503 SYMBOLIC ASSEMBLER.

CONTENTS LIST.

CHAPTER 1.
Introduction
CHAPTER 2.
1. Identifliers, their form
2% when invented
3., Identifier introductions
L. Control names
5. 8tyle of program, block and data introductions
6. Style of label introductions
Correction of Jump instructions
7. Label intreductions, contd.

8, f(lobal and local identifiers
Block labels as ijidentifiers

9., Form of reference to glcbal labels
10. Block format
1. S8S.A.C, rrogram format,

CHAPTER 3.

1. Instructions
2. Wholewcrds
Integers, fractions and floating point
Octal groups
Alphanumeric groups
Instruction pairs
Signed identifiers.

CONTENTS LIST (continued)

3. Diamond Bracket addresses
i, Allocation
5. Restrictions on addresses

CHAPT

e,

R 4.

1. Subroutines

2, Comnmon Progreams

3, Style of writing S.A.C. programs
B-digits
dynamic stops
comments

4, Example of an 8,A.C., Program.

This manual describes the feestures of the
existing Symbolic Assembly Program, Chapters describing
further features and the application to a non-basic 503
will be added at a latzr date.

CHAPTER 1.

This chapter introduces the Symbolic Assembly SysFem,
which is the normal medium for 503 Machine Code Programming.
Some knowledge of the computer, its machine code and the
working of its 'Reserved Area Progrom' is assumed, and the
reader is referred to other parts of the 503 Library Tfor a
detailed discussion of these,

The 503 can interpret each of the 39-bit infbrmgticn
words in its store as a pair of instructions or as an item
of data; each instruction is composed of & function and an
address portion. A program contzining jump or data
handling orders has to refecr to the locations it will
occupy when in the computer:; if it does so by means of .
the addressing system 'built-in' to the computer ('absolute
addresses), the result will be a rigidly-knit program
which must always be read into the same part of the store,
and which can be modified only at the cost of numerous
small alterations made to every part of it,

References to the locations which are to contain a
program written in Symbolic Assenbly Code arc by means of
names invented by the programmer. Used in this way, a
nane merely reserves 2 computer location, but no particular
location is specified at the time of writing the program,
A jump instruction might then be written as '43 ERROR 5'
and the particular instruction in the program referred to
here as 'ERROR 5' would be specified by prefixing it with
that label. Again, the program might refer to the
(variable or constant) data stored in a location named
'D1', or 'eclumn'.

Thus:
30 a
repeat) 05 subtracting constant
22 Count 1
L1 Print
LO repeat

The advantoge of such a system is that it takes
the routine part of programming out of the programmer's
hands, and gives an easily altercble progronm. For
example, it is easier to lnsert the instruction
'26 WORKSPACE' after the jump instruction in

L7 a
a) 30 meck

CHAPTER 1. (continued)

than to insert the instruction '26 32' in
L7 65: 0 13

(In the first example the jump instruction may be
left unchanged, but the jump instruction in the second
example must be altered toc accommodate the insertion).

A program written in this mammer must occupy and
refer to particular locations when it is in the store,
of course, but decisions about positioning are left to
the input program. This routine, the Symbolic Assembly
Program, incorporates a system which enables it to marry
up nomes and the addresses of particular storage locotions,
so that it can translate such a program, and plant it in
a part of the store known to be free at the time.

Entry to programs stored in the 503 is normally
by way of the 'Reserved Area Program' which reads its
contrcl instructions from the tynewriter, Once the
Symbolic Assembly Program is in the store, a Symbolic
Assembly Code tape nmey be assembled by mezans of a simnple
typed instruction. The assembled program will have been
given a name, and is run by setting up its data tapes and
typing GOTO; (PROGRAMNAMEY .

Programming ercors may be found at runtime by
using the Symbolic Assembly Teat Program, This is able
to trace the course run by an assembled progrzm, print
out the contents of specified name-locations at specified
points, and compare the stored version of a program with
its tape. Errors detected by the last process will only
be those caused by the program overwriting itsclf, since
the Reserved Area Program automatically sumchecks any
programe entered through its control.

The Symbolic Assembly Cede makes use of a number
of control names, to clarify program structure (both to
the Assembly Program, and as a help to the programmer)
end to admit extra facilities. Some are used to class
the names invented by & procgrammer for his progran
(data, program, block). Others mark the begimning and

CHAPTER 1 (continued)

end of the program (program, trigger) and the internal
division of the program into Tblocks' (begin, end).

The 3 chapters of description which follow describe
the essentials of the Symbolic Assemnbly Code, that is,
the amount which a programmer would need to know in order
to be able to write an efficient mechine code progran.
Chapter L conecludes with a programmed example,

CHAPTER 2.

1) Identifiers, their form.

The invented names acceptable within the Symbolic
Assembly Code may be composed, in part, of digits, For
this reason the term "nome", used in the introductory
chapter, will be dropped in favour of "identifier',

Any combination of letters, digits, and spaces which
begins with a letter will be called an "identifier".

For example,

8, data, a 5th CENTURY manuscript
AD 1962, pj 15 m 3L,
are 5 identifiers.

Identificrs are distinguished from each other by
their first 6 non-space characters. Thus no distinction
would be made between "Block111", "Block 1", snd "Block 11".

2) Identifiers, when invented.

A Symbolic Assembly Code program normally refers
to the storage locations which zre to contoin it by means
of o system of ildentifiers invented by the programmer.

Thus, each item of variable or constont data
used in 2 program is normally distinguished by an
identifier choscn or invented by the programmer.
Similarly, those instructions which appear as the
destinations of the program's jump instructions are also
identified, (with labels), As explained below, in
Chapter 3 Section 1, rclative addresses may also be used
in a2 Symbolic Assembly Cocde progranm.

Reference to the storage locations by means of
their absclute addresses is not possible, since the
Assembly Program allccates space ot assembly time
according to the free store then available,

The Symbolic Assembly Code (S.A.C.) recognises

-l -

2) Identifiers, when invented. (continued)

that progroms are usuelly written in easily handled
sections, or "blocks". Each block must be given a
distinguishing identifier, so that cross-recferences may
be made within the program; and the program must itself
be identified, so that it can be located at run-time.

These identifiers are used by the Symbolic Assembly

Program (S.A.P,) to identify particular locations at
assembly time, They do not identify location contents,

3) Identifier Introductions, defined.

- As seen in the previous section, the identifiers
invented for an S.A.C. program fall into 4 groups:

progranm, bleck, data and label identifiers.

To indicate, within an S,A.C. »rogram, to which of
these groups an identifier invented for the program
belongs is called "introducing" the identifier.

Although all invented identifiers must be
introduced somewhere in the program, it often happens
that an identifier is used before it has been introduced.
The only restriction made is that all identifiers used
within a block must have been introduced by the end of
the block .

) Contrcl Names

The control names which have defined meanings
within the S.A.C. are composed of lower case alphabetic
characters, each preceded ty underline. The 6 names
here dealt with are:

rogram, block, data,
btegin, cnd, trigrer.

5) Style and Position of Program, Block and Data
Introductions.

The introduction of the program's identifier is the

._5...

5) Style and Position of Program, Block cnd Data
Intrcductions.(continued)

first statement made in any S.A.C. program, and the
block-identifiers must be introduced immediately after
this, Data-identifiers may be introduced anywhere:
these are trected below in more detail,

Progran, block and data identifiers are introduced
by listing them after one or other of the control names
program, block, data. Ezch element in such a list is
separated by a comma from its neighbcurs, scparating
new lines (denoted by the symbol "L") are ignored by
the Symbolic Assembly Program, and the list is terminated
by semicolon., (Of course, since program introduccs the
prog??m's name, there can only be one element in 1its
list,.).

The S.A.P, reserves a new storage location for
each data identifier 1t reads. Locotions reserved in
this way are not "re-used" - that is, they are not
agsociated with new identificrs a2t any later point in
the rvrogram.

Arrays are declared as dota, their scope being
irdicated within round brackects after the selected data
identifier; for example, "domino (42)". This will
cause 13 consecutive locations to be allocated. These
may be referred to in the program as

dominc, domino + 1, ..., domino + 12,

and "domino" will have been allocated the smallest
address in the array.

As an example cof identifier introductions, the
beginning of a program might he
program multiple regression;

block read, print, square rocot,
input, output, control;

data run, dep vars, indep wvars (E),
workspace (12).

ol

6) Style of Label Introductions.
Corrcction of Jump Instructions.

A label identifier is introduced by prefixing it
to the instruction which it is intended to identify;
it must be followed by a closed round hracket, Each
instruction may be given up to 3 labels.,

for exanple
L4) reallocation) 30 a

These labels may be used in the address part of
any instruction within the blocks they are introduced in,
and are understood to refer only to the instruction, amd
not to the instruction pair, which follows them, As
the programmer is unlikely to know which locotion-half
any labelled instruction will occupy when in the
computer, the S,A.P. has been designed to supervise,
and if necessary to correct, those jump instructions
which have label identifiers in their address portions.

Thus, if the instruction labelled "reallocation) ..."
lay in the 2nd half of a location, and the S,A,P., were to
input the instruction "U43 reallocation", it would
effectively read the order "47 reallocation",.

N.B. No provision is made for not changing
instructions which have the form of jumps to labelled
points, but which are intended for use as parameters.

Labelling nay be used as an alternative way of
bocking dataspace., Although labels only identify
single instructions, the effect of an instruction such as
30 reallocation
is to pick up the instruction-pair

containing the instruction labelled "reallocation".
Thus, the entry

L1) + 0O
L.2) % O
in a program causes two locations

-7 -

6) Style of Lsbel Introductions
Corrcction of Jump instructions. (continucd)

to be reserved within the program area, and these may he
referred to as "L1" and "L2".

T) Label Introductions, continued.

Lobels introduced in the way ocutlined in the
previous section (6) have no meaning outside the blocks
in which they are introduced, A lcbel has to be given
en additionnl introduction if it is required for use
outside its own block, Such labels are called 'globall,
They are first introduced with the block identifiers,
at the beginning of the program, Each block-identifier
is followed, if neccessary, bty a list of the global
lebels which will be intreoduced within the block 1t
identifies. The elements of this list are separated
by commas, ond the whole list is enclosed in round
brackets,

Thus, an introduction of hlock identifiers might
teke the form
block silverbirch, fir (ncedle, cone, fibre), ook
(timbers, surge);
so that it wouid be possible to rcfer to the labels

necdle, cone, fibre, timbers and surge in any block
within the progrom.

8) Local ond Global Tdentificrs
Block Tdentificrs as ILabels.

Ar. identifier moy bes used in more than one
program-block, cnd yet be assigned o differcnt mecaning
within cach of those blocks. For cxamplc, the label

ENTRY)

could be fixed to one of the
instructions in each block of an S,A.C. program, since a
label, unless global, oaly has o meaning inside the block
in whiech it is introduced.

8) Local and Global Identifiers
Block ldentificrs ns Labels, continued)

An identifier which hss no meaning outside the
block in which it is introduced is called LOCAL. An
identifier which has thc same nmeaning or reference
throughout a program is called GLOBAL, Global
identifiers are distinguished from local identifiers
by being introduced outside (i.e. between or before)
the program-blocks,

Plocknames are naturally globcl, whercas data
and label identifiers may be global or local, or both.
Thus, one or more of the "ENTRY" labels referred to at
the beginning of this section could be introduced
globally at the head of the program. (In blocks within
which an identifiier has beth global and local references,
the local reference is understood to hold).

Block-identifiers may be used as if they were
lsbels atteched to the first instructions of their
blocks, (but sec the restriction mentioned in Chapter 3
Scetion li). Thus, the instruction "LO blockname" is
a jump to the first instruction of block "blockname".
Agnin, the identirfier "A" could be used glcbally as a
blockname and also as either & local data or a local
label identifier (but not both within any one block)
within sny of the program's blocks.

9) Form of refecrence to Global Labels
Relative Identificrs.

A relative identifier has the form "A * B", where
"B" is a blockname and "A" is either a data or a lebel
identifier.

Local data and label elements, (and also global
label elements), are rcferred to by means of thei» own
identifiers, insidec their own blocks. Outside their
blocks, global label elements arc referred to by means of
relative identifiers.

9)

orm of refercnce to Global Labels
c 1

i
lotive Identificrs, continued.

b i

Example: the instructicn
Lo A * B

causcs transfer to be made
to that instruction in block "B" which has been labelled
"A", Note that "A" must have been introduced as a global
label at the head of the program, (See Section 7).

Global data elements mey be assccinted with
particular blocks by introducing them globally, but in
relative identifier form.

The introduction
deta D, D ®* B1, A(5), C, D ¥ B3;

for example, causcs 10 distinct

locntions of datc space to be reserved at assembly time,
Outsidz blocks BY1 and B2 the identifier "D" refers to the
data element which has been introcduced here as "D"; but
inside block B1, for cxample, "D" identifies the location
"D %= B4", The refercnce of "D # B1" is the same every-
where in the program. Globnl data elements introduced
in relative identifier form do not have to be introduced
again in their associated blocks.

Local data and label elements may always be
referred to and introduced by relative identifiers within
their own blocks.

Thus the label
L1 % B5)

might bhe fixed onto an instruction
in block B5, L1 would not thercby becone a global label,
To achieve this, L1 must be incorperated into o global
label introduction; such as

block B1,B2(L1,L5,L20),B3,B4(L1),B5(L1);

- 10 -

10) Block Format.

Ench of the instructions and words in an S.A.C.
program must lie on one, and only one, block. This
means thot blocks may not intersect or be contained in
each othcr, and that cvery program must contain at least
cne block, The limits of a block are defined by the
control names, begin and end, begin being followed by
the block's identifier and a semicolon, and end being
followed by a semicolon., (All characters between end
and the next semicolon will be ignored by the Assembler) .

Identificrs may be introduced between ony two
instructions or words in a block, but it is convenient to
gather all data introductions into the "head" of the
block, after begin. All identifiers reflerred to in a
bloek must have been introduced by the time the end of
the block is reached; it is enough if global labels
have been introduced globally at this time. Labels may
be referred to beforc they are introduced, of course.
I+ should be noted that the contents of a block's data
loentions are not overwritten or destroyed on exit from
the block, since data spacc is not duplicated.

Thus a btlock has the forn,

begin blockname;

dota B,D,Cyqy sse}

(1label and data intrcductions, instruc tions
& words)

end;

Mo block may occupy more than 4096 locations when
in the store.

11) S.A.C, Program Format.

3 parts may conveniently be recogniscd in each
S.A.C. program.

(a) The progrem begins with a "head", containing the
introduction of the program's identifier, followed
by the introductions of the block and (global)
data identifiers. An example of a program head
is given at the end of Section (5).

- 11 =

11)

(b)
(c)

S.4A,C, Progrem Format, continued

(A minimum program head contains the introductions
of the progrom's identifier, 21l block identificrs,
all global lsbel identifiers, and the global data
identificrs used within the first block).

The blocks, with global data introductions between
them, if necessary.

The tail. The program finishes with the control
word trigger, followed by a list of the progren's
entry points expressed as rclative label
identifiers, or as block identifiers. Elements
of the list are separated by commas, and the

list is terminated by a semicolon. These entry
points must previously have been introduccd as
global lobels (unless they are blocknames).

An example of o trigger list:

trigger 1lift block 1, stairs®block 1, flats;

The S.A.P. causcs each S.A.C. program it assembles
to be focllowed by a trigger block of entry points.
This containe 3 + n words, where "n" is the

number of entry points.

in example of a complete S.A.C. program is given
at the end of Chapter L.

- 12 o

5) Restrictions on addresses

S —

Unalloceted identifiers aond Blocknomes used 28
labels may not be used in COMPOUND Addresses, and Diamcnd

Bracketed Addresscs may not be uscd within Diamond
Brocketed Addresses.

All invented identifiers used in addresses within
2 block must have been introduced by the end of that
block, It is enough if global labels have been
introduced glcbally by this point.

ol T

CHAPTER 3.

This chapter deals with the orders and wholewords
which go to mcke up an S.A.C, progran,

1) Instructions.

An instruction is a function followed by the
address it refers to.

The addresses may be of 5 different types.
(a) INTEGERS without signs, =.g. "51 5". This type

.u.u.
of address should not appecr as a reference to
a store location, but as a further specification

of the function.

(b) RELATIVE, in which the address is regarded as
being expressed reclative to the address of the
first location of the block in which it appears.,
Such addressecs have the form of an integer without
a sign followed by a comnma,

e.g. L0 15,

which means " jump to the first
half oFf the 15th location in this block".

(e) IDENTIFIED, c¢.g. "30 shcwvel"
(a) COMPOUND

(e) DIAMOND-BRACKETED

Addresses of types (d) and (e) are dealt with in
Secction 3.,

2) Wholewords.

The content of a loeccotion may be expressed in
different ways. Any S.A.C. expression of a 39 bit
location content is called 2 "wholeword".

- 13 =

2) Wholewords (continmed)

Wholewords are divided into the following types:

Intcgers, Fractions and Flooting Point Numbers,
Octal & Alphanumcric Groups,

Order Pairs,

Sipned Identifiers.

2,1) Integers, Fractions end Floating Point Numbers.

These are composcd of the digits 0 to 9 and the
characters + - . ond subscriptyp. They nay be terminated
by any cheracter other than thcsec, and froeticons and
intcgers mey also be terminnted by + and -

Each number must contnin at lenst one digit ond be
preceded by a sign.

Any whole number between -274,877,906,94L and
+274,877,906,943, inclusive is called an INTEGER

C.E., +5 =304L882

A ¥RACTION consists of the character . (point)
followed by no more than 11 digits : it noy be unsigned.

8.2, =14129811392° .5 +.5

Note that signed froctions such aos +0.113 will also
be acccpted by the S.A.P, Unsigned fractions of the
type 0,113 should not be used.

A FLOATING POINT NUMBER is one of the form
a x 10b

"a" being knovm ae the "mentissa", and "b"
ns the "expornent".

The form of the montissa is: an integer, or a
froction, or an inteper followed by on unsigned fraction.
It must be such that the number cbtained by removing the
character "point" (if present) is on integer as defined
here,

o Al =

2.1) Integcrs, Fractions and Florting Point Numbers -
(continued)

The exponent is on integer of no more than 2 digits,
and may be without a sign if positive, or cven omitted
nltogether if zero.

A flonting point number is written as
nentissayg exponent

and floating point overflow will occur if it is outside
the (approximate) range:

£1.73 x 10~ 77 to 5.8 x 107°

Exacmples +340+5 (=300,000)
+ . 59210—2? *
+210
2

Numbers berinning with the character 49 will also
Le acccptcd.

Example: Zerc may be expresscd as
+0 =0.0 40 .0 +040 +0000D and so on,
But " .00000C000000" is erroncous, becausc it is & fraction

with more thon 11 digits, and so is "+" because it holds
no digit.

2.2) Octal Groups.

A 39 bit location contcnt may be split into 13
ecquel parts of 3 bits ench, If cnch of the parts so
cbtaincd is expressed as a digit between O and 7, and the
whole expression is preceded by the digit 8, the result
is known as an "octal group".

- 15 =

2.2) Octol Groups (continued)

For example, the number 21 mny be written as
80 COO 000 000 025

in octal fcrm, since 21 may be
expressed as the 39 bit location content

*ww [. ow L LA »aw LI L LI LR I W P1'1‘1

-21 is 87 777 777 777 153

2.3) Alphanumeric Groups

It is often useful for an S.A.C. progranm to be able
to ocutput headings, titles, error indications, ctc. on the
typewriter at runtime, Such headings are to be stored
in some way, as constant data.

The 7-hole character code is punched in an 8-hole
form, on tape, one of the bits in each character being
used for parity checks. Five such characters can be
packed side by side into one 39 bit location, (leaving
I, bits spare =2t the top of the location).

Thus the word "ERROR" cculd be packed as:
(0) R 0 R R E

LI -11--11 1‘111111 -11:-1. -11--1- -1-111-1

The S.A.C. expression for the above locntion
content is

£ERROR

A heading is expressed in Alphonumeric Group form
by splitting it up intc groups of 5 characters each, each
group being nreceded by the character £, The rmumber of
characters in a hcoding must be made up to & multiple of
5; this could be done by chnnging the number of
characters in the heading, or by "filling up" the
hending with characters, such as "paperthrow" (B), which

oA o

2.3) Alphaonumeric Groups (continued)

have no effect on print-ups.
Thus the expression for
for heating: £96

as a sct of alphonuneric groups is
£forShfcatingg: S€9LE6PPPP

where 8 denotes the character "space",
end P hos been used to make up the number of characters
in the last group to five. Note that the character £
may be used as both a control symbol, defining the
beginning of an alphanumeric group of 5 characters, =2nd
as onc of the characters within an alvhanumeric group.

The small section of S.A.C. progrom which follows
will output the word ERROR on the typewriter,

datz count, press;

30 errcr A

b0 35

30 Nmlhy

20 Count
again) 06 O

54 7

20 Press /

7L LO96

32 Count

41 Again

erronﬁg E£ERRCR
Nnk) -4

2.4) Instruction Pairs.

An instruction poir is a prir of instructions
scparated by o B-line.

- 47 -

2.4) Instruction Pairs (continued)

Example, The number 100 may be expressed as

+100
80 00O OO 00O 124
000: 00 100

in the S.A.C.
2.5) Simmed Identificr Wholewords

The effect of writing
+ IDENTIFIER
in a2 program lccotion is thnt the storage address

2llocoted by the S....FP. to IDENTIFIER at Asscmbly tinme
is placed in thot loention.

3) DIAMOND BRACKET Addresscs
COMPOUND Adfresses.

Whole words mey “e storcd in an S.4.C. program by
actually writinz them as part of the program, and
normally with o label for identificntion.

c.g. Pi)+3.1L4159265,,

This constant may then be referred to in an order
such as "307i" - the result of which is to place
+3.1415926540 in *hc accunulator,

An gltern tive woy of doing this is by the order

30¢+3.14159265, %

The E.A,P. allocates storogre spoace within the
progrem it is asscmbling to whole-words read in this way.
Such wholewcrds are stored 2t the ends of the blocks
they are first reand in:; they arce not duplicated in the
store if read agein, and are available throughout the

- 18 =

3) DIAMOND BR/ACKET aAddresses
COMFOUND Addresscs - (continued)

prcogron,
Exanple: the instruction
30 ¢+ count’

has the effect of plnaecinz the address of the location
2llocated to "ecount" in the accumulator.

LA COMPOUND address consists of an identifier address
with an added integer.

Exanple 30 pick +3
or 30 3+ pick

mean "pick up ¢ (vnick +3)" and
do nct mean "Pick up e(pick) +3".

L) Allcention.

The process by which the S5.A.P, detcrmines the
reference of on identificr is called "alloention".

For example, the data loestion "DATS 15" will haove
been 2llocnted when the S.A.P. hos determincd the address
of the porticular storage loertion which it is to identify
ty this nome.

Dotn identificrs are allocoted immedintely cn
being intrcduced, The onc exception is thnt, when an
S.A.C, progranm is being cutput, loecal data introduced
cutsidc tie head of = block is 2l1locoted when the S.ALP.
recoches the end of the block. Label identifiers ore
2llocoted at the bteginning of the instruction or
wholeword fcllowing that which they lobel, This
includcs bleock identificrs, which may be ccnsidered to
label the first instructions of blocks,

-1 9=

CHAPTER 4.

This chapter concludes the description of that
port of the S...C. needed to write o complete S.A.C,
prosrran, It decals chicfly with those identifiers, not
control-n~nes, which the 35.A.P. rccogniscs as having a
Tixed meaning. The chapter ends with an cxample of o
cenplete §5,.4.C. program.

1) _Subroutines,

The S.4.7. automatienlly allocotes 2 "link-loeation"
for ccch bloek it reads, doing so at the time the block
icdentifier is introduccd. Each of these link locations
is identified os the loecntion with the global label

LINK

Thus, within their own blccks, these links moy be
rcferred to as LINK, and cutside as LINK® blocknanme, where
"blockname" identifices the block containing the particular
LINK rcferrcd to.

Each S,A.P. block may bc treated as & subroutine,
provided that its exit-instruction is corrcctly arranged.
The stondord subroutine entrics, to the first instruction
of the bleck, or to o labelled instruction within the
bleek, arc then

73 LiNK = Blocknsme : LO Blecknome

or 73 LINK = Blockname : L4O LABEL * Blockname
These moy be shortened to

SUBR, Blockname
and SUBR, L..BEL * Bloccknane
rcspectively @ the S,ALP.
deals with the shortencd form s2s if it had rcad the
instructicn oir given above in the ncormal forn,

The stondard subroutine exit instruction, to the
nth location after thot containing the orders cousing

- 24 =

1) Subroutines (continued)

entry to the subroutine, may be shortencd from

00 LINK / LO n
to EXIT, n

Care should be taoken, when using these shortened
forms of subroutine entry and exit, tc moke sure that
the content of LINK*blocknoame is not overwritten by a
"rerursive use" of the subroutine within itsclf, or of
a subroutine within o block which is itsclf a
subroutine,

2) Common Progroms.

Each 8.4.C. progrom is cutomotically allcoented a
link loesticn by the S.4,P., so that S,A.C, prcgrams may
call each other up as if thcy werc subroutincs. This
is done by the order

COMP,X

where "X" identifies the program
being called., An entry point "n" may a2lso be specified:

CoMP,X, n

This refers to the nth
triggzer point declared ofter tripggmer in progrem X,
"CovP,X" and "COMP,X,1" nre the same order.

The progranmcr rmust ensure thot progrom X has a
subroutine cxit. This is done exiting from it with
the order

EXIT CP, n

which causcs a jump to the nth loeontion after thot
containing the entry instructions. The conmon
~rooram's link may be referred to as "LINK CP"; such
references may not be made outside the common rrogram
itself,

“ 0P -

2) Common Programs (continued)

It is importont that progrem X be already in the
store when S.A.P, is assembling the program which calls
ity

3) Style of Writing S.4.C. Programs
B-digits, dynomic stops, comments.

Though the aossembled program will be stored two
instructions to a location, the instructions are usually
written one to a2 line. Programs written as o series of
wholewords will be accepted by the S.A.P., but, from the
programmer's point of view, they are more difficult to
alter than those in the suggested style.

The S.,A.P. stores ecch new order or wholeword in
the next available store half-locotion or location,
assuning B-digits to be zero unless given zny other
indiecation.

Each order nay bhe followed by onc of the B-Digit
characters ¢ (= 0) and / (= 1), or be oreceded by: .
As well as specifying their own value in the instruction
poir being assembled, these B-digits also give the
nwosition of instructions within computer locations,

Thus "22 wages /" indicates that the order
"22 woges" is to be stored in the next avoilnble first-
half-location, and that it is to be followed thcre by a
bit in the B-digit position.

The two orders
3 2 ¢
24 wages /

would be stored in
consecutive locetions.,

No S.A.C. program should contain dynemice stops;

these are rcnloced, in the 503 system, by programmed jumps
to the Reserved Area Progran,

~ 23 =

3) Style of Writing S.4.C. Programs
B-digits, dynamic stops, comments (continued)

These are written as

STOP - unconditionsl transfor to the R.ALP.
0 8TOP - +transfer if overflow to the R.A.P.

N STOP -~ transfer if negontive accunulator to the
R.A.P,

Z STOP - transfer if zero accunmulater to the
R.AP.

The S5.A.P., will ignore comments punched between
square brackets, so that "30 A{A = collating const.}"
is read as "30 A"

- 24 -

Example of an S.A.C, Program.

rogram square rcot;

—

%ﬁhis program computes the roots of single_lcngth
ractions and precedes the ocutput result with a2
new line and the word RDDﬁ]

blocks root, control (L1);

[ﬁommon programs - read, print,
and alphanumeric print.Jj

data number* root;
begin root; datza number, rcot;

30 number
44 L4 * control
L2 exit
30 {37 8191/77 8191
20 root

L1) 30 numbcr
56 root {the formula used is :
OL4 roct {%/w{n} + w(n) = 2w(n+1)}
51 1
15 root
L1 L4
07 root

exit) BXIT, 1
end root;

begin control;
COMP, read
20 number*root
30 £LROOT
COMP, alphanumeric output

- 25 -

L) Examnle of non S.A.C. Program (continued)

—————

SUBR, root
conp, print, 2
000 / 0011 {Print paremeter word)
Lo control

L1) 30 (&NEGER)
COMP, =nlvhaon
LO control

gnd;

Irigrer control;

27th February, 1963.

b, Schwar.

e

