end of phase 1, STAR displays a message

- -

(Issue 2)

2-5-5

instructing the operator to load a compiler batch tape on handler 1 in place
of the STAR systems tape. This tape may already be held on a spare handler
which can simply be selected as handler 1. If the compiler batch is on the

same reel as the STAR phase 1 batch then no reloading is necessary.
3-2 Phase 1

Each command is displayed on the output writer before it is
carried out, so that the operator can follow the progress of the run. All
other messages from STAR are printed on a new line and are preceded by 3

asterisks.

When each segment has been processed, its files are listed on
the lineprinter, providing a record for the user. The format of the output
is "file name S version number". Similarly, at the end of the run, the
contents of the batch directory are listed (only the segment names appear in

in this list).

STAR does not change the contents of the old batch tape so it

may be processed more than once,

-8 =

(Issue 2)

2.5.5

3.3 Phase 2

An execute command causes the specified file to be translated
and run (possibly more than once, see 5.4), thus it can be subdivided into
at least 2 stages. In the first stage the program is translated, in the
second it is run for the first time, in the third it is run for the second

time, etec.

Before each stage is carried out, STAR displays sufficient
information for the operator to know what is going on. e.gs If the command
is

FORTRAN,3;testA;1;datad.

then STAR displays the following.

"%%*FORTRAN 0003 testA 0000" before stage 1.
i.e. Enter FORTRAN at its 3rd entry point to translate testA version 0
"i#x*testA 0001 dataA 0000" before stage 2.

i.e. Enter testA at its first (and only) entry point, use dataA version 0.

If the command is SAP2;k;test5,10,20;1;datal;datal/1,
then STAR displays
***SAP2 000k testS 0000 before testS is assembled, and
*%*testS 0001 datal 0000 before running testS, and

*#*test5S 0001 datal 0001 before rerunning tests.

o

(Issue 2)

2.5.5

L, The STAR Commands Tape

The commands relating to a segment are grouped together, and are
introduced by & 'new' or an 'update'. They are divided into three parts: an
editing/input section, which is carried out first to produce a set of files on
the new batch tape, an output section and lastly an execute section during

which programs are translated and run,

Any segments, or files within a segment, that are not listed for
editing are copied as they stand on to the new batch tape (unless 'nocopy' is
in force). If there is no 'update' command for a segment and "nocopy' is in

force then the segment is removed from the batch directory.

Each command begins with a command word (either a basie STAR
command or the name of a compiler), and ends with a full stop. The command
word is followed by a (possible null) reference set, whose elements are
separated by semicolons. Each reference element is either a single name,
or else a list (possibly null) with its elements separated by commas. The
user must write input/edit commands before the output commands for a particular

file.

The last command must be followed by]. All page layout
characters are ignored by STAR and may be used to give a neat print-out of

the commands tape. The following characters may appear in the commands tape

- 10 =

(Issue 2)

blank, L, T, S, E, + A1l ignored.

(),*/0tc9=-, ;AtoZatoz

V is allowed only after an error has been detected during

input of the commands tape.

All other characters cause error 1 to be displayed (see 8.1).

The storage space used by a command is approximately one word

for each element in the command.

5. Table of Commands

&l Introductions (Phases 1,2)

1. batch;batch number, compiler batch name.

This is the first command on the tape. The'batch number'is
the number of the reel containing the old batch (zero if no old batch tape).
STAR gives a number one greater than this to the new batch tape. The

'compiler batch name'is the name of the relevant phase 2 batch.
2. nev;segment name.

This introduces a new segment which is to be added to the

batch.

- 11 =

(Issue 2)

2.5.5

3. update;segment name,

This introduces the commands which refer to an existing

segment that is to be modified in some way.

5.2 Edit/Input (Phase 1)
L, nocopy .

This suppresses the automatic copying across of unmentioned
files. If this command appears before any of the segment introductions,
it applies to all segments of the batch; if it appears among the commands

with a particular segment, it applies only to that segment .
5 merge;file list, file name,

The elements in the file list are separated by commas. This
creates a new file called file name (the last name), by joining together
the character files in 'file list' in the order in which they occur in the
list. Files from the old batch tape are merged together on the new bateh
tape. The new file name may not be followed by a version number. The new
file is given version number zero unless the name is the same as one of the

files in the list. In that case it is given the same number as that file.
6. inpute;file name.
This inputs a character file from TR1, writes in onto the new

batch tape and enters it into the segment directory. If a file of this name

- 12 =

(Issue 2)

2.5.2

already exists in the segment, its version number is adjusted in the directory.
If the program (or data) is punched on more than one tape, then each tape
except the last must be terminated by & followed by H which cause '***WAIT"

to be displayed. The last tape must be terminated by H only. & on its

own is ignored. H and & are not stored in the character file.
T. edit;file name,

This writes on to the new batch tape an edited version of the

file from the old batch, taking the corrections from TR2. The new file is

called "file name" and the previous versions are renumbered accordingly.
Editing instructions are given in the style of 503 Library program EDITALL,
and must be terminated by an RE instruction. A ST instruction causes
"*x*WAIT' to be displayed. Editing continues when the sign of the word

generator is changed.

8. inedit;file name.

This is a combination of edit and inputec. The file that is
written on to the new batch tape is the result of editing the information

from TR1 with the correction from TR2. The edit instructions must end with

an 'RE', If the program is punched on more than one tape, each one except
the last must be terminated by & and H which cause '***WAIT' to be displayed.

The last tape must be terminated by H only.

- 13 =
(Issue 2)

2.5.5

9. list;file name.

This outputs on the lineprinter the contents of the specified
file from the old batch tape. Upper case letters have | (vertical bar)
printed underneath. Underlined upper case letters have | only printed
underneath, i.e. the underline is omitted. Underlined lower case letters

are still underlined.
10. copy;file name.

This causes the named file to be copied across to the new
batch tape and is used to override the local or global effect of 'nocopy'. The

filename is removed from the store copy of the old segment directory.
11. delete;file name.

This suppresses the copying of the specified version of the
file from the old batch tape to the new, and removes its name from the old
segment directory. It does not prevent the file from being operated on to
produce a file for the new batch tape i.e. edited or merged. The version

numbers of previous versions are reduced by 1.
12, rename jname list.

This can refer to files or segments. The name list contains

2 names, nl and n2 say. The file/segment on the new tape that is called n1

-1 -
(Issue 2)

24545

has its name changed to n2. Previous versions of the file n1 are not renamed,

but the version numbers are reduced by 1.

If the user wishes to rename a segment then he must write the
command before the first 'mew' or 'update' command on the tape, and if the
segment is to be processed then he must quote the name in the update command.
The command to rename a file may occur anywhere in the commands relating to

the segment but it must precede any commands to output the file.

NOTE 1. The edit instructions for one file must be punched on cne
tape only.
2. When STAR detects & followed by H it displays "#*#*WAIT'.

The operator must load the next tape in the reader and change
the sign of the word generator to continue. STAR waits if H
is the first non-blank character input in an inpute or inedit
command but usually H on its own means end of program and does
not cause STAR to wait. If 2 H's are punched at the end of a
program, the first one means end of program, the second one

causes a wait when STAR obeys the next inpute/inedit command.

3. The edit string in a FL instruction may not contain more than

50 characters (excluding spaces, tabs and blanks).,

L, Blanks and erases are ignored by inputc and inedit commands.

w15 -

(Issue 2)

2:5.5

5u3 Output (Phase 1)

outc j;filename.

This outputs the named file from the new batch tape to TP1.
The file is copied across to the new batch tape automatically if it is

not already there.

5.4 Execute (Phase 2)

compiler name;trigger pti;file name;trigger pt;data filename.

The program 'file name' on the new batch tape is translated
using the compiler specified. The user must ensure that the file (and the
data file) is on the new batch tape before the end of phase 1, otherwise
STAR may cause the wrong version to be translated or give an error indication
if it cannot find a file of that name. The above format applies only to

the SAP2 and FORTRAN compilers. For ALGOL the format is as follows:
ALGOL;file name.

If translation is successful, the program is run with data
from the new batch tape. For the SAP2 and FORTRAN compilers PCP may be
used to read the blocks of data into store, the program must provide its
own decode facilities. The method of storing characters on magnetic tape
used in STAR is described in 11.1. For the ALGOL compiler STARCH may be

used to supply characters, entering it using Elliott instructions, see 11,2,

- 16 -

(Issue 2)

2.5.5

The trigger points of the compiler and program must be specified.

If translation is not successful, STAR causes the compiler batch to be reloaded

and obeys the next command.

The file and data may both be qualified by version numbers.
In the latter case only b versions of the data file are allowed, versions 0,1,

2 and 3.

If it is a SAP program which is to be translated, the estimates
required by SAP2 must follow the program name (and the version number if
quoted).

i.e. SAP2 jtrigger pti;file name,x,y;trigger pt; data. or
SAP2 ;trigger pt;file name/number,x,y;trigger pt;data.

where x and y are the required estimates,

To translate a program but not run it, the command should be
terminated after the file name.

i.e. compiler name;trigger pt;file name.

This is meaningful only when the compiler in use is SAP since
the FORTRAN compiler deletes itself after translating a program, The user
may cause up to 5 SAP programs to be translated consecutively, then he may
enter the last program which calls on the earlier ones as common programs,
possibly. STAR replaces SPAN basic and SAP by SPAN (complete) before running

a SAP program.

i T es

(Issue 2)

2'5'5

To run a program without data, the data name may be omitted but

the correct number of ;'s must precede the full stop.

i.e. compiler name;trigger pt;file name;trigger pt;.

Alternatively the program may be run using data loaded in an
exterpal source

i.e. any device other than MT2. The data name should be replaced by *,

i.,e. compiler name; trigger pt; file name; trigger pt;=*.

To run the program with both internal and external data then
'data name*' should be written in the command. The * must follow the data
name.

i.e. compiler name;trigger pt;file name;trigger pt;datax.

Before the program is run STAR tests for external data and
displays a message to the operator to load data. The user must inform him

what to load and in which device.

The same program may be run and rerun 6 times. For each rerun
"trigger pt;data name;" should be added to the command.

e.g. compiler;trigger pt;filejtrigg pt;data;trigg pt;data.

Before each program is translated the whole of the main and

backing store is reset, i.e. the compiler batch is reloaded from handler 1

- 18 =

(Issue 2)

24542

(For the ALGOL compiler only the main store is reset). This ensures that
if one program goes wrong and corrupts the store it does not hinder the

translation and running of later programs.

The results of programs run under the control of STAR phase 2

may not be filed in the new batch tape.

The last thing STAR does before transferring control to a
compiler/translated program is to position handler 2 in such a way that the
next block read is the first block of the mnemonic program/data respectively.
It is the responsibility of the compiler/program to ascertain the number of

this block as a precaution against the handler being moved.

If a running program reads data from the new batch tape then
it must either use PCP to read the date or increment the contents of

location 187 by 1 for each block read.

STAR recognises the following as being compilers:

SAP2, ALGOL, FORTRAN.

The entry points to compilers which must be used in a STAR

run are:

SAP2 - b

FORTRAN-3 (without checks), 6 (with checks)

- 19 -

(Issue 2)

2.5.5

For ALGOL, to compile with checks the compile name should

be followed by an asterisk, e.g. ALGOL*j.eeueees

The compiler name may be followed by an issue number. This

is for information only. STAR cannot check that the right issue is used.

A program returns control to STAR with the STOP instruction.

5.5 EXAMPLE 2

The typewriter output from STAR when it obeys the first

commands tape given in EXAMPLE 1 would be as follows:

t&¥new reel number 1
batech ;0 ,FORT.
new;segl,

inpute jtestS.

inputc ;datas.
new;sege.
inputejtesta.

inpute jdatad.

**%plock no. n CCP m (information needed to repeat phase 2, see 9,5)
***]oad compiler batch
*E&WATT

***FORTRAN 0003 TestA 0000 (translate testA)

- 20 -

(Issue 2)

2-5-5

*#¥testA 0000 datap 0000 (run testh)

*x¥end of bateh run

The lineprinter output (all in phase 1),

segl)

testS 0000)

dataS 0000) contents of segment directories
seg2)

testA 0000)

dataA 0000)

segl) contents of batch directory
seg2)

6. Listing of Files

The 'list' command (see 5.2.9) provides a means of producing

on the lineprinter a listing of files from the old batch tape.

The command words inpute, edit, inedit and outc can each be
followed by an asterisk to indicate that the file that is being written on

to the new batch tape is to be listed on the lineprinter at the same time.

Te Error Detection in STAR

The STAR system as so far described assumes that a set of
programs will be edited and later run one after the other, each user

program returning control to RAP MT, with a STOP instruction when its

- 21 -

(Issue 2)

2-5-5

execution is complete. RAP MI' then searches for STAR and re-enters it to

obey the next command.

But suppose a user program goes Wrong or causes an error
interrupt or exceeds its time and has to be stopped by the operator. He
must bring control back to RAP MT and take one of the following courses of

action:

(1) Resume the run by typing CONT. or CONT;ERRINT.

(ii) Reload the STAR phase 2 batch and go to obey the
next command by typing IN, 'batchname'. For
ALGOL runs only the run may be resumed by typing

STAR.

(iii) If there is a postmortem program available he could
enter it and output the current values of the
program's data/arrays. Then he can go on to obey

the next command as in (ii).

STAR may also detect an error at a stage when one of its
subprograms is in control of the computer (during phases 1 and 2). The

following paragraphs consider the possible circumstances.

- 22 =

(Issue 2)

24545

At the start of the run the commands tape is read in; each

command is checked for errors in its syntactic structure.

At this stage STAR can refer to the batch directory, and so
can also make a check on the segment names that occur in commands. A
full semantic check is not possible because the individual segment directories
are not conveniently available, If an error is found, the offending command
is displayed together with an error message. The computer then waits for
the operator to type in a correct version of the command. When this is
accepted, the run continues as if no error has occurred. If the operator
is unable to correct the error, he types the failure symbol V and a full stop.
In this case, the remainder of the commands tape is read and checked, but the
batch is not processed. Input stops each time STAR detects an error; to

continue the operator must type V . .

o command may occupy more than 13 words in store. In the
case of an execute command, the user is allowed to run a program 6 times in
the same command, The file list in a merge command may contain at most 11
names, but it must be born in mind that version numbers occupy one whole
word, so if any file is qualified by a version number it reduces the total

number of files allowed.

In general, if an error is found when STAR is obeying & command
then that command is abandoned and STAR goes on to obey the next one. See

‘errors in commands' for full details.

-23 -

(Issue 2)

2-5-5

8. Error Indications

When an error is detected '#*** error n' is displayed and if it
occurs during the input of the commands tape then the offending command is

output as well.

Phase 1 consists of 2 stages: (a) inputting the commands tape
and (b) obeying the commands. In the following error table the phase (1 or 2)

and stage (a or b, phase 1 only) in which the error might occur is indicated.

8.1 Table of error numbers
Error HNo. Cause Phase
1 (1) incorrect format of commands tape 1a
(ii) wrong character on commands tape 1a
(iii) more than 12 digits in a number on
the commands tape 1a
(iv) more than 5 SAC programs assembled
consecutively o
(w) A '"translate only' execute program
given when the compiler is ALGOL or
FORTRAN 2
2 (i) unknown command i.e. first word of a

command is not any of the following:
1. A STAR basic command word)

) la
2. A compiler name)

- 24 -

[Issue 2]

En 5.5

Error No. Cause Phase
2 (ii) None of the compilers in store 2
(iii) STAR not in store 2
(iv) wrong type of command
e.g. give the command copy among the
commands for a 'new' segment 1
(v) SPANSWAP NOT IN STORE (SAP run only) 2
3 (i) Unknown file 1b,2
(1i) Version number >T 1o
L Unknown segment 1a &b
5 Incorrect or insufficient edit instructions for
and edit/inedit command 1b
6 1st command not batch la
T 01d batch tape has been overwritten, i.e. one
(or more) block is the wrong length la,& b,2
8 EOT marker passed on input 1b,2
9 (i) Stored commands list has been corrupted
(11) Error in format of a command not
detected during input 1b
10 EOT marker passed on output 1]+
12 PCP magnetic tape function not allowed (BOT) la & b,2
- 25 -

(Issue 2)

2-5'5

Error No. Cause Phase
13 PCP magnetic tape function not allowed (EOT) la & b,2
14 0ld segment directory corrupted 1
8.2 Other error messages are:
*#**batch n) The batch number, n, given on the commands tape is not

*kkreel m

the same as the reel number, m, of the old batch tape.
The operator must load either the correct reel or the
right commands tape and start again by reinputting
RAP MT and typing IN; batchname.

*%ino <device name>) A device required by STAR is not available. The

)

End) operator must remedy the situation if he can and

start again (Phase 1),

#¥*NODICE) A PCP error has occurred at the end of phase 1 of
)
End) the batch run when STAR attempts to cancel its devices,
The run stops. (Phase 1).
*x*NORUN ; Either an error has been found in the commands tape or
End) continuation is not possible. This message is displayed

after errors 12, 13 among other places (Phases 1,2).

- 26 =

(Issue 2)

2.5.5

" % ++NOTRUN' A translation error has occurred and the program cannot
be run (Phase 2 SAP2 and FORTRAN only). STAR goes on

to the next command.

'end of tape on Hn' This message follows errors 8,10. Phase 1 only. The
directory of the current segment is listed and the batch
is closed i.e. the contents of the batch directory are
listed and it is written on to the new batch tape.

The current segment is omitted. (Phases 1,2).

'#*%*<device name and number> on manual'
kA WAIT The operator should take the device off manual and

change the sign of the W.G. to continue (Phases 1,2).

**x*PARITY A parity error has been detected, and still persists
END after six re-reads of a block during phase 2

(ALGOL compiler only).

I An identifier has been typed instead of a number when
running phase 2 without first running phase 1

(see 9.4, 9,7(b)). The operator must type both the

required numbers again.

STARCH ERROR This is displayed by Starch if it cannot read the program

from magnetic tape. It is caused by one of the following.

- 2T =

(Issue 2)

24545

(i) Parity failure
(ii) Short/long block read
(iii) Block with incorrect number read (not in ALGOL run)

**#*PCP prog error type n

End

#%x{fjile name> absent

#**PCP R(W,P) err

End

*%xHn write permit

R AWATT

)
)
)

This follows a PCP error exit class 2. The

run stops (Phases 1,2).

A program or data file specified in an executive
command is not on the new batch tape when STAR
closes the current segment. STAR omits the

command and continues.

A PCP error class 3 has occurred i.e. a parity
error while Reading, Writing or Wrong Parity

specified. The run stops. (Phases 1,2).

Writing is not permitted on handler n. The
operator should correct this state and change

the sign of the W.G. to continue (Phase 1).

- 28 -

(Issue 2)

2.5.5

PPPPPasaccis This is displayed by the RAP MT magnetic tape
input routine, It means that RAP MT cannot
read in the first block on the magnetic tape.
Interrupt and type IN;NAME. to resume the run

if possible,

8.3 Closing the Batch Tape

When the lst command has been obeyed the current segment is
closed, and all unmentioned segments are copied across unless nocopy is in

force. If an 'error T' occurs while the segments are being copied then

either
(1) If the old segment directory has been overwritten,

the whole segment is omitted and 'segment name removed'
is output on the lineprinter. STAR copies the remaining
segments.

or (ii) If a block in & file has been overwritten, that file
is omitted. GSTAR copies the remaining files and
segments.

8.4 Errors in Commands

In general, if an error is detected in an individual command

then that command, is omitted. The exceptions to this rule are listed below.

-29 -

(Issue 2)

24545

(i) update.

If an error occurs while closing the previous segment,

i.e. a block in one of the files has been overwritten, then
the file is omitted and STAR copies the remaining files.

If the old segment directory has been overwritten then the
segment cannot be processed. STAR ignores all commands
until it finds the next 'update' command. 'Segment name
removed' is output to the lineprinter and the next segment
is updated. If the commands list is corrupt (error 9) STAR

attempts to obey the next command.
(ii) merge,inputc,edit,inedit,rename (applies to files).

The command is discontinued. All commands relating to the
character file that would have been produced are omitted,

i.e. outc, execute.

If the command is edit then the old file is copied across and

'***file copied' is displayed.

If the command is inpute, edit or inedit then STAR displays
"% %**WAIT' and waits for the operator to unload TR1 and/or TR2,
and to load the next tape in TR1 (and TR2 if appropriate) if

any. STAR continues when the sign of the W.G. is changed.

o

(Issue 2)

24545

If the command is merge or edit and the error occurs before
STAR can determine the version number of the resulting file

then it assumes it to be zero.

(iii) Execute.

If the program is not translated successfully, then STAR

displays "***NOTRUN' and goes on to the next command.

9. Operating Instructions

9.1 Device Reguirements

STAR requires the following devices

(i) tape readers 1,2 (phase 1).

(ii) tape handlers 1,2,3 (phase 1), handlers 1,2 (phase 2).
(iii) lineprinter (phase 1).

(iv) typewriter (phases 1,2).

(v) punch 1 (phase 1).

N.B. Handler 2 remains booked to STAR during the whole of phase 2, s0 a

program must not book H2 although it may read data from the handler.

o Y e

(Issue 2)

2:5:5

9.2 Preparing the STAR Systems Tape

All the batches must be made using DUMP2 and all magnetic tapes

mist be prepared before any batches can be dumped on them (see 2.2.3.4b). 1In

the following operating instructions it is assumed that the magnetic tape

(or tapes) has been prepared. STAR issue 2 must be used with DUMP2 and RAPMT.

First, load a tape on handler 1 with writing permitted.

Y

10,

11.

12,

Either input RAP or type RESET. if RAP is already in.

Input SPAN IN.
Input SETCBS IN.
Type SPAN;S.

If N = no. of units of

backing store, type SETCBS.N.
RESET.

span (basic) IN.

SAP2 IN.

SPANSWAP Issue 2 IN,

N has the same value
as in 5, type span;N.
Assemble PCP

Assemble STAR (phasse 1) issue 2,

T

(Issue 2)

2.545

13. Attach STAR to PCP PCP.STAR ;2.

'STAR PHASE 1' is output to the typewriter.

1k, DUMP2 IN.
15. Dump the main and

This batch may be given any name. If more than one
unit of backing store is fitted, one need only specify one unit in steps 5

and 10 and dump the batch by typing DUMP2,6.16.STAR.

9.3 Prepare the Compiler System Tapes

First load a tape on handler 1 with writing permitted.

A different tape may be used for each compiler batch or they

may be grouped on one or more tapes.

A. SAP

1=9 Same as 9.2 except than SSspan is used instead of span
(basic), and STARCH must be input before SPANSWAP.
Step 10. Input any other binary programs required during the

compiling or running of a program. e.g. Read and Print

routines for a SAP program,

- B9

(Issue 2)

24545

1. N has the same value as in 5, type span ;N.

12, Assemble PCP.

13. Assemble STAR (phase 2)

1k, Attach STAR to PCP PCP.STAR ;2 .BATCHNAME.

'"#+x*3TAR PHASE 2' is output to the typewriter.
15. DUMPZ IN.

16. Dump main and backing store, DUMP2.SAP2,

The batch names typed in steps 14 and 16 must, of course be
the same., This batch may be given any suitable name, Notice that SSspan

and SAP2 are left in main store. STAR enters SPANSWAP before running a SAP

Program.
(v) FORTRAN

Follow the same procedure as that for making the SAP batch but
use span (basic) and not SSspan. Omit STARCH. After Step 11 assemble the
compiler and the DRS. The FORTRAN DRS must be assembled before the FORTRAN

compiler.

(e) ALGOL

For ALGOL two batches are required on the same tape called X
and Y, say. There may be other batches on the tape as well as the ALGOL

ones, e.g. the STAR phase 1 batch.

-

(Issue 2)

(i)

24542

The actual compiler bateh called X, say.

1. Type RESET.

2. Input STAR (Trigger) IN.

3 Input STARCH IN.

L, Input ALGOL tape 1 IN.

5. Input ALCOL tape 2 change sign of word generator

'swait'displayed.

6. Input MOD5 & MOD 10 IN.

N.B. Any other MOD required may be input if it does not interfere with STAR.

(ii)

Te Interrupt and type STAR;2.Y.
where Y is the name of the second batch
containing STAR (phase 2 for ALGOL).

8. Input DUMP2. (64 buffer) IN.

9. Type DuMP2;2.X.

STAR control batch, called Y, say

1. Type RESET.

2. Input STAR phase 2 for ALGOL IN.

3. Type STAR;2.X.

L, Input DUMP2 IN.

5. Type DUMP2;2.Y.
™

(Issue 2)

2.5.5

Note that in the entries to STAR (STAR;2) the names of the
two batches are exchanged - this is to facilitate interchange between the
two batches without operator intervention. The names given to the batches

are not significant.

9. Other Messages Displayed by STAR

'"<SEGMENT NAME> REMOVED'

This message appears on the lineprinter. The segment in
question has been removed from the batch directory. e.g. if nocopy is in
force and the only command relating to a particular segment is

"update;segment name." then that segment is removed.

*¥*mew reel number N

N is the reel number of the new batch tape.
*#%% block no n CCP m

*** load compiler batch

*# A TT

This is displayed at the end of phase 1. Phase 2 starts
when the sign of the W.G. is changed., The numbers n and m are the block
number of the 1st segment directory and the initial value of the current
command pointer (CCP). If the operator wishes to repeat/restart phase 2

he has to type these two numbers (see 9.5).

- 36 -

(Issue 2)

2.5.5

***bhlock non CCP m

wx *WALT

This is displayed during phase 2, if key 1 is depressed or
if entry 5 is made (SAP2 & FORTRAN compilers only, entry 5 is not in STAR
for ALGOL). The numbers n and m are the block number of the segment
directory and the value of the "current command" pointer - see 9.9 for

further details.

*+k]load data

*kkWATT

STAR displays this before running a program with external data.

'«x*compiler/prog.name ;trigger pt;file/data name;version no.'

This is displayed before a program is translated/run.

dddTIm

These numbers were displayed at the end of the original phase 1
run or when the phase 2 run is interrupted by depressing key 1. The former
values of n and m must be typed if the user wishes to run the whole of
phase 2 and the latter numbers if he only wishes to run phase 2 from the

point at which it was interrupted.

- 37 -

(Issue 2)

2.545

*RAWAIT

(i) This is displayed by STAR when an inedit or inputc command is

being obeyed in phase 1 if it reads a 'ST' instruction.

(ii) It is displayed at the end of an edit or inedit command if
the edit failed in order that the operator may remove the
erronecus edit instructions tape from TR2 before the next

command is obeyed.

(iii) It is displayed when the end of an intermediate tape is detected
(by STAR reading & and H) to allow the operator to load the next

tape in the reader.

(iv) It is displayed if H is the first non-blank character read by

STAR in an inputc or inedit command. It is suggested that

the last tape to be input should be terminated by 2 H's. The
first signifies end of program, the second causes STAR to wait
before obeying another inputc or inedit command if the operator

has not had time to reload the reader(s).

**x*file copied

An error has been found in an edit command, the old file has

been copied on to the new batch tape.

e |

(Issue 2)

24545

**%end of batch run
At the end of phase 2, control returns to RAP MT.
* & ADUMPIT

Key 1 has been depressed during phase 1. The contents of
main and backing store may be dumped on a prepared tape using DUMP2 in order

that the STAR run can be stopped now and resumed at a later date. GSee 9.8.
***SETWG

Set the B-digit of the word generator to compile an ALGOL

program with checks. (Phase 2 ALGOL only).
*x #CLEARWG

Clear the B-digit of the word generator to compile an ALGOL

program without checks (Phase 2 ALGOL only).

9.5 The STAR Run

1. Load STAR systems tape on H1, protected
Load a new reel of tape on H2, writing permitted

Load the old batch tape, if any, on H3, protected.

2i Input RAP MT (a special version of RAP). 1I.I's

Protect the reserved area

- 39 =

(Issue 2)

2.5.5

3.

Now the

While this is going on

L.,

5

IN;NAME,

Where 'NAME' is the name of the STAR phase 1 batch.

STAR batch is loaded into main and backirg store.

the operator must load the commands tape in TRI1.

When the store is set up, control is transferred to

STAR automatically and the commands tape is read in.

The commands are obeyed one by one (except for
execute commands which are stored on a new batch tape
ready for phase 2). The operator has only to keep
the tape readers loaded (for inputc, inedit and edit
commands), collect any output from punch 1 and keep

the lineprinter loaded.

At the end of phase 1, STAR displays the message
'*#**plock number n CCP m'
***load compiler batch
***WAIT,
The user must inform the operator in his coperating
instructions which compiler batch tape he is to load
on handler 1, When he has done so, he must change
the sign of the word generator and phase 2 will

commence automatically. The new batch tape on H2

- Lo -

(Issue 2)

2,545

mist be at B.0.T. at the start of phase 2. It is

rewound at the end of phase 1 and must not be moved.

The compiler batch and STAR phase 1 batch may be on

the same reel,

6 During phase 2 programs are translated and run. The
operator must load data in devices specified by the
user, and collect results from devices named by the

user,

STAR requires the typewriter and handlers 1 and 2 only;
the lineprinter punch 1 and handler 3 are available to

the user.

Phase 2 cannot be run without first running phase 1
once to prepare a STAR batch tape containing the
desired programs and executive commands, also to

ascertain and display the values of n and m (see 9.L4),

However, it is possible to repeat or restart phase 2 by pressing
the message button, re-entering STAR phase 2 at its Uth entry point and typing
in the block number, n, and initial value of the current command pointer, m,
which were displayed at the end of phase 1, This has the effect of setting
pointers back to the values they held at the start of phase 2, transferring to
the magnetic tape input routine in RAP MT to reload the compiler batch and

restart phase 2.

- 41 -

(Issue 2)

2.5.5

The operator must type
PCP3;3.STAR;4.n.m.
When using the ALGOL compiler, it may be necessary to reload the STAR phase 1

batch before making this entry. Phase 2 can be restarted, thus any oumber

of times.

9.6 Continuation after errors
Error Action

(a) Phase 1

Error in the commands tape Type either a correct version
detected while it is being of the command, including a
input., The erroneous full stop, or the failure
command is displayed. symbol V and full stop.

2. 'error message' Continuation is not possible.
"End"' See 8.2 for a list of error

MESSAZES .

3. All other error messages not STAR attempts to continue the
followed by 'End'. run.

(b) Phase 2

b, 'xx%error 2'.(SAP2 & FORTRAN Load the correct reel on Hi

runs only) The wrong batch tape and type IN; BATCH NAME..
has been loaded on H1 i.e. no The compiler batch is reloaded
compilers in it/STAR missing/ and the same command obeyed

SPANSWAP missing (SAP run only) again.

= L2 -

(Issue 2)

9.7
(a)

Error

The batch on H1 contains the
wrong compiler.

e.g. Trying to assemble SAC
programs using FORTRAN. This
should be obvious to the
operator from the typewriter
output, but STAR does not

detect 1it.

When ALGOL compilation errors
are detected - the compiler

goes to SWAIT

When excessive FORTRAN

compilation errors occur.

Entries to STAR

Phase 1

2.5 .5

Action

As in L4 above,

It may be necessary to press
the message button and type
STAR. to continue the batch
un. If STAR is corrupt then
the STAR phase 2 batch should
be loaded by typing IN;NAME.
where NAME is the name of the

batch containing STAR phase 2.

Interrupt and reload the batch

to continue,

1. Dummy entry. If control returns to RAP MI' during a

STAR run then RAP MT transfers to STAR's first entry

point which causes control to return to RAP MT

immediately.
T

(Issue 2)

24545

2. Attach STAR to PCP. This entry must be made when

preparing the STAR batch tape. See 9.2.

3. Main entry to phase 1, DUMP2 transfers control here

after reading the STAR batch into main and backing

store,

L, The facility of stopping at the end of the current
commsnd is now under keyboard control (see 9.8).

Entry 4 now becomes a dummy entry as in entry 1.

5. Go on to the next command. The current command is

abandoned (unless it is 'new' or 'update' which must
be completed) and the next one obeyed. To use this
entry the operator must interrupt the STAR run by

pressing the message button, and typing PCP;3.STAR;5.

6. Fepeat this command. The current command is restarted

(unless it is 'new' or 'update' which may not be

repeated). The mode of entry is as in entry 5.
(b) Phase 2
1. This entry is used by RAP MT, Each time control returns

to RAP MT from a compiler or running program by means of
a 'STOP' imstruction, RAP MT searches for STAR and

re-enters it at this entry point.

- L -

(Issue 2)

24545

Attach STAR to PCP and save the batch name in STAR's

workspace. This entry must be made when preparing
a compiler batch tape. See 9.3. In the case of
FORTRAN or SAP2 compiler batches, the name of the
batch must be typed so that the batch can be reloaded

by HAP MT,

When running ALGOL programs, there are two phase 2
batches and each must know the name of the other one
so that each can load the other using RAP MT and
without operator intervention. Entry 2 to STAR
(trigger) and STAR (phase 2 for ALGOL) must be used to

set the batch names., See 9.3(c).

Main entry to phase 2, DUMPZ2 transfers control here
after reading the compiler batch into main and backing

store.

To repeat or restart phase 2, enter STAR phase 2 at

its fourth entry point by pressing the message button
(if necessary) and typing PCP;3.STAR;:;4. The block
number, n, and initial value of current command pointer,
m, which were displayed at the end of phase 1 (see 9.k,
9.5) must then be typed. This entry does not exist in

STAR (Trigger).

w5 =

(Issue 2)

2.5.5

(e)

This entry prints out the wvalues of the block number,
n, and current commant pointer, m, for the command
being obeyed. It should be used if the phase 2 run
has to be suspended for any reason by pressing the
message button and typing

PCP;3.STAR;5.
When the STAR run can be resumed, the operator must

reinput RAP MT, load the STAR phase 2 batch and after

the message "**mm', type in the values displayed by
STAR entry 5. The run is resumed, starting with the
interrupted command. This entry exists only in the

version of STAR phase 2 for SAP2 and FORTRAN.

An alternative method of interrupting phase 2 (all

versions) under keyboard control is described in 9.9(b).

To run phase 2 without running phase 1

Phase 1 must be run once to prepare a new batch tape but phase 2
can be run any number of times using this new batch tape. The
location in RAP MT which is set by phase 1 will be clear on entry
to phase 2 if phase 1 has not been run. Phase 2 displays the
message ***nm and waits for the operation to type in the 2

integers n and m (each terminated by a full stop) which were

- L6 -

(Issue 2)

24545

displayed at the end of the original phase 1 run (see 9.k,
9.5.6) or at some time during phase 2 (see 9.9). They
provide the information necessary to set up the RAP MT

location and start the phase 2 run.,

'n' and 'm" may vary from one new batch tape to another,

therefore RAP MT rust be reinput each time phase 2 is run

using a different batch tape on H2.

9.8 Interrupting Phase 1

It is possible to interrupt phase 1 while it is obeying the
commands in order to dump the contents of main and backing store. ‘This is
useful if STAR is over-running its allotted time., The operator can complete
the run on another occasion merely by loading the same tapes on handler 2

and 3 and loading this batch.

STAR will stop after obeying a command if Key 1 is depressed,
This key setting has no effect while the commands tape is being input. STAR
allocates a SPAN block of 1000 words which is large enough to hold DUMP2 and
sets the FF and LF pointers pointing to the first and last words of this
block respectively. The tapes on H2 and H3 are rewound. Then '***DUMPIT'

is displayed.

- 47 -

(Issue 2)

2.5.5

The operator should now read in DUMP2 and dump a batch on any

magnetic tape available.

When this batch is reloaded the STAR run is resumed
automatically. However if the operator wishes to continue the run immediately
after dumping the batch he must type

PCP;3.5TAR:3.

9.9 Interrupting Phase 2

(a) Operator Intervention

SAP2 and FORTRAN only

Phase 2 can be interrupted by pressing the message button and
typing PCP;3. STAR;S. This causes the block number X and current CCP value
Y for the current command, i.e. the one being obeyed when the run was
interrupted, to be displayed. To continue the run on another occasion the
operator should load the correct batch on H2 at B.0.T., input RAP MI' and load
the compiler batch. In response to the message '#***nm' he should type

X.Yss The run is resumed and the first command to be obeyed is the one that

was interrupted.

Alternatively he may wish to interrupt one program (e.g. because
it is overrunning or has entered a loop) and go on tc obey the next command
immediately. In this case he should press the message button and type
IN; "compiler batchname".

If the FORTRAN compiler is interrupted, the operator must reload the batch

to continue,

- L8 -

(Issue 2)

24545

ALGOL

The operator may wish to interrupt a program (perhaps because
it is overrunning) or the compiler (because there are syntactic errors) and
go on to obey the next command immediately. In this case he should press
the message button and type STAR. . Should STAR be corrupt or overwritten,

the operator should reload the STAR phase 2 batch by typing IN; "batchname".

(v) Keyboard control

Phase 2 can be interrupted at any time by depressing key 1,
The interruption will take effect after the batch containing STAR phase 2
has been reloaded, and the values of block number, X, and CCP, Y, for the
next command are displayed. STAR then outputs '#**WAIT' and continues the

run vhen the setting of Key 39 is altered.

To restart the run at this point on another occasion, the
operator must load the same tapes on handlers 1 and 2, reinput RAP MT and
load the STAR phase 2 batch when '#***nm' is displayed he should type X.Y.

and the run will continue from the point at which it was interrupted.

SAPZ2, FORTRAN

To obtain the values X,Y for the current command, entry 5 to

STAR phase 2 must be used,

- kg -

(Issue 2)

2-5-5

ALGOL

The values of X and Y for the current command are obtained
by subtracting 2 from Y, i.e. the block number is the same and the value

of CCP is 'Y-=2'.

If an ALGOL program is taking longer to run than anticipated,
and the operator has to interrupt the run, he should take the following

action:

(1) Press the message button
(ii) Depress Key 1
(iii) Reload the STAR phase 2 batch. 2 numbers will be

displayed, W and Z say. These values must be

preserved.

(iv) To resume the run later he must load the same tapes
on H1, H2, reinput RAP MT, load the STAR phase 2
batch and type W."Z-2". after the message '**inm'
has been displayed.

The run is resumed and the interrupted command is
restarted.
If he types Z instead of Z-2 the next command is

obeyed, and not the interrupted ane.

- 50 =

(Issue 2)

24345

10. RAP MT

The use of STRAP has been discontinued. RAP MT replaces it.
It contains a simple magnetic tape input routine entered by typing

IN;"batchname".

RAP MT will automatically re-enter STAR at its first entry
point after a 'STOP' instruction is obeyed and after the message 'NO PROG'

is displayed.

Certain facilities present in RAP are omitted in RAP MT.

The following messages can be typed on the typewriter:

CONTROL MESSAGES EFFECT
IN.)

)
CONT.)

) Effect same as in RAP.
CONT;ERRINT.)

)
RESET.)
LIST, As in RAP but outputs X after

the freestore size.

IN;batchname. Transfers control to the magnetic tape input

routine in RAP MT. This will input the

batch loaded on H1l.

The messages not availeble in STRAP are:

= ST =

(Issue 2)

2:5.5

IN;N. (where N is an integer)
CANCEL.

CANCEL ;name.

FREEST,

N. and N;S. (where N is an integer)

Displayed messages

All the displayed messages in RAP are also in RAP MT (see 2.2.1).

The message END is only displayed when a STOP instruction is

obeyed and STAR is not present.

When RAP MT is unable to read the first block on a magnetic
tape 'P' is displayed and attempts are made to reread the block. A
continuous output of P's when loading a batch tape indicates either a poor

handler or poor magnetic tape and the operator should take appropriate action.

- 50 -

(Issue 2)

2.5.5

1. STORAGE OF DATA ON MAGNETIC TAPE

1.1 Format of storage

The blocks of data are written as SPAN blocks of 122 words.
The first word after the SPAN header is for PCP's use and holds the block
number in the top 19 bits. The remaining 120 words are free for data.
The SPAN headerword is not included in the block written up to magnetic

tape. The mode of writing is odd parity, binary mode.

Five characters of T bits are packed in each word. The
top U bits are left blank, the first character occupies bits 35 to 39
inclusive, the second, bits 28 to 22 inclusive, etc. If a haltcode is
reached before the block is filled, the rest of the block is filled with
zero words. Halt codes and ampersands are not written onto the magnetic

tape.

11.2 Access to data

SAP2 programs may use PCP to read down the data blocks at
run time (the magnetic tape will have been positioned by STAR so that the
first block of data is the next block to be read). It must provide its

own unpacking routines,

ALGOL normally uses the common program STARCH to read its
program from magnetic tape. In the same way the compiled program may

use STARCH as a common program using Elliott instructions to enter it.

- 53 -

(Issue 2)

2.5.5

STARCH reads one magnetic tape block at a time into the buffer, unpacks
each word, and exits to the calling program with the next character in

the accumlator.

The form of entry to STARCH required by an ALGOL program

(written in Elliott Instructions) follows:-

30 <9STARCH>

T3 T7932:4k4 8032

L2 nostarch:20 save

ok <+5> 155 20

ob <73 0:400>: 10 save
20 HOLD / 30 1

81 20 : 22 save
20 HOLD+1 / TO L

03 <04 8191:>:51 20

o4 save : 20 save
save) +0 'save' is entryl to set
up STARCH
32 gave : 20 locn
the normal entry is set
i in "loen’'.
HOLD) +0
+0
Bk

(Issue 2)

2-5-5

12. NOTES ON PERFORMANCE FIGURES

The first speed given for each command is the rate for the
operation in the description. The second speed is that of the operation

plus listing the file (edited in cases 2 and 3) on a 300 line/min lineprinter.

command effect gpeed in speed in
ch/sec ch/sec + listing
inpute input from paper tape 970 61
inedit input with editing from paper 570 61
tape
edit input from magnetic tape, edit 650 56
from paper tape
oute output to paper tape 100 50
Phase 2

The time taken to translate a program from magnetic tape using
SAP2 is approximately 866 ch/sec (plus 8 secs for messages to the typewriter
from SAP2 and STAR). The time to translate a program from paper tape
using SAP2 is 520 ch/sec (with no blank characters) (plus 6 secs for

messages to the typewriter from SAPZ2 and say 3 secs to type the entry to SAP2).,

- 55 =

(Issue 2)

24545

i.e, the rate for STAR is 866 ch/sec + 8 secs

for SAP2 only is 520 ch/sec + 9 secs.

The following command was timed, with two operators who had never operated

a STAR run before, and were following operating instructions.

batch ;o,BATCH3.
new ;TEST.

inedit ;IMP.

outc* ;IMP.

SAP2 ;L ;IMP,90,60.
]

The bresk-down of time was as follows:-

LOAD 3 magnetic tapes 85 secs
2. LOAD paper tape in reader, set word generator ete. 4O secs
3s TIME TAKEN FOR STAR BATCH TO BE LOADED (3rd BATCH) 55 secs
L, Commands are read in-to message #%*[AIT 6 mins 10 secs
5e TIME TAKEN FOR PHASE 2 BATCH TO BE LOADED (3rd BATCH) 55 secs
6. PHASE 2 total time 23 secs
TOTAL TIME FOR BOTH PHASES 10 mins 28 secs.

This time could have been reduced by 1-13 minutes by having the batches for

Phase 1 and Phase 2 as the first batch on different reels (steps 3 and 5).

- 98 i

(Issue 2)

2,5.5

batch;2 ,BATCH 1.

new ;DEMD.

inputc;ALG1.

inpute ;ALGZ2.

inputc ;ALG3.

updatejACC.

edit;IMP, 1
copy ;EDIT.

copy ;PT.

SAP2 ;L ;1MP,90,56.

SAP2 ;L ;EDIT,90,L47.

SAP2 ;4 ; TEST,8,30;7 ;PT*.
update ;DGF.

edit ;FORT3. 1
list;FORT2. 1
update ;SEG1,

edit ;STAR. 69
update;5EGZ.

SAP2 3kl ;q,10,10;1;.

rename ;r,p. 1
list;r.

]

W ha

BRaw

The above commands list was timed from the beginning of the command being
input to the message **+*WAIT at the end of phase 1. The time taken was
180 secsa, The number of blocks in each file are listed beside the

command.

- 57 =

(Issue 2)

24545

13. RESTRICTIONS

The minimum command which will copy the old batch tape onto

the new batch tape, and update the batch number by one is:-

batch ;number ,compiler name.
update ;SEGMENT.
]

SEGMENT is any segment in the batch; this will be put first onto the new
batch, the remainder will be copied in the order in which they occur on the

old batch tape.

Every command tape must have at least 1 update/new,

- 58 -

(Issue 2)

2.5.5

AEEendix 1
CODE STCOPY §

FUNCTION

To be used in conjunction with RAPMT and DUMP MK.2

(Issue 2) to copy STAR batch tapes.

CONFIGURATION

As for STAR.

METHOD OF USE

STCOPY can be used to copy batch tapes for STAR/FORTRAN,
STAR/SAP2Z2 and STAR/ALGOLI, provided that the tape has been prepared
using DUMP MK2. Issue 2.

OPERATING INSTRUCTIONS

The instructions given below are for STAR/ALGOLI.
Reference should first be made to 503 MANUAL, 2.5.5.9.

The 3 batches on the STAR/ALGOLI batch tape are called
STAR1,S5TA2.X, STA2.Y in this desc ription. The batch tape to be copied

is called BTI and the tape it is to be copied onto BT2.

Step No. TAPE OPFERATOR RESULT
ACTION
l BT1, no write permit load to any two
BT3, write permit handlers
2 RAPMT in store
3 STCOPY (binary) IN.
4 STCOPY. END

Appendix |
1
(Tosue 1)

2.5.5

SteE No.

10

11
12

13

14
15

16

17

Appendix 1
2
(Tsaue 1)

TAFPE

BT2, Hl remote

DUMPZ

BT2, Hl, remote
DUMP2

BT2, Hl, remote

BTI1, Hl, remote
DUMP2

BT2, Hl, remote

BT1, HIl, remote
DUMP2

BTZ,Hl, remote

OPERATING NOTES

OPERATION
ACTION

RESET
IN.

DUMP2Z;5.

IN;STAR1.
IN.

DUMP2; 6.16.STAR1.

IN;STA2.X.
IT.

DUMP2;2.5TA2. X.

IN.STAZ2.Y.

IN.

DUMPZ2;2.STA2.Y.

re-input RAPMT

RESULT

Header written
on BTZ2
END

END

batch
written to BT2
END.

END

batch
written to BT2
END

END

batch written to
BT2
END

(1) The copied batches must be given exactly the same

names as they had on BTI1.

(2)

(3)

(4)

(5)

TAPES

2.5.5

It will probably be convenient to have three copies of

DUMPZ on a single paper tape.

The version of DUMP2 used must have a 64 (or less)

word buffer, otherwise it will fail to read in at step 10.

If BT2 had already been prepared with DUMP2, steps 6

and 7 may be omitted.

STCOPY corrupts RAPMT, so that step 17 should never

be omitted.

No program tape is issued but the text of the program is as

follows: -

program STCOPY;

block

begin

end;

one;
one,

30 <30A : 20 8108> (load order pair to overwrite
9 STAR)

73 7932 : 44 8147 (enter RAP to obey order pair
in acc)

STOP
A) 80 65 00 00 00 00 00 (illegal RAP name 90)

tr'gger one;

Appendix |
3
(ia=ue 1)

